aeroelastic stability analysis using modal...

32
Aeroelastic Stability Analysis Using Modal Approach Hassan Kassem City University London 4 th OpenFOAM User Meeting UK & Éire Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 1 / 26

Upload: hakiet

Post on 23-May-2018

237 views

Category:

Documents


5 download

TRANSCRIPT

Aeroelastic Stability Analysis Using Modal Approach

Hassan Kassem

City University London

4th OpenFOAM User Meeting UK & Éire

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 1 / 26

Outline

1 Introduction

2 Numerical Model

3 Results and Discussion

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 2 / 26

Introduction

Outline

1 IntroductionAeroelasticityTransonic FlutterComputational Aeroelasticity (CAE)

2 Numerical Model

3 Results and Discussion

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 3 / 26

Introduction Aeroelasticity

AeroelasticityOverview

Aerodynamic forces

Inertial forces Elastic forces

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 4 / 26

Introduction Aeroelasticity

AeroelasticityOverview

FlutterSelf-excitedoscillation of elasticbody in fluid stream

Aerodynamic forces

Inertial forces Elastic forces

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 4 / 26

Introduction Transonic Flutter

AeroelasticityDefinitions

Transonic FlutterThe transonic flutter limitappears to be low in anyflight range. Transonic Dip

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 5 / 26

Introduction Computational Aeroelasticity (CAE)

Computational Aeroelasticity (CAE)

CAE

CFD CSD

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 6 / 26

Introduction Computational Aeroelasticity (CAE)

Computational Aeroelasticity (CAE)

Fluid-Structure CouplingForces depend on displacement.Displacement depends on forces.

CAE

CFD CSD

Coupling

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 6 / 26

Numerical Model

Outline

1 Introduction

2 Numerical ModelOverviewAerodynamic ModelAeroelastic ModelFluid Structure Coupling

3 Results and Discussion

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 7 / 26

Numerical Model Overview

Numerical Model Overview

Initial ConditionsMode Shapes

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 8 / 26

Numerical Model Overview

Numerical Model Overview

Initial ConditionsMode Shapes CSD

Initial Forces

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 8 / 26

Numerical Model Overview

Numerical Model Overview

Initial ConditionsMode Shapes CSD

Initial ForcesCFD

Displacement

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 8 / 26

Numerical Model Overview

Numerical Model Overview

Initial ConditionsMode Shapes CSD

Initial ForcesCFD

Displacement

Forces

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 8 / 26

Numerical Model Aerodynamic Model

Aerodynamic ModelOpenFOAM

Conservation of mass:

∂ρ

∂t+∇ · [uρ] = 0

Conservation of momentum:

∂(ρu)∂t

+∇ · [u(ρu)] +∇p = 0

Conservation of total energy:

∂(ρE)

∂t+∇ · [u(ρE)] +∇ · [up] = 0

where ∇ is the nabla vector operator , ∇ ≡ ∂i ≡ ∂∂xi≡ ( ∂

∂x1, ∂∂x2

, ∂∂x3

).

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 9 / 26

Numerical Model Aeroelastic Model

Equation of Motion

Bending-Torsion coupled beam

EIh′′′′ + mh −mxαα = 0

GJα′′ + mxαh − Iαα = 0

Generalized Coordinates

[M]{q}+ [K ]{q} = {F}{q} = [φ]{η}

ηi + ω2i ηi = Qi ; i = 1,2, . . . ,N

Qi = {φ}Ti {F}

ω2i = {φ}T

i [K ]{φ}i

1 = {φ}Ti [M]{φ}i

[φ] is the modal matrix.

{η} is the generalized coordinates.

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 10 / 26

Numerical Model Aeroelastic Model

Equation of Motion

Bending-Torsion coupled beam

EIh′′′′ + mh −mxαα = 0

GJα′′ + mxαh − Iαα = 0

Generalized Coordinates

[M]{q}+ [K ]{q} = {F}{q} = [φ]{η}

ηi + ω2i ηi = Qi ; i = 1,2, . . . ,N

Qi = {φ}Ti {F}

ω2i = {φ}T

i [K ]{φ}i

1 = {φ}Ti [M]{φ}i

[φ] is the modal matrix.

{η} is the generalized coordinates.

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 10 / 26

Numerical Model Fluid Structure Coupling

Displacement Coupling

{P1} = [R]{P0}+ {h}

[R] =

cosα −sinα 0sinα cosα 0

0 0 1

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 11 / 26

Numerical Model Fluid Structure Coupling

WHY?

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 12 / 26

Numerical Model Fluid Structure Coupling

Implementation

srcelasticBodyDynamics

elasticBodyelasticBodyMeshelasticBodyForceelasticBodyMotionFileelasticBodyMotion

elasticBodyMotionCSDODECSDInputelasticBodyMotionState

pointPatchFields/derived/elasticBodyDisplacement

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 13 / 26

Results and Discussion

Outline

1 Introduction

2 Numerical Model

3 Results and DiscussionTypical wing sectionGoland Wing ModesPitching Goland WingFlutter Analysis

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 14 / 26

Results and Discussion Typical wing section

NACA 64A010 Aerofoil

Lift Coefficient

-0.1

-0.05

0

0.05

0.1

-1.5 -1 -0.5 0 0.5 1 1.5

Cl

Angle of Attack α

Experimental, DavisOpenFOAM

Typical Wing Section

eac.g

kh

h

α

U∞

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 15 / 26

Results and Discussion Typical wing section

Damped Response

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 10 20 30 40 50

Non

-Dim

ensi

onal

Dis

plac

emen

t

Non-Dimensional Structural Time τ

hbα

(a) Displacements.

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0 10 20 30 40 50

Forc

esC

oeffi

cien

ts

Non-Dimensional Structural Time τ

clcm

(b) Forces Coefficients.

Damped Response. M∞ = 0.85, V ∗ = 0.439

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 16 / 26

Results and Discussion Typical wing section

Near Flutter Point

-0.02

-0.01

0

0.01

0.02

0 10 20 30 40 50

Non

-Dim

ensi

onal

Dis

plac

emen

t

Non-Dimensional Structural Time τ

hbα

(a) Displacements.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50

Forc

esC

oeffi

cien

ts

Non-Dimensional Structural Time τ

clcm

(b) Forces Coefficients.

Damped Response. M∞ = 0.825, V ∗ = 0.612

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 17 / 26

Results and Discussion Typical wing section

Divergent Response

-0.4

-0.2

0

0.2

0.4

0 10 20 30 40

Non

-Dim

ensi

onal

Dis

plac

emen

t

Non-Dimensional Structural Time τ

hbα

(a) Displacements.

-1

-0.5

0

0.5

1

0 10 20 30 40

Forc

esC

oeffi

cien

ts

Non-Dimensional Structural Time τ

clcm

(b) Forces Coefficients.

Divergent Response. M∞ = 0.875, V ∗ = 1.420

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 18 / 26

Results and Discussion Goland Wing Modes

Goland Wing

Goland Wing Properties

Property Value

Chord, c 1.829 mSemispan, s 6.096 mThickness to chord ratio, 0.04Mass, M 534.7 kg/mBending stiffness, EI 9.789× 106 Nm2

Torsional stiffness, GJ 0.989× 106 Nm2

Mass moment of inertia, Iα 129.5 kgm

Surface Mesh

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 19 / 26

Results and Discussion Pitching Goland Wing

Pitching Goland wing

Mach = 0.92 with 0.5◦ amplitude and 3.0 Hz frequency

-0.02

-0.01

0

0.01

0.02

-0.04 -0.02 0 0.02 0.04

CM

Cl

OpenFOAMENS3DAE, Beran

CAPTSD, BeranFluent, Parker

Moment Coefficient verses Lift Moment

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 20 / 26

Results and Discussion Pitching Goland Wing

Free Vibration Modes for Goland Wing

Frequency Results (Hz)

CALFUN-B Beran NASTRAN Chung

1st Mode 2.01 1.97 1.95 1.932ndMode 3.73 4.05 4.08 3.923rd Mode 10.36 9.65 - -4th Mode 13.53 13.4 - -

Mode Shapes

0

ω1 = 12.6 rad/s

ω2 = 23.4 rad/s

0

0 0.25 0.5 0.75 1Normalized Spanwise Distance

ω3 = 65.1 rad/s

0 0.25 0.5 0.75 1Normalized Spanwise Distance

ω4 = 85.0 rad/s

Bending Torsion

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 21 / 26

Results and Discussion Flutter Analysis

Flutter Boundary

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 50 100 150 200 250 300

Hea

veD

ispl

acem

ent,

h

Non-Dimensional Time, τ

80 m/s100 m/s110 m/s120 m/s

Heave Response of the tip, M∞ = 0.8

100

150

200

250

0.75 0.8 0.85 0.9 0.95

Flut

terS

peed

,Uf(

m/s)

Mach Number, M∞

Theodorsen, EastepDoublet Lattice, Eastep

MSC/NASTRAN(FE), BeranCAPTSDv-NLS(Beam), Beran

CAPTSDv-NLS(FE), BeranZONA6, Kurdi

OpenFOAM

Flutter boundary for Goland Wing

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 22 / 26

Results and Discussion Flutter Analysis

Generalized Coordinates

-0.01

-0.005

0

0.005

0.01

0 50 100 150 200 250 300 350

Gen

eral

ized

Dis

plac

emen

t,q

Non-Dimensional Time, τ

Mode1Mode2Mode3Mode4

Damped Response. M∞ = 0.8, V∞ = 80m/s

-0.02

-0.01

0

0.01

0.02

0 50 100 150 200 250 300 350

Gen

eral

ized

Dis

plac

emen

t,q

Non-Dimensional Time, τ

Mode1Mode2Mode3Mode4

Near flutter point Response. M∞ = 0.8, V∞ = 110m/s

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 23 / 26

Results and Discussion Flutter Analysis

Goland wing

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 24 / 26

Summary

Summary

The developed model for coupling the fluid-structure interactionbased on free vibration natural modes of elastic wing ishighlighted.Two case studies have been investigated and the predicted resultsare compared with numerical data from the literature.

OutlookThis model will be used for predicting the transonic speed ofcomposite wings.The model will be extended for three-dimensional wings based onplate theory.This model could be coupled directly with different solvers!

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 25 / 26

Summary

Thank you for your [email protected]

Twitter: @HIKASSEMResearchGate/Hassan_Kassem10

Hassan Kassem (City University London) Flutter, OpenFOAM OFUM2016 26 / 26