advanced virgo : cryostat designs some thermal aspects

12
Feb 3, 2 009 Thermal aspects of Advanced Virgo cryostat design, Eric H ennes, UvA 1 Advanced Virgo : cryostat designs Some thermal aspects Eric Hennes, University of Amsterdam Gravitational Waves group Amsterdam Nikhef-VU-UvA Cascina, Februari 3, 2009 Contents geometrical overview questions to be answered thermal properties modeling method results for several design parameters conclusion

Upload: hei

Post on 14-Feb-2016

68 views

Category:

Documents


0 download

DESCRIPTION

Advanced Virgo : cryostat designs Some thermal aspects. Eric Hennes, University of Amsterdam. Contents geometrical overview questions to be answered thermal properties modeling method results for several design parameters conclusion. Gravitational Waves group Amsterdam Nikhef-VU-UvA - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 1

Advanced Virgo : cryostat designsSome thermal aspects

Eric Hennes, University of Amsterdam

Gravitational Waves group Amsterdam

Nikhef-VU-UvACascina, Februari 3, 2009

Contents

geometrical overview

questions to be answered

thermal properties

modeling method

results for several design parameters

conclusion

Page 2: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 2

cylinder Tc=80 K fixed

Lc

Dc

Dm

mirror

Simplified geometryAmbient temperature Ta=300K

Lcm

tm

Mirror:

Dm = 0.4 m

tm = 0.1 m

Am = (Dmtm+Dm2/2)

Rm = Dm/2

Cylinder:

Dc = 0.65 or 1.0 m

Lvc = 2.5 m

Ac = DcLc

Exterior: isolated

cold area viewed by mirrorBaffle ring at Ta

transparant area viewed by mirror

Distance:

Lcm = 2.5 m

`

Page 3: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 3

To be estimated

PamPmcPac

•Cryostat power consumption Pac due to radiation

•Radiative heat flow Pmc =Pam from and to mirror (in equilibrium)•Mirror temperature distribution, without or with baffle(s)•Effect T-distribution on mirror optics (optical path)•(Design of baffle heating)

`

`

Page 4: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 4

Thermal material properties involved

Mirror: Thermal conductivity : k = 1.36 W/KmThermo-optic coefficient :dn/dT= 0.98 10-5 K-1 Thermal Expansivity : = 0.54 m//KmEmissivity: : m = 0.89

Cryostate Emissivity: : c = 0.1 (initial)

= 0.2 (nominal, t< 2 years)= 0.9 (worst “icing” case)

Baffle “ : b = 0.12

Ambiance “ : amb = 1.0 (“black”)

Reflection of radiation : diffuse, i.e. non-specular

Page 5: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 5

Mirror temperature distribution : FEM (COMSOL)Domain : T=0Boundary : .n=J (outward conducted power flux)

Radiation heat exchange general : FEMIsothermal mirror equilibrium : analytical approximation

cooling power:

ambiance to mirror:

mirror to cryostat:

solving Tm (equilibrium): Pmc= Pam

Modeling method / tools 1

44, caacacccacca TTEEAFP

ammmamma EAFP

)1()1)(1(1 ccccmmcmc

mcmmcmcmc FFF

EAFP

Page 6: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 6

View factor calculationgeneral : FEM (COMSOL)

2 simple bodies (Am<<Ac) : analytical approximation:

general: A1F12=A2F21

with Fcc: view factor between two circular faces 1 and 2 at distance d:

Modeling method / tools 2

2

1

2

2

1

2

1

2221

21,421),,(

DD

DdX

DDXXdDDF cc

),,(),,(4/14

ccmcmcc

cmcmcc

m

mmcma LLDDFLDDF

ADFF

2

2

111c

c

c

cccca D

LDLFF

Page 7: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 7

Mirror geometrical properties change (mirror initially flat)

mirror thickness changedue to thermal expansion:

mirror surface radii of curvature: FEM mechanical analysis

Modeling method / tools 3

mt

m dzrzTrt0

),()(

Thermal lensingchange in optical path:

radius of curvature of equivalentisothermal lens (one side flat):

mt

m dzrzTdTdnrtnrs

0

),()()1()(

)0()(2)1( 2

sRsRnR

m

mopticthermo

),0(),( rTrtTtdTdn

mm

Page 8: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 8

FEM models (thermal & thermo-mechanical)

Dc=1m, 3 baffles, quadratic hex elements

Dc=0.65m, no baffles, linear prism elements

Page 9: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 9

Results small cryostate (c=0.2), no baffles

Cryostatpower Pac 180 W

Self-irradiance Fcc 0.87

Mirror

view factor Fmc 0.0123

power Pmc 0.22 W

Av. cooling Tm 0.23

Kfront-back Tfb 0.10

mid-edge Tme 0.06

thickness tm(Rm) tm(0) 4

nmdisplacement differences

front zf(Rm) zf(0) 13

back zb(Rm) zb(0) 9

Radius of curvature

front surface Rfront 1500

kmback surface Rback 2200refractive Rthermo-optic 120

Temperature profile (299.70 – 299.86 K)

9 nm

Front Back

dz=13 nm

Enlargement factor : 2E6

Page 10: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 10

Summary results for c=0.2

Dc(m) baffles Pc(W) Pm(W) Tm(K) Rthermo-optic(km)

0.65 no 180 0.42 0.21 120

1.0

no 370 0.8 0.43 60

b1 320 0.24 0.12 220

b1+b2 340 0.23 0.11 250

b1…..b3 350 0.31 0.16 170

b1…..b4 305 0.40 0.19 100

b1+b4 260 0.44 0.21 120

b4 b3 b2 b1

mirrorDc

Page 11: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 11

Cryostat power for several emissivities c

Ec: 0.1 0.2 0.9

Dc(m) baffles Pc(W)

1.0

no 245 370 675

b1 221 320 530

b1+b4 190 260 370

0.65 no 130 180 295

Page 12: Advanced Virgo : cryostat designs Some thermal aspects

Feb 3, 2009

Thermal aspects of Advanced Virgo cryostat design, Eric Hennes, UvA 12

Final remarks & conclusion

• All radii of curvature are larger than 100 km and exceed by far those predicted for beam power absorption (see van Putten et al.) Conclusion: no mirror optics problems expected for any proposed design

• Lowest cryostat power is obtained using (only) 2 baffles on either side

• Including the recoil mass into the models will result into a smaller radial temperature gradient, and consequently, into even larger radii of curvature