advanced tutorial on : global offset and residual covariance

27
Advanced Tutorial on : Global offset and residual covariance ENVR 468 Prahlad Jat and Marc Serre

Upload: lorand

Post on 23-Feb-2016

52 views

Category:

Documents


0 download

DESCRIPTION

Advanced Tutorial on : Global offset and residual covariance. ENVR 468 Prahlad Jat and Marc Serre. Agenda. Why use a global offset? How is the global offset calculated ? Remove the global offset from data Effect of global offset on covariance. Why use a Global Offset? . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Advanced Tutorial on : Global offset and residual covariance

Advanced Tutorial on :Global offset and residual

covariance

ENVR 468

Prahlad Jat and Marc Serre

Page 2: Advanced Tutorial on : Global offset and residual covariance

Agenda Why use a global offset? How is the global offset calculated ? Remove the global offset from data Effect of global offset on covariance

Page 3: Advanced Tutorial on : Global offset and residual covariance

Why use a Global Offset? We may be interested in

mapping a global trend (global warming).

To model short range variability more accurately.

The Trend Analysis can help to identify a global trend in the user dataset if it exists.

Page 4: Advanced Tutorial on : Global offset and residual covariance

Variability =f (short range, long range variability)

Short range variability can in some cases be modeled in the global offset in the data.

However, there is a real danger of over fitting the data when using the global offset and leaving too little variation in the residuals to properly account for the uncertainty in the prediction.

What is our dilemma ?

Page 5: Advanced Tutorial on : Global offset and residual covariance

Desirable: I. Low residual variability (for global offset with small range

variability) II. Long autocorrelation range in covariance model (very flat global

offset)

A global offset with small range variability is very informative and therefore leaves little autocorrelation in the residuals .

A flat global offset leaves too much variability in the residuals.

A tradeoff between residual variability and autocorrelation range is needed: One should choose a mean trend which captures some variability and leaves reasonable autocorrelation in the residuals

What we want to achieve ?

Page 6: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset Temporal plot of Z versus time t for Monitoring Station 1 and 2

There is a temporal trend of increasing values with time

Page 7: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset Spatial plot of Z versus monitoring event 1 and 2

There is a spatial trend of increasing values from left to right

Page 8: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset Residual data plots

There is no trend in residual

Page 9: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset

We model the S/TRF Z(s,t) as the sum of a global offset mz(s,t) and residual S/TRF X(s,t)

Z(s,t) = mz(s,t) + x(s,t)

Page 10: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset BMEGUI assumes that the global offset is a space/time additive separable function i.e. space/time mean trend

Where : ms(s) is the spatial component and mt(t) is the temporal component

mz(s,t) = ms(s) + mt(t)

Page 11: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset Temporal plot of log PM2.5 (ug/m3) versus time (days)

0 100 200 300 400 500 600 700 8001

1.5

2

2.5

3

3.5

4

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 8000.5

1

1.5

2

2.5

3

3.5

4

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 8000.5

1

1.5

2

2.5

3

3.5

4

4.5

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 800-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 800-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 800-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 800-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m3

0 100 200 300 400 500 600 700 800 900-8

-6

-4

-2

0

2

4

6

Days

log(

PM

25) u

g/m3

Page 12: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset

Global Offset

Page 13: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset Temporal plot of log PM2.5 (ug/m3) versus time (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Days

log(

PM

25) u

g/m

3

MS

iji

j n

tsPMtmt

),(25)(

Take the sum of all observations at time and divide it by number of observations; apply exponential filter for smoothness in the trend

jt

Page 14: Advanced Tutorial on : Global offset and residual covariance

Tradius

Sradius

i range

i rangei

Sd

Sdms

SSM

exp

exp

j range

j rangej

Td

Tdmt

STM

exp

exp

Smoothen the Global Offset

Page 15: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset

Global Offset for MS=4

Page 16: Advanced Tutorial on : Global offset and residual covariance

Model the Global Offset

0 100 200 300 400 500 600 700 800-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m

3

Observed PM25

4),(25 itsPM ji

Time series of observed log(PM2.5) at MS 4.

We want to model the global offset at this MS

Apply exponential filter to smoothen the global offset

Remove the global offset and obtain residuals for covariance modeling

Page 17: Advanced Tutorial on : Global offset and residual covariance

Model the Mean Trend

Time series of observed log(PM2.5) at MS 4.

Plot mt, the temporal component of the global offset

Shift the temporal global offset to zero (i.e. calculate mt–mean(mt))

Add the spatial component of the global offset, i.e. add ms to mt–mean(mt)

0 100 200 300 400 500 600 700 800 900-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m

3

Observed PM25Global temporal trend

MS

iji

j n

tsPMtmt

),(25)(

0 100 200 300 400 500 600 700 800 900-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m3

Observed PM25Global temporal trendDiff of Global-Observed

Page 18: Advanced Tutorial on : Global offset and residual covariance

Model the Global Trend

0 100 200 300 400 500 600 700 800 900-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m

3

Observed PM25Global temporal trendDiff of Global-ObservedDiff + Spatial

)]()([)( mtmeantmtsms ji

ME

ji

i n

tsPMsms

),(25)(

Add spatial trend to this final temporal trendspatial trend + [temporal Global trend – mean of temporal global trend]

mz(s,t) = ms(s) + mt(t)

Page 19: Advanced Tutorial on : Global offset and residual covariance

Removing the mean trend from data

Remove mean trend (i.e. global offset) and obtain residuals

Use residual data for covariance modeling

0 100 200 300 400 500 600 700 800-4

-3

-2

-1

0

1

2

3

4

5

Days

log(

PM

25) u

g/m3

Residual plot MS =4

x(s,t) = Z(s,t) - mz(s,t)

mz(s,t) = ms(s) + mt(t)

Page 20: Advanced Tutorial on : Global offset and residual covariance

Mean Trend in BMEGUICase1 : Flat mean trend Case 2: Informative mean trend

Page 21: Advanced Tutorial on : Global offset and residual covariance

Mean Trend in BMEGUI Case1 : Flat mean trend Case 2: Informative mean trend

Page 22: Advanced Tutorial on : Global offset and residual covariance

Covariance Models in BMEGUI

Case1 : Flat mean trend Case 2: Informative mean trend

Flat Mean trend

Structure 1 Structure 2

  Spatial Temporal Spatial TemporalSill 0.2   0.19  Model exp exp exp expRange 4 7 100 75

Very smoothened Mean trend

Structure 1

Structure 2

  Spatial Temporal Spatial TemporalSill 0.05   0.0619  Model exp exp exp expRange 1.5 5 3 25

Page 23: Advanced Tutorial on : Global offset and residual covariance

Covariance Models in BMEGUI

Flat Mean trend

Structure 1 Structure 2

  Spatial Temporal Spatial TemporalSill 0.2   0.19  Model exp exp exp expRange 4 7 100 75

Very smoothened Mean trend

Structure 1

Structure 2

  Spatial Temporal Spatial TemporalSill 0.05   0.0619  Model exp exp exp expRange 1.5 5 3 25

Case1 : Flat mean trend Case 2: Informative mean trend

Page 24: Advanced Tutorial on : Global offset and residual covariance

Fitted Covariance Models

 Spatial Component

Temporal Component

case

Search radius (deg.)

Smoothing range (deg.)

Search radius (days)

Smoothing range (days)

1 15 15 1000 1000

3 1 1 60 60

4 0.2 0.2 10 10

5 0.1 0.1 5 5

2 0.001 0.001 0.1 0.1

Changes in the smoothness in the mean trend we observe changes in the experimental covariance.

An extremely smoothed (i.e. flat) mean trend results in higher residual variance and larger spatial and temporal autocorrelation ranges.

On the other hand, very informative mean trend results in smaller residual variance but shorter spatial and temporal autocorrelation ranges.

Page 25: Advanced Tutorial on : Global offset and residual covariance

Temporal Dist. Est. in BMEGUI

Case1 : Flat mean trend Case 2: Informative mean trend

Page 26: Advanced Tutorial on : Global offset and residual covariance

Mean Trend ConclusionsEach mean trend model represents a tradeoff between residual variance and autocorrelation range.

Very flat mean trend: the highest residual variance but longer autocorrelation

Very informative mean trend: low residual variance but short autocorrelation range

The optimal level is the breakpoint where further decrease in smoothness results a drastic decreases in autocorrelation range. (green circle)

Page 27: Advanced Tutorial on : Global offset and residual covariance