advanced quantitative methods: autocorrelation - · pdf file ·...

135
Consequences Typical processes Stationarity Diagnostics Spatial autocorrelation Advanced Quantitative Methods: Autocorrelation Jos Elkink University College Dublin February 23, 2011 Jos Elkink autocorrelation

Upload: trinhkhanh

Post on 20-Mar-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Advanced Quantitative Methods:Autocorrelation

Jos Elkink

University College Dublin

February 23, 2011

Jos Elkink autocorrelation

Page 2: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 3: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Notation: lagged variables

Instead of yi to indicate each of n observations, we will use yt torefer to each of T observations on a time-series.

Jos Elkink autocorrelation

Page 4: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Notation: lagged variables

Instead of yi to indicate each of n observations, we will use yt torefer to each of T observations on a time-series.

yt−1 refers to the lagged value, i.e. the value of variable y at timet − 1, the observation just one time period before time t.

Jos Elkink autocorrelation

Page 5: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Notation: lagged variables

Instead of yi to indicate each of n observations, we will use yt torefer to each of T observations on a time-series.

yt−1 refers to the lagged value, i.e. the value of variable y at timet − 1, the observation just one time period before time t.

A lag can have any length k (k > 0), yt−k .

Jos Elkink autocorrelation

Page 6: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Notation: first differences

The difference between yt and yt−1, or the change in variable y attime t, is called the first difference, ∆yt = yt − yt−1.

Jos Elkink autocorrelation

Page 7: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Notation: first differences

The difference between yt and yt−1, or the change in variable y attime t, is called the first difference, ∆yt = yt − yt−1.

Again, differences can have different lag lengths:∆yt−k = yt−k − yt−k−1.

Jos Elkink autocorrelation

Page 8: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 9: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

A key assumption of (linear) regression is that observations areindependent.

Jos Elkink autocorrelation

Page 10: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

A key assumption of (linear) regression is that observations areindependent.

Generally, in time-series or observations in space, the observationsdepend on each other. If GDP is high in 1999, it is likely to behigh in 2000. If GDP is high in Germany, it is likely to be high inThe Netherlands.

Jos Elkink autocorrelation

Page 11: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

A key assumption of (linear) regression is that observations areindependent.

Generally, in time-series or observations in space, the observationsdepend on each other. If GDP is high in 1999, it is likely to behigh in 2000. If GDP is high in Germany, it is likely to be high inThe Netherlands.

Treating them as independent observations suggest that you havefar more information than you do.

Jos Elkink autocorrelation

Page 12: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

Ignoring this autocorrelation leads to:

βOLS unbiased but inefficient (as long as E (ε|X) = 0)

Jos Elkink autocorrelation

Page 13: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

Ignoring this autocorrelation leads to:

βOLS unbiased but inefficient (as long as E (ε|X) = 0)

V (βOLS) may be an under- or overestimate - the F - andt-tests cannot be trusted. If the autocorrelation is positive,V (βOLS) will be an underestimate.

Jos Elkink autocorrelation

Page 14: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

Ignoring this autocorrelation leads to:

βOLS unbiased but inefficient (as long as E (ε|X) = 0)

V (βOLS) may be an under- or overestimate - the F - andt-tests cannot be trusted. If the autocorrelation is positive,V (βOLS) will be an underestimate.

The residual variance is likely to be underestimated and R2

overestimated.

Jos Elkink autocorrelation

Page 15: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

The problem

Ignoring this autocorrelation leads to:

βOLS unbiased but inefficient (as long as E (ε|X) = 0)

V (βOLS) may be an under- or overestimate - the F - andt-tests cannot be trusted. If the autocorrelation is positive,V (βOLS) will be an underestimate.

The residual variance is likely to be underestimated and R2

overestimated.

Risk of spurious regressions

Jos Elkink autocorrelation

Page 16: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spurious regressions

When two variables are uncorrelated, but nonstationary, they often lead

to highly significant estimates of their correlation in“naive” linear

regression. Assume:

Jos Elkink autocorrelation

Page 17: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spurious regressions

When two variables are uncorrelated, but nonstationary, they often lead

to highly significant estimates of their correlation in“naive” linear

regression. Assume:

yt = yt−1 + ε1,t

xt = xt−1 + ε2,t .

Jos Elkink autocorrelation

Page 18: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spurious regressions

When two variables are uncorrelated, but nonstationary, they often lead

to highly significant estimates of their correlation in“naive” linear

regression. Assume:

yt = yt−1 + ε1,t

xt = xt−1 + ε2,t .

Then OLS estimation of:

yt = α+ βxt + εt

will lead to a significant t-test on β.

Jos Elkink autocorrelation

Page 19: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spurious regressions

0 20 40 60 80 100

−10

−5

05

Sam

ple

data

Jos Elkink autocorrelation

Page 20: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spurious regression

lm(formula = y ~ x)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.9646 0.3626 -2.660 0.00911 **

x -0.9207 0.1002 -9.185 6.54e-15 ***

Residual standard error: 3.021 on 99 degrees of freedom

Multiple R-Squared: 0.4601, Adjusted R-squared: 0.4547

F-statistic: 84.37 on 1 and 99 DF, p-value: 6.544e-15

Jos Elkink autocorrelation

Page 21: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 22: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Time-series processes

A time-series can have been generated by various different types ofprocesses.

Which process generated the data of course affects whicheconometric model is more appropriate to estimate its parameters.

Jos Elkink autocorrelation

Page 23: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Linear model

The linear regression model looks like:

y = µ+ ε,

where µ = Xβ, or, if we have no explanatory variables, µ is aconstant.

Jos Elkink autocorrelation

Page 24: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Linear model

The linear regression model looks like:

y = µ+ ε,

where µ = Xβ, or, if we have no explanatory variables, µ is aconstant.

For now, we will look at the latter case, µt = µ.

Jos Elkink autocorrelation

Page 25: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Linear model

The linear regression model looks like:

y = µ+ ε,

where µ = Xβ, or, if we have no explanatory variables, µ is aconstant.

For now, we will look at the latter case, µt = µ.

In the linear model, we assume ε to be an IID variable,ε ∼ N(0, σ2).

Jos Elkink autocorrelation

Page 26: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

In the moving average model, we replace the assumption of entirelyindependent residuals by assuming that the residual at time t is aweighted average between that residual and the one at t − 1.

Jos Elkink autocorrelation

Page 27: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

In the moving average model, we replace the assumption of entirelyindependent residuals by assuming that the residual at time t is aweighted average between that residual and the one at t − 1.

yt = µ+ (εt + φεt−1) − 1 < φ < 1

Jos Elkink autocorrelation

Page 28: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

The above is a so-called MA(1) process, a moving average processwith one lag.

Jos Elkink autocorrelation

Page 29: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

The above is a so-called MA(1) process, a moving average processwith one lag.

This model can be generalised to more lags, the MA(q) process:

yt = µ+ (εt + φ1εt−1 + φ2εt−2)

yt = µ+ (εt +

q∑

l=1

φlεt−l)

Jos Elkink autocorrelation

Page 30: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

Theoretically this model can be generalised to infinitely many lags:

yt = µ+ (εt +

∞∑

l=1

φlεt−l)

Jos Elkink autocorrelation

Page 31: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

Theoretically this model can be generalised to infinitely many lags:

yt = µ+ (εt +

∞∑

l=1

φlεt−l)

Now, we could assume that φl = αl , for some |α| < 1, thus anexponentially decreasing function of the lag.

Jos Elkink autocorrelation

Page 32: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

yt = µ+∞∑

l=0

αlεt−l

Jos Elkink autocorrelation

Page 33: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

yt = µ+∞∑

l=0

αlεt−l

This can be shown to be equivalent to:

yt = (1− α)µ+ αyt−1 + εt ,

which is called the autoregressive process.

Jos Elkink autocorrelation

Page 34: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

yt = µ+∞∑

l=0

αlεt−l

This can be shown to be equivalent to:

yt = δ + αyt−1 + εt ,

which is called the autoregressive process.

Jos Elkink autocorrelation

Page 35: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

The AR(1) process can also be extended to the AR(p) process:

yt = δ +

p∑

l=1

αlyt−l + εt

Jos Elkink autocorrelation

Page 36: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

The AR(1) process can also be extended to the AR(p) process:

yt = δ +

p∑

l=1

αlyt−l + εt

Whereby

yt = δ +

∞∑

l=1

αlyt−l + εt

would be equivalent to a MA(1) process.

Jos Elkink autocorrelation

Page 37: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

Simulated data, MA(1), φ = .5

0 20 40 60 80 100

−2

−1

01

23

Sam

ple

data

Jos Elkink autocorrelation

Page 38: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moving average process

Simulated data, MA(1), φ = .9

0 20 40 60 80 100

−2

−1

01

23

Sam

ple

data

Jos Elkink autocorrelation

Page 39: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

Simulated data, AR(1), α = .5

0 20 40 60 80 100

−2

−1

01

23

Sam

ple

data

Jos Elkink autocorrelation

Page 40: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Autoregressive process

Simulated data, AR(1), α = .9

0 20 40 60 80 100

−6

−4

−2

0

Sam

ple

data

Jos Elkink autocorrelation

Page 41: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

ARMA(p,q)

The moving average process, MA(q), and the autoregressiveprocess, AR(p), can be combined in the ARMA(p,q) process.

Jos Elkink autocorrelation

Page 42: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

ARMA(p,q)

The moving average process, MA(q), and the autoregressiveprocess, AR(p), can be combined in the ARMA(p,q) process.

yt = µ+

p∑

l=1

yt−lαl +

q∑

l=1

εt−lφl + εt

Jos Elkink autocorrelation

Page 43: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 44: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Stationarity

A process is strictly stationary if the underlying probabilitydistribution is constant over time.

Jos Elkink autocorrelation

Page 45: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Stationarity

A process is strictly stationary if the underlying probabilitydistribution is constant over time.

A process is weakly stationary if the following conditions hold:

E (yt) = µ ∀ t

Var(yt) = σ2 ∀ t

Cov(yt , yt−k) = Cov(yt+j , yt+j−k) ∀ t, k, j

and it follows that the autocorrelations will depend on the laglength only:

Cor(yt , yt−k) =Cov(yt , yt−k)

Var(yt)Var(yt−k)= ρk .

(Harrison 2009: 3)

Jos Elkink autocorrelation

Page 46: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Stationarity: example

yt = εt + 0.5εt−1

0 20 40 60 80 100

−0.

6−

0.4

−0.

20.

00.

20.

4

Jos Elkink autocorrelation

Page 47: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Nonstationarity: example

yt = yt−1 + εt

0 20 40 60 80 100

−1

01

2

Jos Elkink autocorrelation

Page 48: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Integrated

If E (yt), Var(yt) and Cov(yt , yt−k) converge to limits µ∗, σ∗2 andρ∗k , respectively, as t → ∞, then the process is calledasymptotically stationary, or integrated of order zero, or I (0).

A stationary process is thus I (0), but an I (0) process notnecessarily stationary.

(Harrison 2009: 40)

Jos Elkink autocorrelation

Page 49: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

Jos Elkink autocorrelation

Page 50: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

E (yt) = E (µ+ εt + φεt−1)

= E (µ) + E (εt) + φE (εt−1)

= µ+ 0 + 0 = µ

(Harrison 2009: 4-5)

Jos Elkink autocorrelation

Page 51: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

Var(yt) = Var(µ+ εt + φεt−1)

= Var(εt) + φ2Var(εt−1)− 2Cov(εt , φεt−1)

= σ2 + φ2σ2

= σ2(1 + φ2)

(Harrison 2009: 4-5)

Jos Elkink autocorrelation

Page 52: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

Cov(yt , yt−1) = E ((εt + φεt−1)(εt−1 + φεt−2))

= E (εtεt−1 + φε2t−1 + φεtεt−2 + φ2εt−1εt−2)

= E (εtεt−1) + φE (ε2t−1) + φE (εtεt−2) + φ2E (εt−1εt−2)

= 0 + φσ2 + 0 + 0 = φσ2

(Harrison 2009: 4-5)

Jos Elkink autocorrelation

Page 53: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

ρ1 = Cor(yt , yt−1) =Cov(yt , yt−1)

Var(yt)Var(yt−1)

=φσ2

σ2(1 + φ2)

1 + φ2

(Harrison 2009: 4-5)

Jos Elkink autocorrelation

Page 54: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

MA(1) properties

yt = µ+ εt + φεt−1

Cov(yt , yt−k) = 0 and ρk = 0 for all k > 1,

thus an MA(1) process has a“memory”of one lag.

E (yt), Var(yt) and Cov(yt , yt−k) depend only on lag lengthk, so MA(1) is stationary.

|ρ1| ≤ 12 , thus MA(1) not appropriate model if correlation is

higher.

(Harrison 2009: 4-5)

Jos Elkink autocorrelation

Page 55: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

Jos Elkink autocorrelation

Page 56: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

E (yt) = E (δ + αyt−1 + εt)

= E (δ) + αE (yt−1) + E (εt)

= δ + αE (yt) + 0

(1− α)E (yt) = δ

E (yt) =δ

1− α

Note that stating that E (yt) = E (yt−1) assumes stationaryprocess!

Jos Elkink autocorrelation

Page 57: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

Var(yt) = Var(δ + αyt−1 + εt)

= α2Var(yt) + σ2 − 2Cov(αyt−1, εt)

(1− α2)Var(yt) = σ2 − 0

Var(yt) =σ2

1− α2

Note that stating that Var(yt) = Var(yt−1) assumes stationaryprocess!

(Harrison 2009: 6, 39-40) Jos Elkink autocorrelation

Page 58: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

Cov(yt , yt−1) =ασ2

1− α2

Cov(yt , yt−k) =αkσ2

1− α2

ρk = Cor(yt , yt−k) = αk

(Harrison 2009: 6, 39-40)

Jos Elkink autocorrelation

Page 59: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

If α = 1, neither E (yt) nor Var(yt) exist, so the process isnonstationary.

If α = −1, Var(yt) does not exist, so the process isnonstationary.

If |α| > 1, Var(yt) < 0, so the process is nonstationary.

An AR(1) process has a much longer memory than an MA(1)process,

but if |α| < 1, ρk decreases exponentially with k.

(Harrison 2009: 6, 39-40)

Jos Elkink autocorrelation

Page 60: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

If we do not assume stationary process:

yt = δ + αyt−1 + εt

yt = δ + α(δ + αyt−2) + εt...

yt = δ(1 + α+ · · ·+ αt−1) + αty0 + εt + αεt−1 + · · ·+ αt−1ε1,

with y0 being some starting value of y .

(Harrison 2009: 6, 39-40)

Jos Elkink autocorrelation

Page 61: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

AR(1) properties

yt = δ + αyt−1 + εt

Then it follows:

E (yt) = δ(1 + α+ · · ·+ αt−1) + αty0 t ≥ 1

Var(yt) = σ2(1 + α2 + · · ·+ α2(t−1)) t ≥ 1

Cov(yt , yt−k) = αkVar(yt−k) 1 ≤ k ≤ t − 1

thus all depend on t and AR(1) is not stationary. However, if|α| < 1 and as t → ∞, the previous results obtain. AR(1) is thusasymptotically stationary or I (0).

(Harrison 2009: 6, 39-40)

Jos Elkink autocorrelation

Page 62: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Unit root

An AR(1) process where |α| = 1 (i.e., yt = δ + yt−1 + εt) is saidto have a unit root.

(Harrison 2009: 42-46)

Jos Elkink autocorrelation

Page 63: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Unit root

An AR(1) process where |α| = 1 (i.e., yt = δ + yt−1 + εt) is saidto have a unit root.

Unit roots can be much harder to detect. E.g.yt = δ + 0.8yt−1 + 0.2yt−2 + εt also has a unit root.

(Harrison 2009: 42-46)

Jos Elkink autocorrelation

Page 64: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Unit root

An AR(1) process where |α| = 1 (i.e., yt = δ + yt−1 + εt) is saidto have a unit root.

Unit roots can be much harder to detect. E.g.yt = δ + 0.8yt−1 + 0.2yt−2 + εt also has a unit root.

Consequences:

Consistency and asymptotical normality proofs of OLS, GLS,ML, IV are invalid.

(Harrison 2009: 42-46)

Jos Elkink autocorrelation

Page 65: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Unit root

An AR(1) process where |α| = 1 (i.e., yt = δ + yt−1 + εt) is saidto have a unit root.

Unit roots can be much harder to detect. E.g.yt = δ + 0.8yt−1 + 0.2yt−2 + εt also has a unit root.

Consequences:

Consistency and asymptotical normality proofs of OLS, GLS,ML, IV are invalid.

Regressing two variables with unit roots on each other leadsto spurious regression.

(Harrison 2009: 42-46)

Jos Elkink autocorrelation

Page 66: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 67: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 68: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Residual plots: no autocorrelation

0 2 4 6 8

510

1520

25

x

y

Jos Elkink autocorrelation

Page 69: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Residual plots: no autocorrelation

−4 −2 0 2 4

−4

−2

02

4

residuals(m)[−T]

resi

dual

s(m

)[−

1]

Jos Elkink autocorrelation

Page 70: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Residual plots: autocorrelation

0 2 4 6 8

05

1015

2025

x

y

Jos Elkink autocorrelation

Page 71: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Residual plots: autocorrelation

−6 −4 −2 0 2 4

−6

−4

−2

02

4

residuals(m)[−T]

resi

dual

s(m

)[−

1]

Jos Elkink autocorrelation

Page 72: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

The autocorrelation function (ACF), or correlogram, is thecorrelation between yt and yt−k , as a function of k.

Jos Elkink autocorrelation

Page 73: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

The autocorrelation function (ACF), or correlogram, is thecorrelation between yt and yt−k , as a function of k.

If we define

Var(yt) = Var(yt−k) = γ0

Cov(yt , yt−k) = γk ,

thenρk =

γk√γ0γ0

=γkγ0

Jos Elkink autocorrelation

Page 74: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

For the moving average model:

ρ1 =φ

1 + φ2, ρk = 0 ∀ k > 0

Jos Elkink autocorrelation

Page 75: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

For the moving average model:

ρ1 =φ

1 + φ2, ρk = 0 ∀ k > 0

For the autoregressive model:

ρk = αk

Jos Elkink autocorrelation

Page 76: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

Theoretical ACF, AR(1) process, α = .5

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

rho

Jos Elkink autocorrelation

Page 77: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

Theoretical ACF, AR(1) process, α = .9

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

rho

Jos Elkink autocorrelation

Page 78: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

Theoretical ACF, MA(1) process, φ = .5

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

rho

Jos Elkink autocorrelation

Page 79: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Autocorrelation function

Theoretical ACF, MA(1) process, φ = .9

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

rho

Jos Elkink autocorrelation

Page 80: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Example

Empirical data, change in GDP per capita, Netherlands

1960 1970 1980 1990

−40

0−

200

020

040

0

Cha

nge

in G

DP

per

cap

ita, N

ethe

rland

s

Jos Elkink autocorrelation

Page 81: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Example

Empirical ACF, change in GDP per capita, Netherlands

2 4 6 8 10 12 14

−1.

0−

0.5

0.0

0.5

1.0

Aut

ocor

rela

tion

Jos Elkink autocorrelation

Page 82: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Partial autocorrelation

Instead of looking at the autocorrelation function, one can look atthe partial autocorrelation function (PACF). This describes thecorrelation between yt and yt−k , given all values of y in between.

Jos Elkink autocorrelation

Page 83: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Partial autocorrelation

Instead of looking at the autocorrelation function, one can look atthe partial autocorrelation function (PACF). This describes thecorrelation between yt and yt−k , given all values of y in between.

This can quite simply be calculated by looking at αk , thecoefficient on the kth coefficient of the AR(k) model.

Jos Elkink autocorrelation

Page 84: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Partial autocorrelation

Instead of looking at the autocorrelation function, one can look atthe partial autocorrelation function (PACF). This describes thecorrelation between yt and yt−k , given all values of y in between.

This can quite simply be calculated by looking at αk , thecoefficient on the kth coefficient of the AR(k) model.

An AR(p) has an exponentially decreasing ACF and a sharp cut-offpoint in the PACF. The cut-off point suggests the proper value forp. A very slow (linear) decline in the ACF suggests a unit root.

Jos Elkink autocorrelation

Page 85: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Partial autocorrelation

Instead of looking at the autocorrelation function, one can look atthe partial autocorrelation function (PACF). This describes thecorrelation between yt and yt−k , given all values of y in between.

This can quite simply be calculated by looking at αk , thecoefficient on the kth coefficient of the AR(k) model.

An AR(p) has an exponentially decreasing ACF and a sharp cut-offpoint in the PACF. The cut-off point suggests the proper value forp. A very slow (linear) decline in the ACF suggests a unit root.An MA(q) has a sharp cut-off point in the ACF. The cut-off pointsuggests the proper value for q.

Jos Elkink autocorrelation

Page 86: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 87: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

d =

∑Tt=2(et − et−1)

2

∑Tt=1 e

2t

Jos Elkink autocorrelation

Page 88: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

d =

∑Tt=2(et − et−1)

2

∑Tt=1 e

2t

If ρ = cor(εt , εt−1) and ρ = cor(et , et−1), then d ≈ 2(1− ρ).Thus, if d is close to 0 or 4, there is high first-order serialautocorrelation.

Jos Elkink autocorrelation

Page 89: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

d =

∑Tt=2(et − et−1)

2

∑Tt=1 e

2t

If ρ = cor(εt , εt−1) and ρ = cor(et , et−1), then d ≈ 2(1− ρ).Thus, if d is close to 0 or 4, there is high first-order serialautocorrelation.

Note that E (d) ≈ 2 + 2(k−1)n−k

, thus biased.

Jos Elkink autocorrelation

Page 90: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

In matrix algebra, it could be written as:

d =ε′MAMε

ε′MεM = I− X(X′X)−1X′,

whereby

A =

1 −1 0 0 · · · 0 0−1 2 −1 0 · · · 0 00 −1 2 −1 · · · 0 0...

......

.... . .

......

0 0 0 0 · · · 2 −10 0 0 0 · · · −1 1

Jos Elkink autocorrelation

Page 91: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

In matrix algebra, it could be written as:

d =ε′MAMε

ε′MεM = I− X(X′X)−1X′,

whereby

A =

1 −1 0 0 · · · 0 0−1 2 −1 0 · · · 0 00 −1 2 −1 · · · 0 0...

......

.... . .

......

0 0 0 0 · · · 2 −10 0 0 0 · · · −1 1

The sampling distribution thus depends on X.Jos Elkink autocorrelation

Page 92: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

When the probability distribution of d is not exactly known, wecan use threshold values. Given T and k, boundary values dL anddU have been tabulated.

Jos Elkink autocorrelation

Page 93: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

When the probability distribution of d is not exactly known, wecan use threshold values. Given T and k, boundary values dL anddU have been tabulated.

E.g., if T = 50, k = 6, α = .05 then dL = 1.335 and dU = 1.771,so we reject H0 : ρ > 0 if d < dL and we do not reject if d > dU ,but in between we are undecided.

Jos Elkink autocorrelation

Page 94: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

When the probability distribution of d is not exactly known, wecan use threshold values. Given T and k, boundary values dL anddU have been tabulated.

E.g., if T = 50, k = 6, α = .05 then dL = 1.335 and dU = 1.771,so we reject H0 : ρ > 0 if d < dL and we do not reject if d > dU ,but in between we are undecided.

These threshold values are approximations and, depending on thespeed at which regressors change, can be more or less appropriate.

Jos Elkink autocorrelation

Page 95: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Jos Elkink autocorrelation

Page 96: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Somewhat“old-fashioned” test, requiring special table.

Jos Elkink autocorrelation

Page 97: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Somewhat“old-fashioned” test, requiring special table.

Assumes normally distributed errors.

Jos Elkink autocorrelation

Page 98: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Somewhat“old-fashioned” test, requiring special table.

Assumes normally distributed errors.

Model must include intercept.

Jos Elkink autocorrelation

Page 99: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Somewhat“old-fashioned” test, requiring special table.

Assumes normally distributed errors.

Model must include intercept.

Requires X to be non-stochastic.

Jos Elkink autocorrelation

Page 100: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin-Watson

library(lmtest)

dwtest(model)

Somewhat“old-fashioned” test, requiring special table.

Assumes normally distributed errors.

Model must include intercept.

Requires X to be non-stochastic.

Only tests for presence of AR(1) process.

Jos Elkink autocorrelation

Page 101: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin’s h test

The Durbin-Watson statistics cannot be used when there is alagged dependent variable in the model. You should, with suchvariable, always test for remaining autocorrelation, however. Onepossible test is Durbin’s h-test.

Jos Elkink autocorrelation

Page 102: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Durbin’s h test

The Durbin-Watson statistics cannot be used when there is alagged dependent variable in the model. You should, with suchvariable, always test for remaining autocorrelation, however. Onepossible test is Durbin’s h-test.

h = (1− 1

2d)

T

1− T · V (βyt−1)

a∼ N(0, 1).

Jos Elkink autocorrelation

Page 103: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Breusch-Godfrey LM test

A more powerful test, which can handle higher orderautoregressions, is the Breusch-Godfrey LM test.

Jos Elkink autocorrelation

Page 104: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Breusch-Godfrey LM test

A more powerful test, which can handle higher orderautoregressions, is the Breusch-Godfrey LM test.

1 Estimate OLS2 Regress e on X and lagged values of e (et−1, et−2, · · · , et−k)3 (T − k)R2 a∼ χ2(k)

Jos Elkink autocorrelation

Page 105: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Breusch-Godfrey LM test

A more powerful test, which can handle higher orderautoregressions, is the Breusch-Godfrey LM test.

1 Estimate OLS2 Regress e on X and lagged values of e (et−1, et−2, · · · , et−k)3 (T − k)R2 a∼ χ2(k)

library(lmtest)

bgtest(model, order = 3)

Jos Elkink autocorrelation

Page 106: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Breusch-Godfrey LM test

A more powerful test, which can handle higher orderautoregressions, is the Breusch-Godfrey LM test.

1 Estimate OLS2 Regress e on X and lagged values of e (et−1, et−2, · · · , et−k)3 (T − k)R2 a∼ χ2(k)

library(lmtest)

bgtest(model, order = 3)

This assumes normally distributed errors. A slightly more generalGauss-Newton regression would not make this assumption.

Jos Elkink autocorrelation

Page 107: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Gauss-Newton regression

Assume an AR(1) process: yt = x′tβ + ut , ut = ρεt−1 + εt .

(Davidson & MacKinnon 1993: 357-360) Jos Elkink autocorrelation

Page 108: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Gauss-Newton regression

Assume an AR(1) process: yt = x′tβ + ut , ut = ρεt−1 + εt .

In this case, we can simply first regress y on X, and then use theresiduals from this regression (u) to regress u on X and u, wherebyu1 = 0 and ut = ut−1 ∀ t > 1:

u = Xβ + uρ+ ε

(Davidson & MacKinnon 1993: 357-360) Jos Elkink autocorrelation

Page 109: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Gauss-Newton regression

Assume an AR(1) process: yt = x′tβ + ut , ut = ρεt−1 + εt .

In this case, we can simply first regress y on X, and then use theresiduals from this regression (u) to regress u on X and u, wherebyu1 = 0 and ut = ut−1 ∀ t > 1:

u = Xβ + uρ+ ε

The test can easily be extended by including multiple lags andperforming an F -test on all ρ’s.

(Davidson & MacKinnon 1993: 357-360) Jos Elkink autocorrelation

Page 110: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Gauss-Newton regression

Assume an AR(1) process: yt = x′tβ + ut , ut = ρεt−1 + εt .

In this case, we can simply first regress y on X, and then use theresiduals from this regression (u) to regress u on X and u, wherebyu1 = 0 and ut = ut−1 ∀ t > 1:

u = Xβ + uρ+ ε

The test can easily be extended by including multiple lags andperforming an F -test on all ρ’s.

The test is also valid for testing MA(q) or ARMA(p,q) processes.

(Davidson & MacKinnon 1993: 357-360) Jos Elkink autocorrelation

Page 111: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Gauss-Newton regression

m <- lm(y ~ x1 + x2)

T <- dim(m$model)[1]

u <- residuals(m)

u.tilde <- c(0, u[-T])

summary(lm(u ~ x1 + x2 + u.tilde))

and then check the t-test for the u variable.

(Davidson & MacKinnon 1993: 357-360)

Jos Elkink autocorrelation

Page 112: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 113: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Dickey-Fuller test

Subtracting yt−1 from both sides of yt = αyt−1 + εt gives:

∆yt = (α− 1)yt−1 + εt = βyt−1 + εt

so we can regress (yt − yt−1) on yt−1 to test whether there is aunit root.

(Harrison 2009: 46-47)

Jos Elkink autocorrelation

Page 114: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Dickey-Fuller test

Subtracting yt−1 from both sides of yt = αyt−1 + εt gives:

∆yt = (α− 1)yt−1 + εt = βyt−1 + εt

so we can regress (yt − yt−1) on yt−1 to test whether there is aunit root.

However, under the H0 of a unit root, ∆yt ∼ I (0) and yt ∼ I (1),so t-test is invalid. Critical values τnc , τc and τct have beenpublished for processes without constant, with constant, and withconstant and trend, respectively.

(Harrison 2009: 46-47)

Jos Elkink autocorrelation

Page 115: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Dickey-Fuller test

Subtracting yt−1 from both sides of yt = αyt−1 + εt gives:

∆yt = (α− 1)yt−1 + εt = βyt−1 + εt

so we can regress (yt − yt−1) on yt−1 to test whether there is aunit root.

However, under the H0 of a unit root, ∆yt ∼ I (0) and yt ∼ I (1),so t-test is invalid. Critical values τnc , τc and τct have beenpublished for processes without constant, with constant, and withconstant and trend, respectively.

The test assumes no autocorrelation in ε.

(Harrison 2009: 46-47)

Jos Elkink autocorrelation

Page 116: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Augmented Dickey-Fuller test

The DF test only works for AR(1) processes withoutautocorrelation in ε. For AR(p) processes or AR(1) processes withautocorrelated errors, we can use the ADF test.

(Davidson & MacKinnon 1999: 610-613; Harrison 2009: 48)

Jos Elkink autocorrelation

Page 117: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Augmented Dickey-Fuller test

The DF test only works for AR(1) processes withoutautocorrelation in ε. For AR(p) processes or AR(1) processes withautocorrelated errors, we can use the ADF test.

∆yt = β∗yt−1 +

p∑

k=1

δk∆yt−k + εt

and the same τ ’s can be used as critical values for tβ∗ .

(Davidson & MacKinnon 1999: 610-613; Harrison 2009: 48)

Jos Elkink autocorrelation

Page 118: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Augmented Dickey-Fuller test

The DF test only works for AR(1) processes withoutautocorrelation in ε. For AR(p) processes or AR(1) processes withautocorrelated errors, we can use the ADF test.

∆yt = β∗yt−1 +

p∑

k=1

δk∆yt−k + εt

and the same τ ’s can be used as critical values for tβ∗ .

The power of this test is low (i.e. detects unit root too easily). Thepower depends on the type and strength of the autocorrelation.

(Davidson & MacKinnon 1999: 610-613; Harrison 2009: 48)

Jos Elkink autocorrelation

Page 119: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

PlotsTests: AutocorrelationTests: Stationarity

Dickey-Fuller test

Dickey-Fuller test:

library(tseries)

adf.test(x, k = 0)

Augmented Dickey-Fuller test:

adf.test(x)

adf.test(x, k = 2)

Jos Elkink autocorrelation

Page 120: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Outline

1 Consequences

2 Typical processes

3 Stationarity

4 Diagnostics

Plots

Tests: Autocorrelation

Tests: Stationarity

5 Spatial autocorrelation

Jos Elkink autocorrelation

Page 121: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

No spatial autocorrelation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−3

−2

−1

01

23

Jos Elkink autocorrelation

Page 122: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Negative spatial autocorrelation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−4

−2

02

Jos Elkink autocorrelation

Page 123: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Positive spatial autocorrelation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−5

05

1015

2025

Jos Elkink autocorrelation

Page 124: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Connection matrix

Jos Elkink autocorrelation

Page 125: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Connection matrix

W =

0 1 1 0 0 11 0 1 1 0 01 1 0 0 1 00 1 0 0 1 10 0 1 1 0 01 0 0 1 0 0

W =

0 13

13 0 0 1

313 0 1

313 0 0

13

13 0 0 1

3 00 1

3 0 0 13

13

0 0 12

12 0 0

12 0 0 1

2 0 0

Jos Elkink autocorrelation

Page 126: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spatial processes

Spatial autocorrelation has processes somewhat analogous to serialautocorrelation.

(Anselin 1988)

Jos Elkink autocorrelation

Page 127: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spatial processes

Spatial autocorrelation has processes somewhat analogous to serialautocorrelation.

Spatial error process: y = Xβ + u, u = λWu+ ε.

(Anselin 1988)

Jos Elkink autocorrelation

Page 128: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Spatial processes

Spatial autocorrelation has processes somewhat analogous to serialautocorrelation.

Spatial error process: y = Xβ + u, u = λWu+ ε.

Spatial lag process: y = ρWy + Xβ + ε.

(Anselin 1988)

Jos Elkink autocorrelation

Page 129: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moran’s I

I =

i

j wij(xi − x)(xj − x)∑

i

j wij

· n∑

i (xi − x)2

Jos Elkink autocorrelation

Page 130: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moran’s I

I =

i

j wij(xi − x)(xj − x)∑

i

j wij

· n∑

i (xi − x)2∼ N(µI , σ

2I )

Jos Elkink autocorrelation

Page 131: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moran’s I

I =

i

j wij(xi − x)(xj − x)∑

i

j wij

· n∑

i (xi − x)2∼ N(µI , σ

2I )

µI = E (I ) =−1

n − 1

σ2I = Var(I ) =

n2S1 − nS2 + 3S20

S20 (n

2 − 1),

where

S0 =∑

i

j

(wij+wji), S1 =1

2

i

j

(wij+wji)2, S2 =

i

j

(wij+wji)2

Jos Elkink autocorrelation

Page 132: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moran’s I

library(ape)

Moran.I(y, W)

Moran.I(residuals(lm(y ~ x1 + x2)), W)

Jos Elkink autocorrelation

Page 133: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Moran’s I

library(ape)

Moran.I(y, W)

Moran.I(residuals(lm(y ~ x1 + x2)), W)

Moran’s I can only be calculated with a known W matrix. Higherorder lags are also possible, e.g. W2.

Jos Elkink autocorrelation

Page 134: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Example: democracy

1800 1850 1900 1950 2000

−0.

50.

00.

5

Year

Mor

an’s

I

1800 1850 1900 1950 2000

−0.

8−

0.4

0.0

Year

Mor

an’s

I

Figure: Spatial clustering, Polity IV dichotomized, I (yt) and I (∆yt),1800-2003

Jos Elkink autocorrelation

Page 135: Advanced Quantitative Methods: Autocorrelation - · PDF file · 2011-02-23Consequences Typicalprocesses Stationarity Diagnostics Spatialautocorrelation Advanced Quantitative Methods:

ConsequencesTypical processes

StationarityDiagnostics

Spatial autocorrelation

Checking residuals

I =n

i

j wij

e′We

e′e∼ N(µI , σ

2I )

LMerr =n2(e

′Wee′e )2

tr(W′W +W2)∼ χ2(1)

LMlag =n2(e

′Wye′e )2

(WXβOLS)′MWXβOLS/σ2 + tr(W′W +W2)∼ χ2(1),

with LMerr and LMlag referring to tests for spatial error and spatiallag processes, respectively.

(Anselin & Hudak 1992: 520)

Jos Elkink autocorrelation