advanced mathematical economics...chapter 8 scalar parabolic partial differential equations 8.1...

45
Advanced Mathematical Economics Paulo B. Brito PhD in Economics: 2020-2021 ISEG Universidade de Lisboa [email protected] Lecture 7 2.12.2020

Upload: others

Post on 04-Feb-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

  • Advanced Mathematical Economics

    Paulo B. BritoPhD in Economics: 2020-2021

    ISEGUniversidade de Lisboa

    [email protected]

    Lecture 72.12.2020

  • Contents

    8 Scalar parabolic partial differential equations 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2 The simplest linear forward equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    8.2.1 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48.2.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58.2.3 The forward heat equation in the infinite domain . . . . . . . . . . . . . . . . 68.2.4 The forward linear equation in the semi-infinite domain . . . . . . . . . . . . 108.2.5 The backward heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    8.3 The homogeneous linear PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138.3.1 Equation without transport term . . . . . . . . . . . . . . . . . . . . . . . . 138.3.2 The general homogeneous diffusion equation . . . . . . . . . . . . . . . . . . . 14

    8.4 Non-autonomous linear equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158.5 Fokker-Planck-Kolmogorov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    8.5.1 The simplest problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.5.2 The distribution associated to the Ornstein Uhlenbeck equation . . . . . . . . 18

    8.6 Economic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198.6.1 The distributional Solow model . . . . . . . . . . . . . . . . . . . . . . . . . . 198.6.2 The option pricing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    8.7 Bibiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.A Appendix: Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    9 Optimal control of parabolic partial differential equations 299.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299.2 A simple optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    9.2.1 Average optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . 319.2.2 Application: the distributional 𝐴𝐾 model . . . . . . . . . . . . . . . . . . . . 32

    9.3 Optimal control of the Fokker-Planck-Kolmogorov equation . . . . . . . . . . . . . . 359.3.1 Application: optimal distribution of capital with stochastic redistribution . . 36

    9.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    1

  • Chapter 8

    Scalar parabolic partial differentialequations

     

    8.1 Introduction

    Parabolic partial differential equations involve a known function 𝐹 depending on two independentvariables (𝑑, π‘₯), an unknown function of them 𝑒(𝑑, π‘₯), the first partial derivative as regards 𝑑 andfirst and second partial derivatives as regards the ”spatial” variable π‘₯:

    𝐹(𝑑, π‘₯, 𝑒, 𝑒𝑑, 𝑒π‘₯, 𝑒π‘₯π‘₯) = 0

      where 𝑒 ∢ 𝒯 Γ— X β†’ ℝ, where 𝒯 βŠ† ℝ+ and X βŠ† ℝ.In its simplest form, 𝐹(𝑒𝑑, 𝑒π‘₯π‘₯) = 0, the equation models a distribution featuring dispersion

    through time, for a cross section variable, generated by spatial contact (think about the time dis-tribution of a pollutant spreading within a lake in which the water is completely still). Equation𝐹(𝑒𝑑, 𝑒π‘₯, 𝑒π‘₯π‘₯) = 0 features both dispersion and advection behaviors (think about the time dis-tribution of a pollutant spreading within a river). Equation 𝐹(𝑒𝑑, 𝑒, 𝑒π‘₯, 𝑒π‘₯π‘₯) = 0 jointly displaysdispersion, advection and growth or decay behaviors (think about a time distribution of a pollutantspreading within a river, in which there is a permanent flow of new pollutants being dumped intothe river). The independent terms appear in function 𝐹(.) if there are some time or spatial specificcomponents.

    We will also see in the next chapter that there is a close connection between partial differentialequations and stochastic differential equations. This implied that continuous-time finance has beenusing parabolic PDE’s since the beginning of the 1970’s.

    In economics and finance applications it is important to distinguish between forward (FPDE)and backward (BPDE) parabolic PDE’s. While the first are complemented with an initial distri-bution and generate a flow of distributions forward in time, the latter are complemented with aterminal distribution and its solution generate a flow of distributions consistent with that terminal

    2

  • Paulo Brito Advanced Mathematical Economics 2020/2021 3

    constraint. While for FPDE the terminal distribution is unknown, for BPDE the distribution attime 𝑑 = 0 is unknown. For planar systems, we may have forward, backward or forward-backward(FBPDE) parabolic PDE’s. The last case can be seen as a generalization of the saddle-path dy-namics for ODE’s.

    In mathematical finance most applications, such as the Black and Scholes (1973) model, mostPDE’s are of the backward type. In economics there is recent interest in PDE’s related to thetopical importance of distribution issues, and, in particular spatial dynamics modelled by BPDE.Optimal control of PDE’s and the mean-field games usually lead to FBPDE’s.

    Again, the body of theory and application of parabolic PDE’s is huge. We only present nextsome very introductory results and applications.

    Let 𝑒(𝑑, π‘₯) where (𝑑, π‘₯) ∈ 𝒯 Γ— X βŠ† ℝ Γ— ℝ+ is an at least 𝐢2,1(ℝ+, ℝ) function1. We can define

    β€’ linear parabolic PDE

    𝑒𝑑 = π‘Ž(𝑑, π‘₯)𝑒π‘₯π‘₯ + 𝑏(𝑑, π‘₯)𝑒π‘₯ + 𝑐(𝑑, π‘₯)𝑒 + 𝑑(𝑑, π‘₯)

    if 𝐹(.) is linear in 𝑒 and all its derivatives,  and the coefficients are independent from 𝑒

    β€’ a semi-linear parabolic PDE

    𝑒𝑑 = π‘Ž(𝑑, π‘₯)𝑒π‘₯π‘₯ + 𝑏(𝑑, π‘₯)𝑒π‘₯ + 𝑐(π‘₯, 𝑑, 𝑒)

      it 𝐹(.) is linear in the derivatives of 𝑒, and the coefficients are independent from 𝑒

    β€’ a quasi-linear parabolic PDE

    𝑒𝑑 = π‘Ž(π‘₯, 𝑑, 𝑒)𝑒π‘₯π‘₯ + 𝑏(π‘₯, 𝑑, 𝑒)𝑒π‘₯ + 𝑐(π‘₯, 𝑑, 𝑒)

      if 𝐹(.) is linear in the derivatives of 𝑒, but the coefficients can be functions of 𝑒.

    Consider the simplest linear parabolic equation with constant coefficients, sometimes called thediffusion equation with advection and growth,

    𝑒𝑑 = π‘Žπ‘’π‘₯π‘₯ + 𝑏𝑒π‘₯ + 𝑐𝑒 + 𝑑.

      The time-behavior of 𝑒 depends on three terms: a diffusion term, π‘Žπ‘’π‘₯π‘₯, a transport term, 𝑏𝑒π‘₯,and a growth term 𝑐𝑒 + 𝑑. If π‘Ž > 0 (π‘Ž < 0) the equation is sometimes called a forward FPDE(backward BPDE) equation, because the diffusion operator works forward (backward) in time.The second term introduces a behavior similar to the first-order PDE: it involves a translation of thesolution along the direction π‘₯. The third term generates a time behavior of the whole distribution𝑒(π‘₯, .) in a way similar to a solution of a ordinary differential equation, that is, it involves stabilityor instability properties.

    1It is, at least, differentiable to the second order as regards π‘₯ and to the first order as regards 𝑑.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 4

    In the case of a parabolic PDE the stability or instability properties are related to the wholedistribution: we have stability in a distributional sense if there is a solution 𝑒(𝑑, π‘₯) = 𝑒(π‘₯)such that

    limπ‘‘β†’βˆž

    𝑒(𝑑, π‘₯) = 𝑒(π‘₯)

      where 𝑒(π‘₯) is a stationary distribution.An important element regarding the existence and characterization of the solution of PDE’s

    is related to the characteristics of the support of the distribution X. We can distinguish betweenthree main cases:

    β€’ unbounded or infinite case X = (βˆ’βˆž, ∞)

    β€’ the semi-bounded of semi-infinite case X = [0, ∞) or X = (βˆ’βˆž, 0], where 0 can be substitutedby any finite number

    β€’ the bounded case X = (π‘₯, π‘₯) where both limits are finite.

    In order to define problems involving parabolic PDE’s we have to supplement it with adistribution referred to a point in time (an initial distribution for the forward PDE or terminaldistribution for a backward PDE), and possibly conditions involving known values for the valuesof 𝑒(𝑑, π‘₯) at the boundaries of X) (so called boundary conditions), i.e, π‘₯ ∈ πœ•X.

    A problem is said to be well-posed if there is a solution to the PDE that satisfies jointly theinitial (or terminal) and the boundary conditions and it is continuous at those points. In this casewe say we have a classic solution. If a problem is not well-posed it is ill-posed. In this casethere are no solutions or classic solutions do not exist (but generalized solutions can exist).

    A necessary condition for a problem involving a FPDE to be well posed is that it is supplementedwith an initial condition in time, and a necessary condition for a problem BPDE to be well-posedis that it involves a terminal condition in time.

    Next we will present the solutions for some simple equations and problems.

    8.2 The simplest linear forward equation

    8.2.1 The heat equation

    The simplest linear parabolic PDE is the heat equation, where 𝑒(𝑑, π‘₯) and is formalized by thelinear forward parabolic PDE

    𝑒𝑑 βˆ’ 𝑒π‘₯π‘₯ = 0 (8.1)

      2. It describes the dynamics of the temperature distribution when spatial differences in tempera-ture drive the change in spatial distribution of temperature across time. Consider a homogeneousrod with infinite width and let 𝑒(𝑑, π‘₯) be the temperature at point π‘₯ ∈ (βˆ’βˆž, ∞) at time 𝑑 β‰₯ 0.

    2The first formulation of the heat equation is attributed to Fourier in a presentation to the Institut de France,and in a book with title Theorie de la Propagation de la Chaleur dans les Solides both in 1807.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 5

    Consider a small segment of the rod between points π‘₯ and π‘₯ + Ξ”π‘₯, where Ξ”π‘₯ > 0. The differencein the temperature between the two boundaries of the segment

    𝑒(𝑑, π‘₯ + Ξ”π‘₯) βˆ’ 𝑒(𝑑, π‘₯) = ∫π‘₯+βˆ†π‘₯

    π‘₯𝑒π‘₯(𝑑, 𝑧) 𝑑𝑧

    is a measure of the average temperature in the segment at time 𝑑. The instantaneous change inaverage temperature in the segment is

    𝑑𝑑𝑑( ∫

    π‘₯+βˆ†π‘₯

    π‘₯𝑒(𝑑, 𝑧) 𝑑𝑧) = ∫

    π‘₯+βˆ†π‘₯

    π‘₯𝑒𝑑(𝑑, 𝑧) 𝑑𝑧

      If there is a hotter spot located outside the segment, for instance in a leftward region, and becausethe heat flows from hot to colder regions, then temperature in the segment Ξ”π‘₯ is lower then inthe leftward region, implying 𝑒π‘₯(𝑑, π‘₯) < 0, and it is higher than in the rightward region, implying𝑒π‘₯(𝑑, π‘₯ + Ξ”π‘₯) < 0, and the gradient in the leftward boundary is higher in absolute terms that therightward 𝑒π‘₯(𝑑, π‘₯) βˆ’ 𝑒π‘₯(𝑑, π‘₯ + Ξ”π‘₯) < 0. Therefore, the temperature flow is

    𝑒π‘₯(𝑑, π‘₯ + Ξ”π‘₯) βˆ’ 𝑒π‘₯(𝑑, π‘₯) = ∫π‘₯+βˆ†π‘₯

    π‘₯𝑒π‘₯π‘₯ (𝑑, 𝑧) 𝑑𝑧.

    If is assumed that the instantaneous change in the segment’s temperature is equal to the heat thatflows through the segment, then

    ∫π‘₯+βˆ†π‘₯

    π‘₯𝑒𝑑(𝑑, 𝑧) 𝑑𝑧 = ∫

    π‘₯+βˆ†π‘₯

    π‘₯𝑒π‘₯π‘₯ (𝑑, 𝑧) 𝑑𝑧.

      which is equivalent to

    ∫π‘₯+βˆ†π‘₯

    π‘₯𝑒𝑑(𝑑, 𝑧) βˆ’ 𝑒π‘₯π‘₯ (𝑑, 𝑧) 𝑑𝑧 = 0,

      which is holds if and only if equation (8.1) is satisfied.Next we define and solve the simplest linear scalar parabolic partial differential equation

    𝑒𝑑(𝑑, π‘₯) = π‘Ž 𝑒π‘₯π‘₯(𝑑, π‘₯) to address the differences in the solution when we consider the domain ofπ‘₯, X, the existence of side conditions and the sign of π‘Ž.

    We start with the forward equation, where π‘Ž > 0, in subsection 8.2.3 and deal next with thebackward equation 8.2.5

    8.2.2 Fourier transforms

     There are several methods to solve linear parabolic PDE’s. When the domain of the independent

    variable π‘₯ is (βˆ’βˆž, ∞), the most direct method to find a solution is by using Fourier and inverseFourier transforms (see Appendix 8.7).

    The method of obtaining a solution follows three steps: first, we transform function 𝑒(𝑑, π‘₯) suchthat the PDE is transformed into a parameterized ordinary differential equation; second we solve

  • Paulo Brito Advanced Mathematical Economics 2020/2021 6

    this ODE; and finally we transform back to the original function. When the domain of π‘₯ is not thedouble-infinite we may have to adapt this method.

    There are several possible transformations: sine, cosine, Laplace, Mellin or Fourier transforms.Next we use the Fourier transform approach.

    The Fourier transform of 𝑒(𝑑, π‘₯), taking 𝑑 as a parameter, is 3

    π‘ˆ(𝑑, πœ”) = β„±[𝑒(𝑑, π‘₯)](πœ”) ≑ ∫∞

    βˆ’βˆžπ‘’(𝑑, π‘₯)π‘’βˆ’2πœ‹π‘–πœ”π‘₯𝑑π‘₯ (8.2)

      where 𝑖2 = βˆ’1 and the inverse Fourier transform  is

    𝑒(𝑑, π‘₯) = β„±βˆ’1[π‘ˆ(𝑑, πœ”)](π‘₯) ≑ ∫∞

    βˆ’βˆžπ‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ”. (8.3)

      Time derivatives can also have Fourier transform representations: first derivative representationsare

    𝑒𝑑(𝑑, π‘₯) =πœ•πœ•π‘‘  ∫

    ∞

    βˆ’βˆžπ‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ” = ∫

    ∞

    βˆ’βˆžπ‘ˆπ‘‘(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ”,

      and𝑒π‘₯(𝑑, π‘₯) =

    πœ•πœ•π‘₯  ∫

    ∞

    βˆ’βˆžπ‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ” = ∫

    ∞

    βˆ’βˆž2πœ‹πœ”π‘– π‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ”,

      and the second derivative is

    𝑒π‘₯π‘₯(𝑑, π‘₯) = ∫∞

    βˆ’βˆž(2πœ‹πœ”π‘–)2π‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ” = βˆ’ ∫

    ∞

    βˆ’βˆž(2πœ‹πœ”)2π‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ”.

      Next we prove the relationship between a convolution of functions and the multiplication ofFourier transforms. The function 𝑒(𝑑, π‘₯) is a convolution if it can bewritten as

    𝑒(𝑑, π‘₯) = 𝑣(𝑑, π‘₯) βˆ— 𝑦(𝑑, π‘₯) ≑ ∫∞

    βˆ’βˆžπ‘£(𝑑, πœ‰)𝑦(𝑑, π‘₯ βˆ’ πœ‰)π‘‘πœ‰,

      where 𝑣(𝑑, π‘₯) and 𝑦(𝑑, π‘₯) are integrable functions in the domain ℝ+ Γ— ℝ. Let Fourier transform of𝑒(𝑑, π‘₯) be written as a product of two Fourier transforms,

    π‘ˆ(𝑑, πœ”) = β„±[𝑒(𝑑, π‘₯)](πœ”) = 𝑉 (𝑑, πœ”)π‘Œ (𝑑, πœ”)

      where 𝑉 (𝑑, πœ”) = β„±[𝑣(𝑑, π‘₯)](πœ”) and π‘Œ (𝑑, πœ”) = β„±[𝑦(𝑑, π‘₯)](πœ”). Then 𝑒(𝑑, π‘₯) is the inverse Fouriertransform of π‘ˆ(𝑑, πœ”) if and only if 𝑒(𝑑, π‘₯) is the convolution

    𝑒(𝑑, π‘₯) = β„±βˆ’1[π‘ˆ(𝑑, πœ”)](π‘₯) = β„±βˆ’1[𝑉 (𝑑, πœ”)π‘Œ (𝑑, πœ”)](π‘₯) = 𝑣(𝑑, π‘₯) βˆ— 𝑦(𝑑, π‘₯).

     

    8.2.3 The forward heat equation in the infinite domain

    In this subsection we solve the slightly more general version of equation (8.1) in the infinite domainfor an arbitrary bounded initial condition and for a given initial conditions. The last two areversions of Cauchy problems in which the side conditions refer to 𝑑 = 0.

    3There are different definitions of Fourier transforms, we use the definition by, v.g., Kammler (2000).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 7

    Free but bounded initial condition

    The simplest linear PDE for an infinite domain 𝑋 = ℝ

    𝑒𝑑 βˆ’ π‘Žπ‘’π‘₯π‘₯ = 0, (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ (8.4)

    where π‘Ž > 0.

    Proposition 1. Let π‘˜(π‘₯) be an arbitrary but bounded function, i.e. satisfying βˆ«βˆžβˆ’βˆž |π‘˜(π‘₯)|𝑑π‘₯ < ∞.Then the solution to PDE (8.4) is

    𝑒(𝑑, π‘₯) =⎧{⎨{⎩

    π‘˜(π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 0}  Γ— ℝ1

    2√

    πœ‹π‘Žπ‘‘ ∫∞

    βˆ’βˆžπ‘˜(πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰, (𝑑, π‘₯) ∈ ℝ++ Γ— ℝ

    (8.5)

     

    Proof.  Applying the previous definition of Fourier transform, equation (8.4) becomes

    𝑒𝑑 βˆ’ π‘Žπ‘’π‘₯π‘₯ = ∫∞

    βˆ’βˆž(π‘ˆπ‘‘(𝑑, πœ”) + π‘Ž(2πœ‹πœ”)2π‘ˆ(𝑑, πœ”)) 𝑒2πœ‹π‘–πœ”π‘₯π‘‘πœ” = 0.

      This equation is satisfied if π‘ˆ(𝑑, πœ”) is solves

    π‘ˆπ‘‘(𝑑, πœ”) = πœ†(πœ”) π‘ˆ(𝑑, πœ”).

      where πœ†(πœ”) = βˆ’(2πœ‹πœ”)2π‘Ž. The solution for this ODE is

    π‘ˆ(𝑑, πœ”) = 𝐾(πœ”) 𝐺(𝑑, πœ”)

      where 𝐺(.) is called the Gaussian kernel 

    𝐺(πœ”, 𝑑) β‰‘βŽ§{⎨{⎩

    1, 𝑑 = 0π‘’πœ†(πœ”) 𝑑, 𝑑 > 0

      and the function 𝐾(πœ”) is arbitrary. To obtain the solution in terms of the original function,𝑒(𝑑, π‘₯), we perform an inverse Fourier transform

    𝑒(𝑑, π‘₯) = β„±βˆ’1(π‘ˆ(𝑑, πœ”)) = β„±βˆ’1(𝐾(πœ”) 𝐺(𝑑, πœ”)) = π‘˜(π‘₯) βˆ— 𝑔(𝑑, π‘₯)

      where π‘˜(π‘₯) βˆ— 𝑔(𝑑, π‘₯) is a convolution, that is

    π‘˜(π‘₯) βˆ— 𝑔(𝑑, π‘₯) = ∫∞

    βˆ’βˆžπ‘˜(πœ‰)𝑔(𝑑, π‘₯ βˆ’ πœ‰)π‘‘πœ‰.

      Using the tables in the Appendix, for 𝑔(π‘₯, 𝑑) = β„±βˆ’1[𝐺(𝑑, πœ”)](π‘₯) the Gaussian kernel in the initialvariable is

    𝑔(𝑑, π‘₯) =⎧{⎨{⎩

    𝛿(π‘₯), 𝑑 = 0π‘’βˆ’ π‘₯

    24π‘Žπ‘‘

    2√

    πœ‹ π‘Ž 𝑑, 𝑑 > 0

  • Paulo Brito Advanced Mathematical Economics 2020/2021 8

      where 𝛿(.) is the Dirac’s delta function.Therefore, because and π‘˜(π‘₯) = β„±βˆ’1[𝐾(π‘‘πœ”)](π‘₯),

    𝑒(𝑑, π‘₯) =⎧{⎨{⎩

    π‘˜(π‘₯), 𝑑 = 01

    2√

    πœ‹π‘Žπ‘‘ ∫∞

    βˆ’βˆžπ‘˜(πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰, 𝑑 > 0

    (8.6)

      where π‘˜(π‘₯) is an arbitrary but bounded function, i.e. satisfying βˆ«βˆžβˆ’βˆž |π‘˜(π‘₯)|𝑑π‘₯ < ∞, andbecause βˆ«βˆžβˆ’βˆž π‘˜(πœ‰)𝛿(π‘₯ βˆ’ πœ‰)π‘‘πœ‰ = π‘˜(π‘₯).

    Two observations can be made concerning the solution of this PDE.First, applying the Fourier transform, we change from a distribution in the original variables π‘₯

    to a frequency distribution πœ”.The transformed PDE becomes a linear ODE the coefficient is eigenfunction

    πœ†(πœ”) = βˆ’(2πœ‹πœ”)2π‘Ž 

      which is real and non-positive for any πœ” ∈ ℝ: πœ†(0) = 0 and πœ†(πœ”) < 0 for πœ” β‰  0 and,limπœ”β†’Β±βˆž πœ†(πœ”) = βˆ’βˆž. This means that limπœ”β†’Β±βˆž π‘ˆ(𝑑, πœ”) = 0 for any 𝑑 if 𝐾(πœ”) is bounded.

    Second, associated to the previous property is the solution of 𝑒(𝑑, π‘₯) is an expected value of thearbitrary function where the density function is a Gaussian density function with average 0 andvariance 2 π‘Ž 𝑑.

    Initial value problem Now we consider a well-posed linear FPDE. Assume we know the distri-bution at time 𝑑 = 0, then we have an initial value problem

    ⎧{⎨{⎩

    𝑒𝑑 = π‘Žπ‘’π‘₯π‘₯, (𝑑, π‘₯) ∈ (0, ∞) Γ— (βˆ’βˆž, ∞)𝑒(0, π‘₯) = πœ™(π‘₯) (𝑑, π‘₯) ∈ {𝑑 = 0}  Γ— (βˆ’βˆž, ∞)

    (8.7)

      where π‘Ž > 0 and πœ™(π‘₯) is a known bounded function. Applying (8.6), the solution is

    𝑒(𝑑, π‘₯) =⎧{{⎨{{⎩

    πœ™(π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 0}  Γ— ℝ

    ∫∞

    βˆ’βˆž

    πœ™(πœ‰)2√

    πœ‹ π‘Ž 𝑑  π‘’βˆ’

    (π‘₯ βˆ’ πœ‰)24π‘Žπ‘‘  π‘‘πœ‰, (𝑑, π‘₯) ∈ ℝ++  Γ— ℝ

      because βˆ«βˆžβˆ’βˆž πœ™(πœ‰)𝛿(π‘₯ βˆ’ πœ‰)π‘‘πœ‰ = πœ™(π‘₯).

    Example Figure 8.1 illustrates the behavior of the solution for π‘Ž = 1 and πœ™(π‘₯) = π‘’βˆ’π‘₯2βˆšπœ‹ , which

    is simplified to

    𝑒(𝑑, π‘₯) = 1βˆšπœ‹(1 + 4 𝑑)𝑒

    βˆ’π‘₯2

    1 + 4 𝑑 .

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 9

    -10 -5 5 100.1

    0.2

    0.3

    0.4

    0.5

    Figure 8.1: Solution for the initial value problem for the heat equation with π‘Ž = 1 and πœ™(π‘₯) = π‘’βˆ’π‘₯2βˆšπœ‹ .

    As can be seen, the solution decays through time and converges to a homogeneous distribution

    limπ‘‘β†’βˆž

    𝑒(𝑑, π‘₯) = 0, βˆ€π‘₯ ∈ (βˆ’βˆž, ∞)

     However, a conservation law holds,

    ∫∞

    βˆ’βˆžπ‘’(𝑑, π‘₯) 𝑑π‘₯ = 1, for each 𝑑 β‰₯ 0

     

    Piecewise-constant initial condition We consider the heat equation with the initial condition

    πœ™(π‘₯) =⎧{⎨{⎩

    πœ™0, if π‘₯ ∈ [π‘₯, π‘₯] 0 if π‘₯ βˆ‰ [π‘₯, π‘₯)

      where π‘₯ < π‘₯ are both finite. In this case, the solution to the problem is

    𝑒(𝑑, π‘₯) = πœ™0 [ Ξ¦ (π‘₯ βˆ’ π‘₯√

    2π‘Žπ‘‘  ) βˆ’ Ξ¦ (π‘₯ βˆ’ π‘₯√

    2π‘Žπ‘‘  )]   (8.8)

      where Ξ¦(𝑧) is the standard normal distribution function

    Ξ¦(𝑦) = 1√2πœ‹ βˆ«π‘¦

    βˆ’βˆžπ‘’βˆ’ 𝑧

    22 𝑑𝑧 ∈ (0, 1).

      Observe that βˆ«βˆžβˆ’βˆž π‘’βˆ’ 𝑧22 𝑑𝑧 = (2πœ‹) 12 .

    The solution of equation (8.8) is illustrated in Figure 8.2.In order to prove this result, applying the general solution in equation (8.6) yields the solution

    of the initial-value problem

    𝑒(𝑑, π‘₯) = πœ™02√

    πœ‹π‘Žπ‘‘  ∫π‘₯

    π‘₯π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘ π‘‘πœ‰.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 10

    Figure 8.2: Solution for the initial value problem for the heat equation with π‘Ž = 1 and piecewiseinitial condition.

    To simplify the expression, we make the transformation of variables 𝑧 ≑ (π‘₯ βˆ’ πœ‰)/√

    2π‘Žπ‘‘, and denote𝑧 ≑ (π‘₯ βˆ’ πœ‰)/

    √2π‘Žπ‘‘ and 𝑧 ≑ (π‘₯ βˆ’ πœ‰)/

    √2π‘Žπ‘‘. Then, because 𝑑𝑧 = βˆ’1/

    √2π‘Žπ‘‘π‘‘πœ‰ the solution simplifies 4

    1√4πœ‹π‘Žπ‘‘

    ∫π‘₯

    π‘₯π‘’βˆ’(π‘₯βˆ’πœ‰)2/4π‘Žπ‘‘π‘‘πœ‰ = βˆ’

    √2π‘Žπ‘‘βˆš

    4πœ‹π‘Žπ‘‘βˆ«

    (π‘₯βˆ’π‘₯)/√

    2π‘Žπ‘‘

    (π‘₯βˆ’π‘₯)/√

    2π‘Žπ‘‘π‘’βˆ’π‘§2/2𝑑𝑧

    = 1√2πœ‹ (∫(π‘₯βˆ’π‘₯)/

    √2π‘Žπ‘‘

    βˆ’βˆžπ‘’βˆ’π‘§2/2𝑑𝑧 βˆ’ ∫

    (π‘₯βˆ’π‘₯)/√

    2π‘Žπ‘‘

    βˆ’βˆžπ‘’βˆ’π‘§2/2𝑑𝑧) =

    = Ξ¦ ( π‘₯ βˆ’ π‘₯√2π‘Žπ‘‘  ) βˆ’ Ξ¦ (π‘₯ βˆ’ π‘₯√

    2π‘Žπ‘‘  ) .

     

    8.2.4 The forward linear equation in the semi-infinite domain

    Now consider the equation defined on the semi-infinite domain for π‘₯, that is X = ℝ+. This case ismore interesting for economic applications in which the independent variable can only take non-negative values, for instance when π‘₯ refers to a stock.

    The FPDE we consider is𝑒𝑑 βˆ’ π‘Žπ‘’π‘₯π‘₯ = 0, (𝑑, π‘₯) ∈ ℝ2+ (8.9)

    where π‘Ž > 0.

    Proposition 2. The solution to equation (8.11) is

    𝑒(𝑑, π‘₯) = 12√

    πœ‹ π‘Ž 𝑑 ∫∞

    0π‘˜ (πœ‰) (π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24 π‘Ž 𝑑 βˆ’ π‘’βˆ’ (π‘₯+πœ‰)

    24 π‘Ž 𝑑 )  π‘‘πœ‰, 𝑑 > 0. (8.10)

    where π‘˜(π‘₯) ∢ X β†’ ℝ is an arbitrary bounded function.4Recalling the formula for integration by substitution of variables, if we set 𝑧 = πœ‘(πœ‰) and πœ‰ ∈ (π‘Ž, 𝑏) then

    βˆ«πœ‘(𝑏)

    πœ‘(π‘Ž)𝑓(𝑧)𝑑𝑧 = ∫

    𝑏

    π‘Žπ‘“(πœ‘(πœ‰)) πœ‘β€² (πœ‰) π‘‘πœ‰.

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 11

    Proof. We solve this equation by using the method of images. It consists in introducing thefollowing extension to the arbitrary function π‘˜(π‘₯)

    οΏ½ΜƒοΏ½(π‘₯) =⎧{⎨{⎩

    π‘˜(π‘₯), if π‘₯ β‰₯ 0βˆ’π‘˜(βˆ’π‘₯) if π‘₯ < 0

      where π‘˜(.) is an odd function satisfying π‘˜(βˆ’π‘₯) = βˆ’π‘˜(π‘₯). Using the solution (8.6) for 𝑑 > 0 wehave

    𝑒(𝑑, π‘₯) = 12√

    πœ‹π‘Žπ‘‘ ∫∞

    βˆ’βˆžοΏ½ΜƒοΏ½ (πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰ =

    = 12√

    πœ‹π‘Žπ‘‘ (∫0

    βˆ’βˆžοΏ½ΜƒοΏ½ (πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰ + ∫

    ∞

    0οΏ½ΜƒοΏ½ (πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰) =

    = 12√

    πœ‹π‘Žπ‘‘ (βˆ’ ∫∞

    0π‘˜ (πœ‰)π‘’βˆ’ (π‘₯+πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰ + ∫

    ∞

    0π‘˜ (πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰)

    where the last step involves integration by substitution: i.e., if we define 𝑒 = βˆ’π‘₯ for π‘₯ ∈ [0, ∞)then ∫0βˆ’βˆž 𝑓(𝑒)𝑑𝑒 = βˆ’ ∫

    0∞ 𝑓(βˆ’π‘₯)𝑑π‘₯ = ∫

    ∞0 𝑓(βˆ’π‘₯)𝑑π‘₯. Then the solution of equation (8.11) is equation

    (8.11).

    The solution to the initial-value problem

    ⎧{⎨{⎩

    𝑒𝑑 βˆ’ π‘Žπ‘’π‘₯π‘₯ = 0, for π‘Ž > 0, (𝑑, π‘₯) ∈ ℝ2+𝑒(0, 𝑑) = 𝑒0(π‘₯), for (𝑑, π‘₯) ∈ {𝑑 = 0} Γ— ℝ+

    (8.11)

    is𝑒(𝑑, π‘₯) = 12

    βˆšπœ‹ π‘Ž 𝑑 ∫

    ∞

    0𝑒0(πœ‰) (π‘’βˆ’

    (π‘₯βˆ’πœ‰)24 π‘Ž 𝑑 βˆ’ π‘’βˆ’ (π‘₯+πœ‰)

    24 π‘Ž 𝑑 )  π‘‘πœ‰, 𝑑 > 0. (8.12)

      We obtain this result by direct application of equation (8.12).Example Consider the initial-value problem in which the initial distribution is log-normal

    𝑒0(π‘₯) =π‘’βˆ’

    (ln π‘₯  βˆ’ πœ‡)22𝜎2

    2√

    πœ‹ π‘₯2 𝜎2

      if we substitute in equation (8.12) we have the solution depicted in Figure 8.4 for several momentsin time.

    We observe that the solution is not conservative, i.e. the integral π‘ˆ(𝑑) = ∫∞0 𝑒(𝑑, π‘₯) 𝑑π‘₯  decaysin time such that limπ‘‘β†’βˆž  π‘ˆ(𝑑) = 0.

    8.2.5 The backward heat equation

    In finance applications and associated to Euler equation in optimal control problems, we sometimesneed to solve backward parabolic PDE.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 12

      5 10 15 20

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Figure 8.3: Solution for the initial value problem for the heat equation in the semi-infinite line withπ‘Ž = 1 and an initial log-normal density.

    The simplest parabolic BPDE equation in the infinite domain for π‘₯ and for the semi-infinitedomain for 𝑑 is

    𝑒𝑑 + π‘Žπ‘’π‘₯π‘₯ = 0, (𝑑, π‘₯) ∈ [0, 𝑇 ] Γ— (βˆ’βˆž, ∞) (8.13)

    where π‘Ž > 0.

    Proposition 3. Consider the BPDE equation (8.13). The solution is

    𝑒(𝑑, π‘₯) =⎧{⎨{⎩

    π‘˜(π‘₯), 𝑑 = 𝑇1

    √4πœ‹π‘Ž(𝑇 βˆ’π‘‘) ∫∞

    βˆ’βˆžπ‘˜(πœ‰)π‘’βˆ’

    (π‘₯βˆ’πœ‰)24π‘Ž(π‘‡βˆ’π‘‘)  π‘‘πœ‰, 𝑑 ∈ (0, 𝑇 )

     

    Proof. In order to solve it we introduce a change in variables 𝜏 = 𝑇 βˆ’ 𝑑 and consider a change inthe variable 𝑣(𝜏, π‘₯) = 𝑒(𝑑(𝜏), π‘₯) where 𝑑(𝜏) = 𝑇 βˆ’ 𝜏 . As

    π‘£πœ(𝜏, π‘₯) = βˆ’π‘’π‘‘(𝑑(𝜏), π‘₯), and 𝑣π‘₯π‘₯(𝜏, π‘₯) = 𝑒π‘₯π‘₯(𝑑(𝜏), π‘₯)

      Then 𝑒𝑑(𝑑, π‘₯) = βˆ’π‘Žπ‘’π‘₯π‘₯(𝑑, π‘₯) is equivalent to

    π‘£πœ(𝜏, π‘₯) = π‘Žπ‘£π‘₯π‘₯(𝜏, π‘₯).

      Using the solution already found in equation (8.6) we get

    𝑣(𝜏, π‘₯) =⎧{⎨{⎩

    π‘˜(π‘₯), 𝜏 = 0

    ∫∞

    βˆ’βˆžπ‘˜(πœ‰) (4πœ‹π‘Žπœ)βˆ’1/2 π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπœ  π‘‘πœ‰, 𝜏 ∈ (0, 𝑇 ).

    Transforming back to 𝑒(𝑑, π‘₯) we have solution.

    A problem involving a backward PDE is only well posed if together with the PDE we have aterminal condition, for example 𝑒(𝑇 , π‘₯) = πœ™π‘‡ (π‘₯). In this case the value of the variable at time𝑑 = 0 becomes endogenous.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 13

    Consider the terminal-value problem

    ⎧{⎨{⎩

    𝑒𝑑 = βˆ’π‘Žπ‘’π‘₯π‘₯, (𝑑, π‘₯) ∈ (βˆ’βˆž, ∞) Γ— (0, 𝑇 ]𝑒(𝑇 , π‘₯) = πœ™π‘‡ (π‘₯) (𝑑, π‘₯) ∈ (βˆ’βˆž, ∞) Γ— { π‘‘ = 𝑇 }. 

      The solution is

    𝑒(𝑑, π‘₯) =⎧{⎨{⎩

    πœ™π‘‡ (π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 𝑇 }  Γ— ℝ 1

    √4πœ‹π‘Ž(𝑇 βˆ’ 𝑑)∫

    ∞

    βˆ’βˆžπœ™π‘‡ (πœ‰)π‘’βˆ’

    (π‘₯βˆ’πœ‰)24π‘Ž(π‘‡βˆ’π‘‘)  π‘‘πœ‰, (𝑑, π‘₯) ∈ (0, 𝑇 ) Γ— ℝ

    The initial distribution can be obtained by setting 𝑑 = 0

    𝑒(0, 𝑇 ) = 1√4πœ‹π‘Ž(𝑇 βˆ’ 𝑑)∫

    ∞

    βˆ’βˆžπœ™π‘‡ (πœ‰)π‘’βˆ’

    (π‘₯βˆ’πœ‰)24π‘Žπ‘‡  π‘‘πœ‰.

     

    8.3 The homogeneous linear PDE

    The general forward linear parabolic PDE in the infinite domain is

    𝑒𝑑 = π‘Ž 𝑒π‘₯π‘₯ + 𝑏 𝑒π‘₯ + 𝑐 𝑒, (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

      where π‘Ž > 0. The dynamics of 𝑒(𝑑, π‘₯) contains three terms: a diffusion term, if π‘Ž β‰  0, a transportterm, if 𝑏 β‰  0, and a growth or decay term if 𝑐 > 0 or 𝑐 < 0.

    In order to solve the equation, we can follow one of two alternative methods:

    1. transform the equation into a heat equation, solve the heat equation and transform back tothe initial variables.

    2. apply the Fourier transform method to transform the PDE into a parameterized ODE, solveit, and apply inverse Fourier transforms.

    8.3.1 Equation without transport term

    If the linear forward PDE does not contain a transport term, we have

    𝑒𝑑 = π‘Ž 𝑒π‘₯π‘₯ + 𝑐 𝑒, (𝑑, π‘₯) ∈ (0, ∞) Γ— (βˆ’βˆž, ∞) (8.14)

      where π‘Ž > 0 and 𝑐 β‰  0, which has solution, for an arbitrary bounded function πœ™(π‘₯)

    𝑒(𝑑, π‘₯) =⎧{{⎨{{⎩

    ∫∞

    βˆ’βˆžπœ™(πœ‰)𝛿(π‘₯ βˆ’ πœ‰)π‘‘πœ‰ = πœ™(π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 0}  Γ— ℝ

    𝑒𝑐 𝑑  ∫∞

    βˆ’βˆžπœ™(πœ‰) 1√

    4 πœ‹ π‘Ž π‘‘π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24 π‘Ž 𝑑  π‘‘πœ‰, (𝑑, π‘₯) ∈ ℝ+  Γ— ℝ.

      To find the solution, we use the first method. First, define 𝑣(𝑑, π‘₯) = π‘’βˆ’π‘ 𝑑𝑒(𝑑, π‘₯), which hasderivatives 𝑣𝑑 = βˆ’π‘π‘’βˆ’π‘ 𝑑𝑒 + π‘’βˆ’π‘ 𝑑𝑒𝑑 and 𝑣π‘₯π‘₯ = π‘’βˆ’π‘π‘‘π‘’π‘₯π‘₯. Second, equation (8.14) is equivalent to the

  • Paulo Brito Advanced Mathematical Economics 2020/2021 14

    simplest linear equation 𝑣𝑑 = π‘Žπ‘£π‘₯π‘₯ which has solution (8.6). Third, as 𝑒(𝑑, π‘₯) = 𝑒𝑐 𝑑 𝑣(𝑑, π‘₯) we obtainthe solution

    The dynamics of the solution depends crucially on the sign of 𝑏:

    limπ‘‘β†’βˆž

    𝑒(𝑑, π‘₯) =⎧{⎨{⎩

    0 if 𝑐 < 0∞ if 𝑐 > 0

     Figure 8.4 illustrates the cases in which 𝑐 < 0 and 𝑐 > 0. In both cases we see that the long-time

    behavior of the solution is commanded by 𝑒𝑐 𝑑: if 𝑐 < 0 then limπ‘‘β†’βˆž 𝑒(𝑑, π‘₯) = 0, for any π‘₯ ∈ ℝ, andif 𝑐 > 0 then limπ‘‘β†’βˆž 𝑒(𝑑, π‘₯) ∝ limπ‘‘β†’βˆž 𝑒𝑐 𝑑 = ∞, for any π‘₯ ∈ ℝ.

    This means that the diffusion equation display asymptotic stability if 𝑐 < 0 and instability if𝑐 > 0, both in a distributional sense. In the first case the solution 𝑒(𝑑, π‘₯) is bounded and in thesecond case it is unbounded.

    Figure 8.4: Solution for the initial value problem for the heat equation with π‘Ž = 1 and πœ™(π‘₯) = π‘’βˆ’π‘₯2βˆšπœ‹

    and 𝑐 = βˆ’0.5 and 𝑐 = 0.5.

    8.3.2 The general homogeneous diffusion equation

    The initial value problem for a a general linear homogeneous (forward) diffusion equation is

    ⎧{⎨{⎩

    𝑒𝑑(𝑑, π‘₯) = π‘Ž 𝑒π‘₯π‘₯(𝑑, π‘₯) + 𝑏 𝑒π‘₯(𝑑, π‘₯) + 𝑐 𝑒(𝑑, π‘₯), (𝑑, π‘₯) ∈ (0, ∞) Γ— (βˆ’βˆž, ∞)𝑒(0, π‘₯) = πœ™(π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 0} Γ— (βˆ’βˆž, ∞),

    (8.15)

      where π‘Ž > 0, 𝑏 β‰  0 and 𝑐 β‰  0 and πœ™(π‘₯) is a bounded function over 𝑋 = ℝ.

    Proposition 4. The solution to problem (8.15) is

    𝑒(𝑑, π‘₯) = ∫∞

    βˆ’βˆžπœ™(𝑠) 1√

    4πœ‹π‘Žπ‘‘exp (βˆ’(π‘₯ βˆ’ 𝑠)

    2 + 2 𝑏 (π‘₯ βˆ’ 𝑠) 𝑑 + (𝑏2 βˆ’ 4π‘Žπ‘) 𝑑24 π‘Ž 𝑑 ) 𝑑𝑠 (8.16)

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 15

    Proof. We will solve this problem using the Fourier transform representation of equation 𝑒𝑑 βˆ’(π‘Žπ‘’π‘₯π‘₯ + 𝑏𝑒π‘₯ + 𝑐𝑒) = 0. Using inverse Fourier transforms yields

    𝑒𝑑(𝑑, π‘₯) βˆ’ π‘Žπ‘’π‘₯π‘₯(𝑑, π‘₯) βˆ’ 𝑏𝑒π‘₯ βˆ’ 𝑐𝑒(𝑑, π‘₯) = ∫∞

    βˆ’βˆžπ‘’2πœ‹π‘–πœ”π‘₯ [ π‘ˆπ‘‘(𝑑, πœ”) + πœ†(πœ”)π‘ˆ(𝑑, πœ”)]  π‘‘πœ” = 0.

      where the coefficient is a complex-valued function of πœ” 5 

    πœ†(πœ”) ≑ π‘Ž(2πœ‹πœ”)2 βˆ’ 𝑐 βˆ’ 2πœ‹ 𝑏 πœ” 𝑖, 𝑖 β‰‘βˆš

    βˆ’1

      Therefore, the PDE (8.15) is equivalent to the linear ODE parameterized by πœ”

    π‘ˆπ‘‘(𝑑, πœ”) = βˆ’πœ†(πœ”)π‘ˆ(𝑑, πœ”), (𝑑, πœ”) ∈ ℝ+ Γ— ℝ,

      which has the explicit solution

    π‘ˆ(𝑑, πœ”) = Ξ¦(πœ”) 𝐺(𝑑, πœ”), for𝑑 ∈ [0, ∞)

      where Ξ¦(πœ”) = β„±[ πœ™(π‘₯)] (πœ”) is the Fourier transform of the initial distribution, and 𝐺(𝑑, πœ”) is theGaussian kernel

    𝐺(𝑑, πœ”) = π‘’βˆ’πœ†(πœ”)𝑑, for 𝑑 > 0.

      We obtain the solution of problem (8.15) by applying the inverse Fourier transform

    𝑒(𝑑, π‘₯) = β„±βˆ’1 [π‘ˆ(𝑑, πœ”)]  (π‘₯) = β„±βˆ’1 [Ξ¦(πœ”) 𝐺(𝑑, πœ”)]  (π‘₯) = ∫∞

    βˆ’βˆžπœ™(𝑠)𝑔(𝑑, π‘₯ βˆ’ 𝑠)𝑑𝑠

      where (see the Appendix 8.7 )

    𝑔(𝑑, 𝑦) = β„±βˆ’1 [ π‘’βˆ’πœ†(πœ”)𝑑]   = 1√4πœ‹π‘Žπ‘‘

    exp (βˆ’π‘¦2 + 2𝑏𝑑𝑦 + (𝑏2 βˆ’ 4π‘Žπ‘)𝑑2

    4π‘Žπ‘‘ ), (8.17)

      because π‘Žπ‘‘ > 0.

    Figure 8.5 illustrates the solution (8.16) for negative (left figures) and positive (right figures)values for 𝑏 and negative (upper figures) and positive (lower figures) values of 𝑐. It is clear thatwhile 𝑏 introduces a transportation in the positive direction, if 𝑏 < 0, or in the negative direction,if 𝑏 > 0, 𝑐 is associated to the time stability of the whole distribution.

    8.4 Non-autonomous linear equation

    Next we consider two non-autonomous equations in which there is one term depending on theindependent variables (𝑑, π‘₯)

    5The advection term, involving the first derivative has a complex-valued the Fourier transform representation

    𝑒π‘₯(𝑑, π‘₯) =πœ•

    πœ•π‘₯ (∫∞

    βˆ’βˆžπ‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–π‘₯πœ”π‘‘πœ”) = ∫

    ∞

    βˆ’βˆž2πœ‹πœ”π‘– π‘ˆ(𝑑, πœ”)𝑒2πœ‹π‘–π‘₯πœ”π‘‘πœ”.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 16

    Figure 8.5: Solution for the initial value problem linear PDE for π‘Ž = 1, 𝑏 = 1 and 𝑏 = βˆ’1 and𝑐 = βˆ’0.5 and 𝑏 = 1 and 𝑏 = βˆ’1 and 𝑐 = 0.5.

    Non-homogeneous heat equation The non-homogeneous (forward) heat equation

    𝑒𝑑 βˆ’ π‘Žπ‘’π‘₯π‘₯ βˆ’ 𝑏(𝑑, π‘₯) = 0, (𝑑, π‘₯) ∈ (0, ∞) Γ— (βˆ’βˆž, ∞) (8.18)

      this equation has a component which is not affected by 𝑒, although it changes with (𝑑, π‘₯).In order to solve it, we again use inverse Fourier transforms to get an equivalent ODE in

    transformed variables π‘ˆ(𝑑, πœ”),

    π‘ˆ(𝑑, πœ”) = βˆ’πœ†(πœ”)π‘ˆ(𝑑, πœ”) + 𝐡(𝑑, πœ”)

      where 𝐡(𝑑, πœ”) = β„±[𝑏(𝑑, π‘₯)](πœ”) and πœ†(πœ”) = (2 πœ‹ πœ”)2 π‘Ž. The solution to equation (8.18)is

    π‘ˆ(𝑑, πœ”) = 𝐾(πœ”)𝐺(𝑑, πœ”) + βˆ«π‘‘

    0𝐡(𝑠, πœ”) 𝐺(𝑑 βˆ’ 𝑠, πœ”)𝑑𝑠,

      where 𝐺(𝑑, β‹…) is a Gaussian kernel. Applying inverse Fourier transforms yields

    𝑒(𝑑, π‘₯) = π‘˜(π‘₯) βˆ— 𝑔(𝑑, π‘₯) + βˆ«π‘‘

    0𝑏(𝑠, π‘₯) βˆ— 𝑔(𝑑 βˆ’ 𝑠, π‘₯)𝑑𝑠.

      Therefore, the solution to the parabolic PDE (8.18) is, for 𝑑 > 0,

    𝑒(𝑑, π‘₯) = 1√4πœ‹π‘Žπ‘‘

    ∫∞

    βˆ’βˆžπ‘˜(πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘ π‘‘πœ‰ + ∫

    𝑑

    0

    1√4πœ‹π‘Ž(𝑑 βˆ’ 𝑠)

    ∫∞

    βˆ’βˆžπ‘’βˆ’

    (π‘₯βˆ’πœ‰)24π‘Ž(π‘‘βˆ’π‘ ) 𝑏(𝑠, πœ‰)π‘‘πœ‰π‘‘π‘ .

    The solution can converge to a spatially non-homogenous distribution.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 17

    Non-autonomous diffusion equation

    Consider the equation

    𝑒𝑑 = π‘Žπ‘’π‘₯π‘₯ + 𝑏𝑒 + 𝑑(π‘₯), (𝑑, π‘₯) ∈ (βˆ’βˆž, ∞) Γ— (0, ∞)

      where π‘Ž > 0. It can be proved (see Exercise 1) that the solution for 𝑑 > 0 is

    𝑒(𝑑, π‘₯) = 𝑒𝑏𝑑

    √4πœ‹π‘Žπ‘‘

    ∫∞

    βˆ’βˆžπœ™(πœ‰)π‘’βˆ’ (π‘₯βˆ’πœ‰)

    24π‘Žπ‘‘  π‘‘πœ‰ + 1√4πœ‹π‘Ž(𝑑 βˆ’ 𝜏)

      βˆ«π‘‘

    0𝑒𝑏(π‘‘βˆ’πœ) ∫

    ∞

    βˆ’βˆžπ‘‘(πœ‰)π‘’βˆ’

    (π‘₯βˆ’πœ‰)24π‘Ž(π‘‘βˆ’πœ)  π‘‘πœ‰π‘‘πœ

     

    8.5 Fokker-Planck-Kolmogorov equation

    We will see in the chapter on stochastic differential equations, that the probability distributionof a diffusion  process follows a particular parabolic PDE, called the Fokker-Planck-Kolmogorovequation. This equation is having an increase attention, also in economics, as a model for processessatisfying a conservation law as

    βˆ«π‘‹

    𝑝(𝑑, π‘₯)𝑑π‘₯ = 1, for every  𝑑 ∈ 𝑇

      where 𝑝(𝑑, π‘₯) ∢ 𝑇 Γ— 𝑋 β†’ (0, 1).The Fokker-Planck-Kolmogorov equation is

    πœ•π‘‘π‘(𝑑, π‘₯) =12πœ•π‘₯π‘₯ (π‘Ž(𝑑, π‘₯)

    2 𝑝(𝑑, π‘₯)) βˆ’ πœ•π‘₯(𝑏(𝑑, π‘₯) 𝑝(𝑑, π‘₯)) (8.19)

      where we assume 𝑝(0, π‘₯) is known and satisfies

    βˆ«π‘‹

    𝑝(0, π‘₯)𝑑π‘₯ = 1.

      In applications resulting from stochastic differential equations, the initial state is known π‘₯ = π‘₯0and the dynamics of a probability distribution is given by Kolmogorov forward equation (or Fokker-Planck equation) and the initial condition 𝑝(0, π‘₯) = 𝛿(π‘₯βˆ’π‘₯0) where 𝛿(β‹…) is Dirac’s delta generalizedfunction.

    8.5.1 The simplest problem

    The simplest model has constant coefficients 𝑏(𝑑, π‘₯) = πœ‡ and π‘Ž(𝑑, π‘₯) = 𝜎 and a Dirac delta initialfunction:

    ⎧{⎨{⎩

    πœ•π‘‘π‘(𝑑, π‘₯) =𝜎22  πœ•π‘₯π‘₯𝑝(𝑑, π‘₯) βˆ’ πœ‡πœ•π‘₯𝑝(𝑑, π‘₯), (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

    𝑝(0, π‘₯) = 𝛿(π‘₯ βˆ’ π‘₯0) (𝑑, π‘₯) ∈ { π‘‘ = 0}  Γ— ℝ(8.20)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 18

    The solution is a Gamma probability density

    𝑝(𝑑, π‘₯) = 1√2 πœ‹ 𝜎2 𝑑

    exp βˆ’(π‘₯ βˆ’ π‘₯0 βˆ’ πœ‡ 𝑑2 𝜎2 𝑑 )2  

    = Ξ“( βˆ’ πœ‡π‘‘; 𝜎2

    2 , π‘₯ βˆ’ π‘₯0) (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ 

    Figure 8.6  presents an illustration of the solution

     

    Figure 8.6: Solution for (8.20)  for π‘₯0 = 5, πœ‡ = 1 and 𝜎 = 0.5.

    8.5.2 The distribution associated to the Ornstein Uhlenbeck equation

    The simplest model has constant coefficients 𝑏(𝑑, π‘₯) = πœ‡0 + πœ‡1 π‘₯ and π‘Ž(𝑑, π‘₯) = 𝜎 and a Dirac deltainitial function:

    ⎧{⎨{⎩

    πœ•π‘‘π‘(𝑑, π‘₯) =𝜎22  πœ•π‘₯π‘₯𝑝(𝑑, π‘₯) βˆ’ (πœ‡0 + πœ‡1 π‘₯) πœ•π‘₯𝑝(𝑑, π‘₯) βˆ’ πœ‡1𝑝(𝑑, π‘₯), (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

    𝑝(0, π‘₯) = 𝛿(π‘₯ βˆ’ π‘₯0) (𝑑, π‘₯) ∈ { π‘‘ = 0}  Γ— ℝ(8.21)

    The solution is a Normal density function

    𝑝(𝑑, π‘₯) = 1

    √2 πœ‹ 𝜎2 (1 βˆ’ 𝑒2 πœ‡1 𝑑)exp { βˆ’

    (π‘₯ βˆ’ π‘₯0 π‘’πœ‡1𝑑 βˆ’ πœ‡0(1 βˆ’ π‘’πœ‡1𝑑))2

    2 𝜎2 (1 βˆ’ 𝑒2πœ‡1𝑑 ) }  

    = 𝑁(π‘₯0π‘’πœ‡π‘‘  + πœ‡0(1 βˆ’ π‘’πœ‡1𝑑),𝜎22 (1 βˆ’ 𝑒

    2πœ‡1𝑑 )) (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

      Exercise: prove this.We see that if πœ‡1 < 0 then

    limπ‘‘β†’βˆž

    𝑝(𝑑, π‘₯) ∼ 𝑁(πœ‡0,𝜎22 )

      this means that the distribution is ergodic: for any initial value π‘₯0 it tends asymptotically to anormal distribution (see Figure 8.7).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 19

     

    Figure 8.7: Solution for (8.20)  for π‘₯0 = 5, πœ‡0 = 1, πœ‡1 = βˆ’1 and 𝜎 = 0.5.

    8.6 Economic applications

    8.6.1 The distributional Solow model

     In Brito (2004) we prove that in an economy in which the capital stock is distributed in an

    heterogeneous way between regions, 𝐾(𝑑, π‘₯), if there is an infinite support, and there are freecapital flows between regions, the budget constraint for the location π‘₯ can be represented by theparabolic PDE.

    Consider the accounting balance between savings and internal and external investment for aregion π‘₯ at time 𝑑

    𝐼(𝑑, π‘₯) + 𝑇 (𝑑, π‘₯) = 𝑆(𝑑, π‘₯)

      where 𝐼(𝑑, π‘₯) and 𝑆(𝑑, π‘₯) is investment and domestic savings of location π‘₯ at time 𝑑 and 𝑇 (𝑑, π‘₯) isthe savings flowing to other regions.

    Assume that the capital flow for a region of length Ξ”π‘₯ is symmetric to the capital distributiongradient to neighboring regions:

    𝑇 (𝑑, π‘₯)Ξ”π‘₯ = βˆ’ (𝐾π‘₯(π‘₯ + Ξ”π‘₯, 𝑑) βˆ’ 𝐾π‘₯(𝑑, π‘₯))

      that is capital flows proportionaly and in a reverse direction to the ”spatial gradient” of thecapital distribution: regions with high capital intensity will tend to ”leak” capital to other regions.If Ξ”π‘₯ β†’ 0 leads to 𝑇 (𝑑, π‘₯) = βˆ’πΎπ‘₯π‘₯(𝑑, π‘₯).

    If there is no depreciation then 𝐼(𝑑, π‘₯) = 𝐾𝑑(𝑑, π‘₯). If the technology is 𝐴𝐾 and the savings rateis determined as in the Solow model then 𝑆(𝑑, π‘₯) = 𝑠𝐴𝐾(𝑑, π‘₯) where 0 < 𝑠 < 1 and 𝐴 is assume tobe spatially homogeneous.

    Therefore we obtain a distributional Solow equation for an economy composed by heterogenousregions

    𝐾𝑑 = 𝐾π‘₯π‘₯ + 𝑠𝐴𝐾, (𝑑, π‘₯) ∈ (βˆ’βˆž, ∞) Γ— (0, ∞)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 20

      We can define a spatially-homogenous balanced growth path (BGP) as

    𝐾(𝑑) = 𝐾𝑒𝛾𝑑

      where 𝛾 = 𝑠𝐴.Then, if we define the deviations as regards the BGP as π‘˜(𝑑, π‘₯) = 𝐾(𝑑, π‘₯)π‘’βˆ’π›Ύπ‘‘, we observe that

    the transitional dynamics is given by the solution of the equation

    π‘˜π‘‘ = π‘˜π‘₯π‘₯

      which is the heat equation. Therefore, given the initial distribution of the capital stock 𝐾(π‘₯, 0) =π‘˜0(π‘₯) the solution for this spatial 𝐴𝐾 model is

    𝐾(𝑑, π‘₯) =⎧{⎨{⎩

    π‘˜0(π‘₯), 𝑑 = 0

    𝑒𝛾𝑑 ∫∞

    βˆ’βˆžπ‘˜0(πœ‰) (4πœ‹π‘‘)

    βˆ’1/2 π‘’βˆ’ (π‘₯βˆ’πœ‰)2

    4𝑑  π‘‘πœ‰, 𝑑 > 0

      and the solution is similar to the case depicted in Figure 8.2 when 𝑏 > 0.The main conclusion is that: (1) there is long run growth; (2) , if there are homogenous

    technologies and preferences the asymptotic distribution will become spatially homogeneous. Thatis: the so-called 𝛽- and 𝜎- convergences can be made consistent !

    8.6.2 The option pricing model

     The Black and Scholes (1973) model is a case in which a research paper had an immense impact

    on the operation of the economy. It is related to the onset of derivative markets and basically gavebirth to stochastic finance6.

    It provides a formula (the so called Black-Scholes formula) for the value of an European calloption when there are two assets, a riskless asset with interest rate π‘Ÿ and a underlying asset whoseprice, 𝑆 which follows a diffusion process (in a stochastic sense): 𝑑𝑆 = πœ‡π‘†π‘‘π‘‘ + πœŽπ‘†π‘‘π΅ where 𝑑𝐡 isthe standard Brownian motion (see next chapter). An European call option offers the right to buythe underlying asset at time 𝑇 for a price 𝐾 fixed at time 𝑑 = 0, which is conventioned to be themoment of the contract.

    Under the assumption that there are no arbitrage opportunities Black and Scholes (1973) provedthat the price of the option 𝑉 = 𝑉 (𝑑, 𝑆) is a a function of time, 𝑑 ∈ (0, 𝑇 ) and the price of anunderlying asset 𝑆 ∈ (0, ∞) follows the backward parabolic PDE and has a terminal constraint

    ⎧{⎨{⎩

    𝑉𝑑(𝑑, 𝑆) = βˆ’πœŽ2𝑆22  π‘‰π‘†π‘†(𝑑, 𝑆) βˆ’ π‘Ÿπ‘†π‘‰π‘†(𝑑, 𝑆) + π‘Ÿπ‘‰ (𝑑, 𝑆), (𝑑, 𝑆) ∈ [0, 𝑇 ] Γ— (0, ∞)

    𝑉 (𝑇 , 𝑆) = max{ π‘† βˆ’ 𝐾, 0} , (𝑑, 𝑆) ∈ {𝑑 = 𝑇 } Γ— (0, ∞).(8.22)

    6Myron Scholes was awarded the Nobel prize in 1997, together with Robert Merton another important contributerto stochastic finance, precisely for this formula. Fisher Black was deceased at the time.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 21

    The first equation is valid for any financial option having the same underlying asset dynamics, andthe terminal constraint is characteristic of the European call option: because the writer sells theright, but not the obligation, to purchase the underlying asset at the price 𝐾 at time 𝑑 = 𝑇 , thebuyer is only interested in that purchase if he can sell it at the prevailing market price 𝑆 = 𝑆(𝑇 )when that price is higher than the exercise price 𝐾. In this case the payoff will be 𝑆(𝑇 ) βˆ’ 𝐾.Otherwise he will not execute the option and the terminal payoff will be zero.

    The two boundary constraints

    𝑉 (𝑑, 0) = 0, (𝑑, 𝑆) ∈ [0, 𝑇 ] Γ— {𝑆 = 0} lim

    π‘†β†’βˆžπ‘‰ (𝑑, 𝑆) = 𝑆, (𝑑, 𝑆) ∈ [0, 𝑇 ] Γ— {𝑆 β†’ ∞},

    are sometimes referred to, but they are redundant.The same structure occurs in the Merton’s model (see Merton (1974)) which is a seminal paper

    on the pricing of default bonds. It was the first model on the so-called structural approach tomodelling credit risk which is on the foundation of the credit risk models used by rating agencies(see Duffie and Singleton (2003)). In essence, this model assumes that the value of the firm followsa linear diffusion process and it consideres the issuance of a bond with an expiring date 𝑇 whoseindenture gives it absolute priority on the value of the firm at the expiry date. This means thateither if the value of the firm is smaller that the face value of the bond the creditor takes possessionof the firm and in the opposite case it recovers the face value. In this case, we can interpret theposition of the equity owner as holding an European call option over the value of the firm withstrike price equal to the face value of the debt and the creditor as having an European put optionsecurity.

    The price of the European call option 7, given the former assumptions is given by

    𝑉 (𝑑, 𝑆) = 𝑆Φ(𝑑1) βˆ’ πΎπ‘’βˆ’π‘Ÿ(𝑇 βˆ’π‘‘)Ξ¦(𝑑2), 𝑑 ∈ [0, 𝑇 ] (8.23)

    where Ξ¦(.) is cumulative Gaussian density function such that Ξ¦(𝑑) = β„™(π‘₯ ≀ 𝑑) where

    𝑑1 =ln (𝑆/𝐾) + (𝑇 βˆ’ 𝑑) (π‘Ÿ + 𝜎

    2

    2 )

    𝜎√

    𝑇 βˆ’ 𝑑(8.24)

    𝑑2 =ln (𝑆/𝐾) + (𝑇 βˆ’ 𝑑) (π‘Ÿ βˆ’ 𝜎

    2

    2 )

    𝜎√

    𝑇 βˆ’ 𝑑(8.25)

    Proof. In order to solve the B-S PDE, which is a non-linear backward parabolic PDE, we transformit to to a quasi-linear parabolic forward PDE, by applying the transformations: 𝑑(𝜏) = 𝑇 βˆ’ 𝜏 and𝑆 = 𝐾𝑒π‘₯ and setting 𝑒(𝜏, π‘₯) = 𝑉 (𝑑(𝜏), 𝑆(π‘₯)). We can transform the option-pricing problem to the

    7For the credit risk model 𝑆 would be the value of assets of a firm, 𝐾 would be the face value of loan, and 𝑇 theterm of the loan.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 22

    Figure 8.8: Solution for the Black and Scholes model, for π‘Ÿ = 0.02, 𝑇 = 20, 𝜎 = 0.2, and 𝐾 = 10.

    equivalent initial-value problem PDE equivalent to (8.22)

    ⎧{⎨{⎩

    π‘’πœ =𝜎22 𝑒π‘₯π‘₯ + (π‘Ÿ βˆ’

    𝜎22 ) 𝑒π‘₯ βˆ’ π‘Ÿπ‘’, (𝜏, π‘₯) ∈ [0, 𝑇 ] Γ— (βˆ’βˆž, ∞)

    𝑒(0, π‘₯) = 𝑒0(π‘₯)(8.26)

    where

    𝑒0(π‘₯) =⎧{⎨{⎩

    0, if π‘₯ ≀ 0𝐾 (𝑒π‘₯ βˆ’ 1) , if π‘₯ > 0

      The PDE is a particular example of equation (8.15), which implies that the solution is

    𝑒(𝜏, π‘₯) = ∫0

    βˆ’βˆž0 𝑔(𝜏, π‘₯ βˆ’ 𝑠)𝑑𝑠 + 𝐾 ∫

    ∞

    0(𝑒𝑠 βˆ’ 1) 𝑔(𝜏, π‘₯ βˆ’ 𝑠)𝑑𝑠

    = 𝐾√2πœ‹πœŽ2𝜏

    ∫∞

    0(𝑒𝑠 βˆ’ 1) π‘’β„Ž(𝜏,π‘₯βˆ’π‘ )𝑑𝑠

      where (from equation (8.17))

    β„Ž(𝜏, 𝑦) ≑ βˆ’π‘¦2 + 2𝜏 (π‘Ÿ βˆ’ 𝜎

    2

    2 ) 𝑦 + (π‘Ÿ +𝜎22 )

    2𝜏2

    2𝜏𝜎2 . 

      Then

    𝑒(𝜏, π‘₯) = 𝐾√2πœ‹πœŽ2𝜏

    (∫∞

    0𝑒𝑠+β„Ž(𝜏,π‘₯βˆ’π‘ )𝑑𝑠 βˆ’ ∫

    ∞

    0π‘’β„Ž(𝜏,π‘₯βˆ’π‘ )𝑑𝑠)

    = 𝐾√2πœ‹πœŽ2𝜏

    (𝐼1 βˆ’ 𝐼2) .

      In order to simplify the integrals it is useful to remember the forms of the error function, erf(π‘₯),and of the Gaussian cumulative distribution Ξ¦(π‘₯),

    erf(π‘₯) = 2βˆšπœ‹ ∫π‘₯

    βˆ’βˆžπ‘’βˆ’π‘§2𝑑𝑧, Ξ¦(π‘₯) = 1√2πœ‹ ∫

    π‘₯

    βˆ’βˆžπ‘’βˆ’

    12  π‘§

    2

    𝑑𝑧

  • Paulo Brito Advanced Mathematical Economics 2020/2021 23

      which are related asΞ¦(π‘₯) = 12 [ 1 + erf (

    π‘₯√2

     )] . 

      After some algebra we obtain

    𝑠 + β„Ž(𝜏, π‘₯ βˆ’ 𝑠) = π‘₯ βˆ’ 12(𝛿1(𝑠))2

    β„Ž(𝜏, π‘₯ βˆ’ 𝑠) = βˆ’π‘Ÿπœ βˆ’ 12(𝛿2(𝑠))2

      where

    𝛿1(𝑠) ≑π‘₯ βˆ’ 𝑠 + (π‘Ÿ + 𝜎

    2

    2 )

    𝜎√𝜏 , and 𝛿2(𝑠) ≑π‘₯ βˆ’ 𝑠 + (π‘Ÿ βˆ’ 𝜎

    2

    2 )

    𝜎√𝜏 .

      Then 8

    𝐼1 = 𝑒π‘₯ ∫∞

    0π‘’βˆ’

    12 (𝛿1(𝑠))

    2

    𝑑𝑠 =

    = βˆ’πœŽβˆšπœπ‘’π‘₯ βˆ«βˆ’βˆž

    𝑑1π‘’βˆ’

    12 𝛿

    21𝑑𝛿1 =

    =√

    𝜎2πœπ‘’π‘₯ βˆ«π‘‘1

    βˆ’βˆžπ‘’βˆ’

    12 𝛿

    21𝑑𝛿1 =

    =√

    2πœ‹πœŽ2πœπ‘’π‘₯Ξ¦(𝑑1)  where 𝑑1 = 𝛿1(0) as in equation (8.24) for 𝜏 = 𝑇 βˆ’ 𝑑 , and also, writing that 𝑑2 = 𝛿2(0), as inequation (8.25) for 𝜏 = 𝑇 βˆ’ 𝑑,

    𝐼2 = π‘’βˆ’π‘Ÿπœ ∫∞

    0π‘’βˆ’

    12 (𝛿2(𝑠))

    2

    𝑑𝑠 =

    = βˆ’πœŽβˆšπœπ‘’βˆ’π‘Ÿπœ βˆ«βˆ’βˆž

    𝑑2π‘’βˆ’

    12 𝛿

    22𝑑𝛿2 =

    =√

    𝜎2πœπ‘’βˆ’π‘Ÿπœ βˆ«π‘‘2

    βˆ’βˆžπ‘’βˆ’

    12 𝛿

    22𝑑𝛿2 =

    =√

    2πœ‹πœŽ2πœπ‘’βˆ’π‘ŸπœΞ¦(𝑑2)

    ,

      Thus𝑒(𝜏, π‘₯) = 𝐾 (𝑒π‘₯Ξ¦(𝑑1) βˆ’ π‘’βˆ’π‘ŸπœΞ¦(𝑑2))

      and transforming back 𝑉 (𝑑, 𝑆) = 𝑒 (𝑇 βˆ’ 𝑑, ln (𝑆/𝐾)) we get equation (8.23).

    Observe this is a backward parabolic PDE, which implies that the terminal condition determinesthe particular solution.

    8We use integration by transformation of variables: if we define 𝑧 = πœ‘(𝑠) where πœ‘ ∢ [π‘Ž, 𝑏] β†’ ℐ and 𝑓 ∢ ℐ β†’ ℝ wehave that

    βˆ«πœ‘(𝑏)

    πœ‘(π‘Ž)𝑓(𝑧)𝑑𝑧 = ∫

    𝑏

    π‘Žπ‘“ (πœ‘(𝑠)) πœ‘β€² (𝑠)𝑑𝑠.

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 24

    8.7 Bibiography

    β€’ Mathematics of PDE’s: introductory Olver (2014), Salsa (2016) and (Pinsky, 2003, ch 5).Advanced (Evans, 2010, ch 3).

    β€’ Applications to economics (with more advanced material) : Achdou et al. (2014)

    β€’ Applications to growth theory Brito (2004) and Brito (2011) and the references therein.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 25

    8.A Appendix: Fourier transforms

    Consider a function 𝑓(π‘₯) such that π‘₯ ∈ ℝ and βˆ«βˆžβˆ’βˆž |𝑓(π‘₯)|𝑑π‘₯ < ∞. We can define a pair of generalizedfunctions, the Fourier transform of 𝑓(π‘₯), 𝐹(𝑠) = β„±[𝑓(π‘₯)](𝑠) and the inverse Fourier transformβ„±βˆ’1[𝐹 (𝑠)] (π‘₯) = 𝑓(π‘₯) (using the definition of Kammler (2000) ), where

    𝐹(𝑠) = β„±[𝑓(π‘₯)] ≑ ∫∞

    βˆ’βˆžπ‘“(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯

      where 𝑖2 = βˆ’1 and𝑓(π‘₯) = β„±βˆ’1[𝐹 (𝑠)] ≑ ∫

    ∞

    βˆ’βˆžπΉ(𝑠)𝑒2πœ‹π‘–π‘ π‘₯𝑑𝑠.

    There are some useful properties of the Fourier transform that we use in the main text:

    1. the Fourier transform preserves multiplication by a complex number π‘Ž ∈ β„‚:

     β„±[π‘Ž 𝑓(π‘₯)]  = π‘Ž 𝐹(𝑠), and β„±βˆ’1[π‘ŽπΉ(𝑠)]  = π‘Žπ‘“(π‘₯),

      Proof: β„±[π‘Ž 𝑓(π‘₯)]  = βˆ«βˆžβˆ’βˆž π‘Ž 𝑓(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯ = π‘Ž βˆ«βˆžβˆ’βˆž 𝑓(π‘₯) 𝑒

    βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯ = π‘Ž 𝐹(𝑠), and β„±βˆ’1[π‘Ž 𝐹(𝑠)] β‰‘βˆ«βˆžβˆ’βˆž π‘Ž 𝐹(𝑠)𝑒

    2πœ‹π‘–π‘ π‘₯𝑑𝑠 = π‘Ž βˆ«βˆžβˆ’βˆž 𝐹(𝑠)𝑒2πœ‹π‘–π‘ π‘₯𝑑𝑠 = π‘Ž 𝑓(π‘₯);

    2. the Fourier transform preserves linearity:

    β„±[π‘Ž 𝑓(π‘₯) + 𝑏 𝑔(π‘₯)]  = π‘Ž 𝐹(𝑠) + 𝑏 𝐺(𝑠), and β„±βˆ’1[π‘Ž 𝐹(𝑠) + 𝑏 𝐺(𝑠)]  = π‘Ž 𝑓(π‘₯) + 𝑏 𝑔(π‘₯)

     

    3. the Fourier transform does not preserve multiplication of two functions. However, there isa relationship between convolution of functions and multiplication of Fourier transforms. Aconvolution  between two functions 𝑓(π‘₯) and 𝑔(π‘₯) is defined as

    𝑓(π‘₯) βˆ— 𝑔(π‘₯) = ∫∞

    βˆ’βˆžπ‘“(𝑦) 𝑔(π‘₯ βˆ’ 𝑦) 𝑑𝑦.

      The inverse Fourier transform of a product of two Fourier transforms is a convolution,

    𝑓(π‘₯) βˆ— 𝑔(π‘₯) = β„±βˆ’1[𝐹 (𝑠) 𝐺(𝑠)]  = ∫∞

    βˆ’βˆžπΉ(𝑠) 𝐺(𝑠) 𝑒2πœ‹π‘–π‘ π‘₯𝑑𝑠

     

    4. β„±[π‘₯] = βˆ’ 12 πœ‹ 𝑖𝛿′(𝑠), where 𝛿(π‘₯) is Dirac’s delta. To prove this observe that

    ∫∞

    βˆ’βˆžπ‘’2πœ‹π‘–π‘ π‘₯𝛿(𝑠)𝑑𝑠 = 1

  • Paulo Brito Advanced Mathematical Economics 2020/2021 26

    Therefore

    π‘₯ = π‘₯ ∫∞

    βˆ’βˆžπ‘’2πœ‹π‘–π‘ π‘₯𝛿(𝑠)𝑑𝑠

    = βˆ’ 12 πœ‹ 𝑖 ( ∫∞

    βˆ’βˆžπ‘’2 πœ‹ 𝑖 𝑠 π‘₯ 𝛿(𝑠) βˆ’ ∫

    ∞

    βˆ’βˆž2 πœ‹ 𝑖 π‘₯ 𝑒2 πœ‹ 𝑖 𝑠 π‘₯𝛿(𝑠) 𝑑𝑠 )

    = βˆ’ 12 πœ‹ 𝑖 ∫∞

    βˆ’βˆžπ‘’2 πœ‹ 𝑖 𝑠 π‘₯𝛿′(𝑠) 𝑑𝑠

    = βˆ’ 12 πœ‹ π‘–β„±βˆ’1[  12 πœ‹ 𝑖 𝛿

    β€²(𝑠)]  

    5. β„±[π‘₯2] = 1(2 πœ‹)2 𝛿″(𝑠)

    6. β„±[π‘₯ 𝑓(π‘₯)]  = βˆ’ 12 πœ‹ 𝑖 𝐹′(𝑠)

    Proof:

    β„±[π‘₯ 𝑓(π‘₯)]  = ∫∞

    βˆ’βˆžπ‘₯ 𝑓(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯

    = βˆ’ 12 πœ‹ 𝑖  ∫∞

    βˆ’βˆžβˆ’2πœ‹ 𝑖 π‘₯ 𝑓(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯

    = βˆ’ 12 πœ‹ 𝑖  ∫∞

    βˆ’βˆžπ‘“(π‘₯) 𝑑𝑑𝑠(𝑒

    βˆ’2 πœ‹ 𝑖 𝑠 π‘₯) 𝑑π‘₯

    = βˆ’ 12 πœ‹ 𝑖 π‘‘𝑑𝑠𝐹(𝑠) =

    𝑑𝑑𝑠[  ∫

    ∞

    βˆ’βˆžπ‘“(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯] 

    = βˆ’ 12 πœ‹ 𝑖 𝐹′(𝑠)

      Alternative proof:

    β„±[π‘₯ 𝑓(π‘₯)]  = β„±[π‘₯] βˆ— β„±[𝑓(π‘₯)] = ∫∞

    βˆ’βˆžβˆ’ 12 πœ‹ 𝑖 𝛿

    β€²(𝑦) 𝐹(𝑠 βˆ’ 𝑦)𝑑𝑦 = βˆ’ 12 πœ‹ 𝑖 𝐹′(𝑠)

     

    7. if 𝑓 = 𝑓(π‘₯, 𝑑) where 𝑑 is a real variable then 𝐹(𝑠, 𝑑) = β„±[𝑓(π‘₯, 𝑑)] and 𝑓(π‘₯, 𝑑) =  β„±βˆ’1[𝐹 (𝑠, 𝑑)].Also 𝐹𝑑(𝑠, 𝑑) = β„±[𝑓𝑑(π‘₯, 𝑑)] and 𝑓𝑑(π‘₯, 𝑑) =  β„±βˆ’1[𝐹𝑑(𝑠, 𝑑)]

    8. β„±[𝑓 β€²(π‘₯)]  = 2 πœ‹ 𝑖 𝑠 𝐹(𝑠)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 27

    Proof:

    β„±[𝑓 β€²(π‘₯)]  = ∫∞

    βˆ’βˆžπ‘“ β€²(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯

    integration by parts 

    = ∫∞

    βˆ’βˆžπ‘“(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ βˆ’ ∫

    ∞

    βˆ’βˆžπ‘“(π‘₯) πœ•πœ•π‘₯(𝑒

    βˆ’2 πœ‹ 𝑖 𝑠 π‘₯) 𝑑π‘₯ 

    because π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ is symmetric the first integral is equal to zero

    = 2 πœ‹ 𝑖 𝑠 ∫∞

    βˆ’βˆžπ‘“(π‘₯) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘₯ 𝑑π‘₯ 

    = 2 πœ‹ 𝑖 𝑠 𝐹(𝑠) 

    9. β„±[π‘₯𝑓 β€²(π‘₯)]  = βˆ’(𝐹(𝑠) + 𝑠𝐹 β€²(𝑠)) if 𝑠 ∈ ℝProof:

     

     β„±[π‘₯ 𝑓 β€²(π‘₯)]  = β„±[π‘₯] βˆ— β„±[𝑓 β€²(π‘₯)]

    = ∫∞

    βˆ’βˆž( βˆ’ 12 πœ‹ 𝑖 𝛿

    β€²(𝑦)) (2 πœ‹ 𝑖 (𝑠 βˆ’ 𝑦) 𝐹(𝑠 βˆ’ 𝑦))𝑑𝑦

    = βˆ’ ∫∞

    βˆ’βˆžπ›Ώβ€²(𝑦) (𝑠 βˆ’ 𝑦) 𝐹(𝑠 βˆ’ 𝑦)𝑑𝑦

    = βˆ’π‘  ∫∞

    βˆ’βˆžπ›Ώβ€²(𝑦) 𝐹(𝑠 βˆ’ 𝑦)𝑑𝑦 + ∫

    ∞

    βˆ’βˆžπ›Ώβ€²(𝑦) 𝑦 𝐹(𝑠 βˆ’ 𝑦)𝑑𝑦

    = βˆ’π‘ πΉ β€²(𝑠) + ∫∞

    βˆ’βˆžπ›Ώ(𝑦) 𝑦 𝐹(𝑠 βˆ’ 𝑦) βˆ’ ∫

    ∞

    βˆ’βˆžπ›Ώ(𝑦) 𝐹(𝑠 βˆ’ 𝑦)𝑑𝑦

    = 𝑠𝐹 β€²(𝑠) βˆ’ 𝐹(𝑠) 

    10. β„±[𝑓″(π‘₯)]  = βˆ’4 πœ‹2 𝑠2 𝐹(𝑠)

    11. β„±[π‘₯ 𝑓″(π‘₯)]  = 2 πœ‹ 𝑠𝑖  (2 𝐹(𝑠) + 𝑠 𝐹′(𝑠))

    12. β„±[π‘₯2 𝑓″(π‘₯)]  = βˆ’π‘ 2 𝐹 β€³(𝑠)

    Some useful results:

  • Paulo Brito Advanced Mathematical Economics 2020/2021 28

    Table 8.1: Fourier and inverse Fourier transforms of some functions

    𝑓(π‘₯) for βˆ’βˆž < π‘₯ < ∞ 𝐹(𝑠) for βˆ’βˆž < 𝑠 < ∞ obsπ‘˜π›Ώ(π‘₯) π‘˜ π‘˜ constant

    π‘˜ π‘˜ 𝛿(𝑠) π‘˜ constant𝛿(π‘₯ βˆ’ π‘Ž) π‘’βˆ’2 πœ‹ 𝑖 𝑠 π‘Ž

    1√4πœ‹π‘Žπ‘’βˆ’

    π‘₯24π‘Ž π‘’βˆ’π‘Ž(2πœ‹π‘ )2 π‘Ž > 0

    1√4πœ‹π‘Žπ‘’βˆ’

    (π‘₯+𝑏)24π‘Ž π‘’βˆ’π‘Ž(2πœ‹π‘ )2+𝑏(2πœ‹π‘–π‘ ) π‘Ž > 0, 𝑏 ∈ ℝ

    1√4πœ‹π‘Žπ‘’π‘βˆ’

    π‘₯24π‘Ž π‘’βˆ’π‘Ž(2πœ‹π‘ )2+𝑐 π‘Ž > 0, 𝑐 ∈ ℝ

    1√4πœ‹π‘Žπ‘’π‘βˆ’

    (π‘₯+𝑏)24π‘Ž π‘’βˆ’π‘Ž(2πœ‹π‘ )2+𝑏(2πœ‹π‘–π‘ )+𝑐 π‘Ž > 0, (𝑏, 𝑐) ∈ ℝ2

    𝑓(π‘₯) βˆ— 𝑔(π‘₯) 𝐹(𝑠) 𝐺(𝑠)

  • Chapter 9

    Optimal control of parabolic partialdifferential equations

     

    9.1 Introduction

    The optimal control of parabolic PDE is sometimes called optimal control of distributions.Similarly to the optimal control of ODE’s, the first order conditions include a system of forward-

    backward parabolic PDE’s together with boundary conditions. The requirements for the existenceof solutions are clearly very strong, because the general solutions of the PDE system may not allowfor the boundary conditions to be satisfied. Ill-posedness is, therefore, an important issue here.

    Next we present the necessary conditions for three different optimal control of parabolic PDE’s:a simple infinite horizon problem in section 9.2, an average optimal control problem in subsection9.2.1, and the optimal control of a Fokker-Planck-Kolmogorov equation in section 9.3.

    9.2 A simple optimal control problem

    Next we consider a simple optimal control problem for a system governed by a parabolic PDE.We have two independent variables, time 𝑑 ∈ ℝ+ and another independent variable π‘₯ ∈ ℝ and

    two dependent functions, the control 𝑒 = 𝑒(𝑑, π‘₯), mapping 𝑒 ∢ ℝ+ Γ— ℝ β†’ ℝ and a state 𝑦 = 𝑦(𝑑, π‘₯),mapping 𝑒 ∢ ℝ+ Γ— ℝ β†’ ℝ.

    The system to be controlled is given by a semi-linear parabolic partial differential equation𝑦𝑑 = 𝑦π‘₯π‘₯ + 𝑔(𝑑, π‘₯, 𝑒, 𝑦) where 𝑔(β‹…, 𝑒, 𝑦) is smooth, by an initial condition 𝑦(0, π‘₯) = 𝑦0(π‘₯), wherefunction 𝑦0 ∢ ℝ β†’ ℝ is and bounded, and a Neumann boundary condition limπ‘₯β†’Β±βˆž 𝑦π‘₯(𝑑, π‘₯) = 0 isgiven for every 𝑑. The boundary condition means that the state variable should be ”flat” for verylarge absolute values of variable π‘₯.

    29

  • Paulo Brito Advanced Mathematical Economics 2020/2021 30

    The utility functional involves both integration in time and in the other independent variable

    𝐽[𝑒, 𝑦]  = ∫∞

    0∫

    ∞

    βˆ’βˆžπ‘“(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯)) 𝑑π‘₯ 𝑑𝑑

      where we assume that 𝑓(β‹…, 𝑒, 𝑦) is smooth and measurable, in the sense 1

    βˆ«β„+×ℝ

    |𝑓(𝑑, π‘₯)|𝑑(𝑑, π‘₯) < ∞.

     Therefore our problem is to find the optimal π‘’βˆ— = (π‘’βˆ—(𝑑, π‘₯))(𝑑,π‘₯)βˆˆβ„+×ℝ and 𝑦

    βˆ— = (π‘¦βˆ—(𝑑, π‘₯))(𝑑,π‘₯)βˆˆβ„+×ℝthat solve the problem:

    max𝑒(β‹…)

    ∫∞

    0∫

    ∞

    βˆ’βˆžπ‘“(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯))𝑑π‘₯𝑑𝑑 (9.1)

      subject to the constraints

    ⎧{{⎨{{⎩

    πœ•π‘¦πœ•π‘‘ =

    πœ•2π‘¦πœ•π‘₯2 + 𝑔(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯)), for (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

    𝑦(0, π‘₯) = 𝑦0(π‘₯), for (𝑑, π‘₯) ∈ { π‘‘ = 0}  Γ— ℝlimπ‘₯β†’Β±βˆž

    πœ•π‘¦(𝑑, π‘₯)πœ•π‘₯ = 0 for (𝑑, π‘₯) ∈ ℝ+ Γ— {(π‘₯ = βˆ’βˆž), (π‘₯ = ∞) } 

      (9.2)

    Next we find the optimality conditions for this problem applying a distributional Pontriyaginmaximum principle.

    We define the Hamiltonian

    𝐻(𝑑, π‘₯, 𝑒, 𝑦, πœ†) = 𝑓(𝑑, π‘₯, 𝑒, 𝑦) + πœ†(𝑑, π‘₯)𝑔(𝑑, π‘₯, 𝑒, 𝑦)

      and call πœ† = πœ†(𝑑, π‘₯) the co-state variable.

    Proposition 1 (Necessary first-order conditions ). Let (π‘’βˆ—, π‘¦βˆ—) be a solution to problem (9.1)-(9.2). Then there is a co-state variable πœ† such that the following necessary conditions hold

    πœ•π»βˆ—(𝑑, π‘₯)πœ•π‘’ = 0  (9.3)

    πœ•πœ†(𝑑, π‘₯)πœ•π‘‘ = βˆ’

    πœ•2πœ†(𝑑, π‘₯)πœ•π‘₯2 βˆ’

    πœ•π»βˆ—(𝑑, π‘₯)πœ•π‘¦ (9.4)

    limπ‘‘β†’βˆž

    πœ†(𝑑, π‘₯) = 0 (9.5)

    limπ‘₯β†’Β±βˆž

    πœ•πœ†(𝑑, π‘₯)πœ•π‘₯ = 0. (9.6)

    together with equations (9.2)1This condition requires that the function is bounded for every value of 𝑒(.) and 𝑦(.) and allow for the use of

    Fubini’s theorem, i.e, for the interchange of the integration for 𝑑 and π‘₯. Intuitively, we should consider functions suchthat the order of integration does not matter.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 31

    See the proof in the appendix. Equation (9.3) is a static optimality condition, that if function𝐻(𝑒, .) is sufficiently smooth, allows for the determination of the optimal control π‘’βˆ— as a function ofthe co-state variable, and the state variable. Equation (9.4) is a Euler-equation. In this case it is abackward parabolic PDE which encodes the incentives for changing the control variable. Equations(9.5) and (9.6) are transversality conditions, which are dual to the boundary conditions in (9.2)related to the asymptotic properties of the solution.

    If functions 𝑓(β‹…) and 𝑔(β‹…) are sufficiently smooth in (𝑒, 𝑦) , we can use the implicit functiontheorem to obtain from equation (9.3) 

    π‘’βˆ— = π‘ˆ(𝑑, π‘₯, 𝑦(𝑑, π‘₯), πœ†(𝑑, π‘₯)),

      yielding𝐺(𝑑, π‘₯, 𝑦(𝑑, π‘₯), πœ†(𝑑, π‘₯)) = 𝑔(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯), 𝑦(𝑑, π‘₯))

      and

    𝐿(𝑑, π‘₯, 𝑦(𝑑, π‘₯), πœ†(𝑑, π‘₯)) = 𝑓𝑦(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯), 𝑦(𝑑, π‘₯)) + πœ†(𝑑, π‘₯) 𝑔𝑦(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯), 𝑦(𝑑, π‘₯))

      we have a distributional MHDS system

    ⎧{⎨{⎩

    πœ•π‘¦πœ•π‘‘ =

    πœ•2π‘¦πœ•π‘₯2 + 𝐺(𝑑, π‘₯, 𝑦, πœ†), for (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ

    πœ•πœ†πœ•π‘‘ = βˆ’

    πœ•2πœ†πœ•π‘₯2 βˆ’ 𝐿(𝑑, π‘₯, 𝑦, πœ†) for (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ.

      This system has two semi-linear parabolic PDE’s: a forward parabolic PDE for the state variableand a backward parabolic PDE for the co-state variable. It is a distributional generalization of theMHDS for an optimal control problem of ODE’s.

    9.2.1 Average optimal control problem

    Next we consider a particular case of the previous problem in which the planner maximizes thepresent-value of an average utility function

    𝐽(𝑦, 𝑒) = limπ‘₯β†’βˆž

    12π‘₯  ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0𝑓(𝑦(πœ‰, 𝑑), 𝑒(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰ (9.7)

      where 𝜌 > 0 and 𝑓(.) is continuous and differentiable. We assume the same semi-linear parabolicconstraint.

    The problem is

    max𝑒

    limπ‘₯β†’βˆž

    12π‘₯  ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0𝑓(𝑦(πœ‰, 𝑑), 𝑒(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰

      subject to

     π‘¦π‘‘ = 𝜎2𝑦π‘₯π‘₯ + 𝑔(𝑦, 𝑒), (𝑑, π‘₯) ∈ ℝ+ Γ— ℝ (9.8)𝑦(π‘₯, 0) = πœ™(π‘₯), π‘₯ ∈ ℝ (9.9)

    limπ‘‘β†’βˆž

    𝑅(𝑑)𝑦(𝑑, π‘₯) β‰₯ 0, π‘₯ ∈ ℝ (9.10)

    limπ‘₯β†’Β±βˆž

    𝑦(𝑑, π‘₯)π‘₯ = 0, 𝑑 ∈ ℝ+. (9.11)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 32

      where 𝑅(𝑑) ≀ 𝑅0π‘’βˆ’πœŒπ‘‘, where β„Ž0 is a constant.The (current-value) Hamiltonian function is

    𝐻(𝑦, 𝑒, π‘ž) ≑ 𝑓(𝑦, 𝑒) + π‘žπ‘”(𝑦, 𝑒)

      where π‘ž(𝑑, π‘₯) is the current value co-state variable.The necessary first order conditions, according to the Pontryagin’s maximum principle are the

    following.

    Proposition 2 (Necessary conditions for the optimal average problem). Assume there are optimalprocesses for the state and the control variable, π‘¦βˆ— = (π‘¦βˆ—(𝑑, π‘₯))(𝑑,π‘₯)βˆˆβ„Γ—β„+ and π‘’βˆ— = (π‘’βˆ—(𝑑, π‘₯))(𝑑,π‘₯)βˆˆβ„Γ—β„+then there is a (current-value) co-state variable π‘ž(𝑑, π‘₯) such that the following conditions hold:

    β€’ the optimality condition  

     πœ•π»πœ•π‘’  (π‘¦βˆ—(𝑑, π‘₯), π‘’βˆ—(𝑑, π‘₯), π‘ž(𝑑, π‘₯) ) = 0, (𝑑, π‘₯) ∈ (𝑑, π‘₯) ∈ ℝ++ Γ— ℝ

     

    β€’ the distributional Euler equation

    π‘žπ‘‘ = βˆ’πœŽ2π‘žπ‘₯π‘₯ + π‘ž (𝜌 βˆ’πœ•π»πœ•π‘¦  (𝑦

    βˆ—(𝑑, π‘₯), π‘’βˆ—(𝑑, π‘₯), π‘ž(𝑑, π‘₯) ))), (𝑑, π‘₯) ∈ (𝑑, π‘₯) ∈ ℝ++ Γ— ℝ

     

    β€’ the boundary condition, dual to equation (9.11)

    limπ‘₯β†’Β±βˆž

    π‘’βˆ’πœŒπ‘‘ π‘ž(𝑑, π‘₯)π‘₯ = 0, 𝑑 ∈ ℝ++

     

    β€’ the transversality condition

    limπ‘‘β†’βˆž

    π‘’βˆ’πœŒπ‘‘ limπ‘₯β†’βˆž

    ∫π‘₯

    βˆ’π‘₯π‘ž(πœ‰, 𝑑)𝑦(πœ‰, 𝑑) = 0, {𝑑 = ∞ 

     

    See the proof in the Appendix

    9.2.2 Application: the distributional 𝐴𝐾 modelAs application consider a simple model in which there is a central planner in a dynastic economy whowants to maximize the average (un-weighted) utility of an economy composed with heterogeneousagents, distributed in space from a central point π‘₯ = 0. Assume that the heterogeneity is onlygiven by their initial asset position, π‘˜0(π‘₯). Each agent produces a different quantity of a good,depending only on their endowment of capital and the central planner assigns consumption which

  • Paulo Brito Advanced Mathematical Economics 2020/2021 33

    varies between consumers and can be different from their production (given the capital endowment).Therefore there is a distribution of savings in the economy allowing some agents to use more (less)capital than they have at the beginning of every (infinitesimal) period. This section draws uponBrito (2004) and Brito (2011), which present this model with more detail.

    Consider agents located at π‘Ÿ and having the capital stock 𝐾(𝑑, π‘Ÿ) and having savings 𝑆(𝑑, π‘Ÿ) attime 𝑑. Savings is equal to income minus consumption, where we assume that income is generatedby a linear production function

    π‘Œ (𝑑, π‘Ÿ) = 𝐴 𝐾(𝑑, π‘Ÿ).

      Savings can be applied in the own region, 𝐼(𝑑, π‘Ÿ), or in other regions 𝑇 (𝑑, π‘Ÿ) : therefore 𝑆(𝑑, π‘Ÿ) =𝐼(𝑑, π‘Ÿ) + 𝑇 (𝑑, π‘Ÿ) where is trade balance. If there is no depreciation then 𝐼(𝑑, 𝑠) = πœ•πΎπœ•π‘‘ . We order theregions according to their capital endowment then π‘₯ can be used as a index for the regions. If, inaddition, we consider that: first, the flow of capital runs from regions with high capital intensityto regions to low capital intensity and, second, that the flow is proportional to the gradient of thecapital intensity at the boundary of region π‘Ÿ = [π‘₯, π‘₯ + Ξ”π‘₯], then flow

    𝑇 (𝑑, π‘Ÿ) = 𝜏2 βˆ«βˆ†π‘₯

    π‘₯

    πœ•πΎπœ•π‘₯ (𝑑, 𝑠) 𝑑𝑠.

      If we let Ξ”π‘₯ β†’ 0 then we find distributional capital accumulation constraint for every location π‘₯πœ•πΎ(𝑑, π‘₯)

    πœ•π‘‘ = 𝜏2 πœ•2𝐾(𝑑, π‘₯)

    πœ•π‘₯2 + 𝐴𝐾(𝑑, π‘₯) βˆ’ 𝐢(𝑑, π‘₯) βˆ€(𝑑, π‘₯) ∈ ℝ+ Γ— ℝ (9.12)

    The problem is to maximize the average intertemporal discounted utility of consumption, 𝐢,

    𝐽(𝐢, 𝐾) ≑ max[𝐢]

    limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0

    𝐢(πœ‰, 𝑑)1βˆ’πœƒ1 βˆ’ πœƒ  π‘’

    βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰. (9.13)

    subject to the distributional capital accumulation equation (9.12) and the terminal, the boundaryand the initial conditions

    limπ‘‘β†’βˆž

    π‘’βˆ’ βˆ«π‘‘

    0 π‘Ÿ(π‘₯,𝑠)𝑑𝑠𝐾(𝑑, π‘₯) β‰₯ 0, βˆ€π‘₯ ∈ ℝ (9.14)

    limπ‘₯β†’βˆ“βˆž

    𝐾(𝑑, π‘₯)π‘₯ = 0, βˆ€π‘‘ ∈ ℝ+ (9.15)

    𝐾(π‘₯, 0) = πœ™(π‘₯), βˆ€π‘₯ ∈ ℝ given. (9.16)

    According to the distributional Pontriyagin maximum principle (see the Appendix) the distri-butional MHDS is

    πœ•πΎπœ•π‘‘ = 𝜏

    2 πœ•2πΎπœ•π‘₯2 + 𝐴𝐾 βˆ’ 𝐢, π‘₯ ∈ ℝ, 𝑑 > 0 (9.17)

    πœ•πΆπœ•π‘‘ = βˆ’πœ

    2 [πœ•2𝐢

    πœ•π‘₯2 βˆ’1 + πœƒ

    𝐢 (πœ•πΆπœ•π‘₯ )

    2] + 𝛾𝐢, π‘₯ ∈ ℝ, 𝑑 > 0 (9.18)

    where the endogenous growth rate i s𝛾 ≑ 𝐴 βˆ’ πœŒπœƒ , (9.19)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 34

    the transversality condition

    limπ‘‘β†’βˆž

    limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯π‘’βˆ’πœŒπ‘‘πΎ(πœ‰, 𝑑)𝐢(πœ‰, 𝑑)βˆ’πœƒπ‘‘πœ‰ = 0, (9.20)

    and the dual boundary conditions

    limπ‘₯β†’Β±βˆž

    (π‘’πœŒπ‘‘πΆ(𝑑, π‘₯)πœƒπ‘₯)βˆ’1 = 0, 𝑑 β‰₯ 0. (9.21)

    In system (9.18)-(9.17), 𝐴 is the net total factor productivity and 𝛾 is equal to the endogenousgrowth rate in the benchmark homogeneous 𝐴𝐾 model. The initial condition 𝐾(π‘₯, 0) = πœ™(π‘₯) andthe boundary condition (9.15) should also hold.

    The coupled system (9.18)-(9.17) has the closed form solution

    𝐾(𝑑, π‘₯) = π‘’π›Ύπ‘‘π‘˜(𝑑, π‘₯), 𝐢(𝑑, π‘₯) = 𝑒𝛾𝑑𝑐(𝑑, π‘₯), 𝑑 β‰₯ 0, π‘₯ ∈ ℝ (9.22)

    whereπ‘˜(𝑑, π‘₯) = 1

    2𝜏√

    πœ‹πœƒπ‘‘βˆ«

    ∞

    βˆ’βˆžπœ™(πœ‰)π‘’βˆ’( π‘₯βˆ’πœ‰2𝜏 )

    2 1πœƒπ‘‘ π‘‘πœ‰,  π‘‘ > 0, π‘₯ ∈ ℝ

      and

    𝑐(𝑑, π‘₯) = 12𝜏

    βˆšπœ‹πœƒπ‘‘

    ∫∞

    βˆ’βˆžπœ™(πœ‰) [π‘Ÿ βˆ’ 𝛾 + (πœƒ βˆ’ 1) ( 12πœƒπ‘‘ βˆ’ (

    π‘₯ βˆ’ πœ‰2πœπœƒπ‘‘  )

    2)]  π‘’βˆ’( π‘₯βˆ’πœ‰2𝜏  )

    2 1πœƒπ‘‘  π‘‘πœ‰,  π‘‘ > 0, π‘₯ ∈ ℝ.

     A necessary condition for the existence of a solution of the centralized problem is that 𝐴 >

    𝛾. This model displays convergence to a time-unbounded balanced growth path similar to thehomogeneous-agent 𝐴𝐾 model: capital will be equalized among regions. Figure ?? presents agraphic depiction of the detrended-solution for πœ™(π‘₯) = π‘’βˆ’|π‘₯|. We observe that the initial hetero-geneity is eliminated along the transition

    Figure 9.1: Convergence to a homogeneous asymptotic: local dynamics for the detrended π‘˜(𝑑, π‘₯)and 𝑐(𝑑, π‘₯) for the case 𝐴𝐾.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 35

    9.3 Optimal control of the Fokker-Planck-Kolmogorov equation

    In this section we consider a problem in which the PDE constraint of the economy is representedby a Fokker-Planck-Kolmogorov equation, which, as we saw models probabilities of distributionsacross time.

    This problem has two particularities: first, the transport and the diffusion terms are controledendogeneously by the. control variable, second, the state variable enters in the objective functionalas a weighting variable.

    In principle, this problem has other particular properties that should be highlighted:

    1. the boundary conditions (9.25) introduce an initial condition is a density function such that

    βˆ«π‘‹

    𝑦0(π‘₯) 𝑑π‘₯ = 1

      and for every point in time the density zero in the extremes of the support. This impliesthat the a conservation law should hold for every 𝑑 ∈ 𝑇 ,

    βˆ«π‘‹

    𝑦(𝑑, π‘₯) 𝑑π‘₯ = 1

      and that the state variable is bounded in 𝑋 for every point in time (it is a 𝐿2 function);

      However, in order to have this conservative property several technical problems have to be

    solved. Although first-order PDE’s satisfy a conservation law for 𝑑 > 0 if the initial condition, for𝑑 = 0 does satisfy it, this property does not hold generally for parabolic PDE’s. Some normalizationhas to be introduced in the solution for single equations. We are not aware of the effect of this onthe solution to optimal control problem.

    Therefore, the version we present next does not necessary satisfy a conservation law.Let 𝑇 = [𝑑,Μ² 𝑑] and 𝑋 = [οΏ½Μ²Μ²Μ²Μ²οΏ½, π‘₯], the state variable 𝑦 ∢ 𝑇 Γ— 𝑋 β†’ ℝ and the control variable

    𝑒 ∢ 𝑇 Γ— 𝑋 β†’ ℝ.We consider the optimal control problem of a Fokker-Planck equation

    max𝑒(β‹…)

    βˆ«π‘‡

    βˆ«π‘‹

    𝑓(𝑑, π‘₯, 𝑒(𝑑, π‘₯)) 𝑦(𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 (9.23)

    subject to

    πœ•π‘‘π‘¦(𝑑, π‘₯) + πœ•π‘₯(𝑔(π‘₯, 𝑒(𝑑, π‘₯)) 𝑦(𝑑, π‘₯)) βˆ’ πœ•π‘₯π‘₯(β„Ž(π‘₯, 𝑒(𝑑, π‘₯)) 𝑦(𝑑, π‘₯)) = 0, a.e.  (𝑑, π‘₯) ∈ 𝑇 Γ— 𝑋 (9.24)

    and the boundary constraints

    ⎧{⎨{⎩

    𝑦(𝑑,Μ² π‘₯) = 𝑦0(π‘₯), (𝑑, π‘₯) ∈ {𝑑 = 𝑑}Μ²  Γ— 𝑋𝑦(𝑑, π‘₯) = 0, (𝑑, π‘₯) ∈ 𝑇   Γ— {π‘₯ = οΏ½Μ²Μ²Μ²Μ²οΏ½, π‘₯ = π‘₯}

      (9.25)

    We assume that functions 𝑓(β‹…), 𝑔(β‹…) and β„Ž(β‹…) are continuous and continuously differentiable asregards the control variable 𝑒(β‹…).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 36

    Proposition 3 (Optimal control of the FPK equation).  Let π‘’βˆ—(β‹…) and π‘¦βˆ—(β‹…) be the solution of problem (9.23)-(9.24)-(9.25). Then there is a function πœ† βˆΆπ‘‡ Γ— 𝑋 β†’ ℝ such that:

    1. the optimality condition

    πœ•π‘’π‘”(π‘₯, π‘’βˆ—(𝑑, π‘₯))πœ•π‘₯πœ†(𝑑, π‘₯) + πœ•π‘’β„Ž(π‘₯, π‘’βˆ—(𝑑, π‘₯))πœ•π‘₯π‘₯πœ†(𝑑, π‘₯) + πœ•π‘’π‘“(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯)) = 0 a.e (𝑑, π‘₯) ∈ 𝑇 Γ— 𝑋(9.26)

    2. the distributional Euler equation

    πœ•π‘‘πœ†(𝑑, π‘₯)+𝑔(π‘₯, π‘’βˆ—(𝑑, π‘₯))πœ•π‘₯πœ†(𝑑, π‘₯)+β„Ž(π‘₯, π‘’βˆ—(𝑑, π‘₯))πœ•π‘₯π‘₯πœ†(𝑑, π‘₯)+𝑓(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯)) = 0 a.e (𝑑, π‘₯) ∈ 𝑇 ×𝑋(9.27)

    3. the transversality condition

    πœ†(𝑑, π‘₯) = 0, (𝑑, π‘₯) ∈ {𝑑 = 𝑑}  Γ— 𝑋

     

    4. and the admissibility constraints (9.24) and (9.25) evaluated at the optimum.

     

    9.3.1 Application: optimal distribution of capital with stochastic redistribution

    Consider an economy with heterogeneous households and that the household with capital stockπ‘˜(𝑑), at time 𝑑 has the accumulation equation

    π‘‘π‘˜(𝑑) = (π΄π‘˜(𝑑) βˆ’ 𝑐(𝑑)) 𝑑𝑑 + πœŽπ‘˜(𝑑)π‘‘π‘Š(𝑑)

      where π‘‘π‘Š is a Wiener process. We assume that π‘˜ ∈ [0, ∞). If 𝑛(𝑑, π‘˜) is the density of householdswith capital π‘˜ at time 𝑑 the distribution function for households satisfies

    ∫∞

    0𝑛(𝑑, π‘˜)𝑑𝑑 = 1, for every 𝑑 ∈ [0, ∞).

      Therefore, the distribution of households satisfies the FPK equation

    πœ•π‘›(𝑑, π‘˜) + πœ•π‘˜((π΄π‘˜ βˆ’ 𝑐) 𝑛(𝑑, π‘˜)) βˆ’12πœ•π‘˜π‘˜ ((πœŽπ‘˜)

    2 𝑛(𝑑, π‘˜)) = 0

      where 𝑛(0, π‘˜) = πœ™(π‘˜) is given and 𝑛(𝑑, 0) = limπ‘˜β†’βˆž 𝑛(𝑑, π‘˜) = 0.We assume a central planer wants to allocate consuming among households, and through time,

    in order to maximize a social welfare function. We assume the social welfare function is

    ∫∞

    0∫

    ∞

    0ln (𝑐(π‘˜, 𝑑)) 𝑛(π‘˜, 𝑑)π‘’βˆ’πœŒπ‘‘ π‘‘π‘˜ 𝑑𝑑, 𝜌 > 0

  • Paulo Brito Advanced Mathematical Economics 2020/2021 37

      Applying Proposition 3 the necessary first order conditions lead to the forward-backward parabolicPDE-system

    πœ•π‘‘π‘ž(𝑑, π‘˜) + π΄π‘˜ πœ•π‘˜ π‘ž(𝑑, π‘˜) + ln ((πœ•π‘˜π‘ž(𝑑, π‘˜))βˆ’1) +12 πœŽ

    2π‘˜2πœ•π‘˜π‘˜π‘ž(𝑑, π‘˜) βˆ’ πœŒπ‘ž(𝑑, π‘˜) βˆ’ 1 = 0 (9.28)

    πœ•π‘‘π‘›(𝑑, π‘˜) + ((π΄π‘˜ βˆ’ (πœ•π‘˜π‘ž(𝑑, π‘˜))βˆ’1) 𝑛(𝑑, π‘˜))π‘˜ βˆ’πœŽ22 πœ•π‘˜π‘˜ (π‘˜

    2𝑛(𝑑, π‘˜)) = 0 (9.29)

    together with a transversality condition

    limπ‘‘β†’βˆž

    π‘’βˆ’πœŒπ‘‘π‘ž(𝑑, π‘˜) = 0.

      where π‘ž(𝑑, π‘˜) = π‘’πœŒπ‘‘πœ†(𝑑, π‘˜) is the current distributional co-state variable.Because the system is recursive, we can solve the Euler equation together with the transversality

    condition for π‘ž(𝑑, π‘˜). Substituting in the constraint (9.29) we obtain a linear parabolic PDE for theoptimal dynamics of the distribution

    πœ•π‘‘π‘›(π‘˜, 𝑑) + πœ•π‘˜ (π›Ύπ‘˜π‘›(π‘˜, 𝑑)) βˆ’πœŽ22 πœ•π‘˜π‘˜ (π‘˜

    2𝑛(π‘˜, 𝑑)) = 0.

      Solving the Cauchy problem with 𝑛(0, π‘˜) = πœ™(π‘˜) a closed form solution can be obtained

    π‘›βˆ—(𝑑, π‘₯) = ∫∞

    0πœ™(πœ‰) 𝑔 (𝑑, ln (π‘˜πœ‰ ))

    1πœ‰ π‘‘πœ‰. (9.30)

    where

    𝑔(𝑑, 𝑦) = (2πœ‹πœŽ2𝑑)βˆ’ 12 exp [(𝛾 βˆ’ 𝜎2)𝑑 βˆ’ (𝑦 βˆ’ 𝑑(𝛾 βˆ’32  πœŽ2))

    2

    2𝜎2𝑑  ], π‘₯ ∈ ℝ. . (9.31)

     This solution contains both a transport mechanism, which tends to generate growth at a rate

    𝛾 ≑ 𝐴 βˆ’ 𝜌 > 0 and a diffusion mechanism, with strength 𝜎2. We can show that the average capitalstock is

    π‘€π‘˜(𝑑) = ∫∞

    0π‘˜ 𝑛(𝑑, π‘˜) π‘‘π‘˜ = π‘€π‘˜(0) 𝑒(π›Ύβˆ’πœŽ

    2)𝑑, 𝑑 ∈ [0, ∞)

      meaning that there is long run growth if 𝛾 βˆ’πœŽ2 > 0, that is if the stochastic distribution of growthis not too volatile.

    9.4 References

    β€’ Optimal control problem of partial differential equations or an optimal distributed controlproblem Butkovskiy (1969), Lions (1971), Derzko et al. (1984) or Neittaanmaki and Tiba(1994) present optimality results with varying generality. We draw mainly upon the last tworeferences. See also the textbooks: Fattorini (1999) and TrΓΆltzsch (2010).  

    β€’ Applications in economics Carlson et al. (1996, chap.9)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 38

    9.A Proofs

    Next we present heuristic proofs of the three versions of the distributional PMP presented in themain text.

    Proof of Proposition 1. The value functional is

    𝑉 [𝑒, 𝑦] = ∫∞

    0∫

    ∞

    βˆ’βˆžπ‘“(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯))𝑑π‘₯𝑑𝑑,

      considering the constraint we have

    𝑉 [𝑒, 𝑦] = ∫∞

    0∫

    ∞

    βˆ’βˆž[𝑓(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯)) + πœ†(𝑑, π‘₯) (𝑔(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯)) βˆ’ πœ•π‘¦πœ•π‘‘ +

    πœ•2π‘¦πœ•π‘₯2 )] 𝑑π‘₯ 𝑑𝑑 =

    = ∫∞

    0∫

    ∞

    βˆ’βˆž[𝐻(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯), πœ†(𝑑, π‘₯)) βˆ’ πœ†(𝑑, π‘₯) πœ•π‘¦πœ•π‘‘ + πœ†(𝑑, π‘₯)

    πœ•2π‘¦πœ•π‘₯2 ]   𝑑π‘₯ 𝑑𝑑

    = ∫∞

    0∫

    ∞

    βˆ’βˆž[𝐻(𝑑, π‘₯, 𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯), πœ†(𝑑, π‘₯)) + (πœ•πœ†(𝑑, π‘₯)πœ•π‘‘ +

    πœ•2πœ†(𝑑, π‘₯)πœ•π‘₯2 (𝑑, π‘₯)) 𝑦(𝑑, π‘₯)]   𝑑π‘₯ 𝑑𝑑+

    βˆ’ ∫∞

    βˆ’βˆžπœ†(𝑑, π‘₯)𝑦(𝑑, π‘₯) 𝑑π‘₯ ∣

    ∞

    𝑑=0+ ∫

    ∞

    0(πœ†(𝑑, π‘₯)πœ•π‘¦(𝑑, π‘₯)πœ•π‘₯ βˆ’

    πœ•πœ†(𝑑, π‘₯)πœ•π‘₯ 𝑦(𝑑, π‘₯)) 𝑑𝑑 ∣

    ∞

    π‘₯=βˆ’βˆž

      for any control and state variables.Let us assume we know the optimal control and state variables π‘’βˆ—(𝑑, π‘₯) and π‘¦βˆ—(𝑑, π‘₯) then

    𝑉 [π‘’βˆ—, π‘¦βˆ—] = ∫∞

    0∫

    ∞

    βˆ’βˆžπ‘“(𝑑, π‘₯, π‘’βˆ—(𝑑, π‘₯), π‘¦βˆ—(𝑑, π‘₯))𝑑π‘₯𝑑𝑑,

      and let 𝑒(𝑑, π‘₯) and 𝑦(𝑑, π‘₯) be admissible perturbations over the optimal levels

    𝑒(𝑑, π‘₯) = π‘’βˆ—(𝑑, π‘₯) + πœ€β„Žπ‘’(𝑑, π‘₯)𝑦(𝑑, π‘₯) = π‘¦βˆ—(𝑑, π‘₯) + πœ€β„Žπ‘¦(𝑑, π‘₯)

     

      where πœ– is a constant, and β„Žπ‘¦(0, π‘₯) = 0, for every π‘₯ ∈ ℝ, and limπ‘₯Β±βˆžπœ•β„Žπ‘¦(𝑑, π‘₯)

    πœ•π‘₯ = 0, for every𝑑 ∈ ℝ+.The integral derivative evaluated at πœ€ = 0 is

    𝛿𝑉 [π‘’βˆ—, π‘¦βˆ—] = ∫∞

    0∫

    ∞

    βˆ’βˆž[ πœ•π»

    βˆ—(𝑑, π‘₯)πœ•π‘’  β„Žπ‘’(𝑑, π‘₯) + ( 

    πœ•π»βˆ—(𝑑, π‘₯)πœ•π‘¦ +

    πœ•πœ†(𝑑, π‘₯)πœ•π‘‘ +

    πœ•2πœ†(𝑑, π‘₯)πœ•π‘₯2   ) β„Žπ‘¦(𝑑, π‘₯)]    π‘‘π‘₯ π‘‘π‘‘βˆ’

    βˆ’ ∫∞

    βˆ’βˆžπœ†(𝑑, π‘₯)β„Žπ‘¦ (𝑑, π‘₯) 𝑑π‘₯ ∣

    ∞

    𝑑=0+ ∫

    ∞

    0πœ†(𝑑, π‘₯)πœ•β„Žπ‘¦ (𝑑, π‘₯)πœ•π‘₯ βˆ’

    πœ•πœ†(𝑑, π‘₯)πœ•π‘₯ β„Žπ‘¦ (𝑑, π‘₯)) 𝑑𝑑

    ∞

    π‘₯=βˆ’βˆž=

      where π»βˆ—(𝑑, π‘₯) = 𝐻(𝑑, π‘₯π‘’βˆ—(𝑑, π‘₯), π‘¦βˆ—(𝑑, π‘₯), πœ†(𝑑, π‘₯)). From admissibility conditions, we have

    𝛿𝑉 [π‘’βˆ—, π‘¦βˆ—] = ∫∞

    0∫

    ∞

    βˆ’βˆž[ πœ•π»

    βˆ—(𝑑, π‘₯)πœ•π‘’  β„Žπ‘’(𝑑, π‘₯) + ( 

    πœ•π»βˆ—(𝑑, π‘₯)πœ•π‘¦ +

    πœ•πœ†(𝑑, π‘₯)πœ•π‘‘ +

    πœ•2πœ†(𝑑, π‘₯)πœ•π‘₯2   ) β„Žπ‘¦(𝑑, π‘₯)]   π‘‘π‘₯π‘‘π‘‘βˆ’

    βˆ’ limπ‘‘β†’βˆž

    ∫∞

    βˆ’βˆžπœ†(𝑑, π‘₯)β„Žπ‘¦ (𝑑, π‘₯)𝑑π‘₯ βˆ’ ∫

    ∞

    0(πœ•πœ†(𝑑, π‘₯)πœ•π‘₯ β„Žπ‘¦ (𝑑, π‘₯)) 𝑑𝑑 ∣

    ∞

    π‘₯=βˆ’βˆž

  • Paulo Brito Advanced Mathematical Economics 2020/2021 39

     Optimality requires that 𝑉 [π‘’βˆ—, π‘¦βˆ—] β‰₯ 𝑉 [𝑒, 𝑦] which holds only if 𝛿𝑉 [π‘’βˆ—, π‘¦βˆ—] = 0. Then optimality

    conditions are as in equation (9.2).

    Proof of Proposition 2. Let us assume that there is a solution (π‘’βˆ—, π‘¦βˆ—), for the problem, and definethe value function as

    𝑉 [π‘’βˆ—, π‘¦βˆ—] = limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0𝑓(π‘¦βˆ—(πœ‰, 𝑑), π‘’βˆ—(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰.

    Consider a small continuous perturbation (𝑒(πœ–), 𝑦(πœ–)) = {(𝑒(𝑑, π‘₯), 𝑦(𝑑, π‘₯)) ∢ (𝑑, π‘₯) ∈ ℝ Γ— ℝ+}, whereπœ– is any positive constant, such that 𝑒(𝑑, π‘₯) = π‘’βˆ—(𝑑, π‘₯) + πœ–β„Žπ‘’(𝑑, π‘₯) and 𝑦(𝑑, π‘₯) = π‘¦βˆ—(𝑑, π‘₯) + πœ–β„Žπ‘¦(𝑑, π‘₯),for 𝑑 > 0, and β„Žπ‘’(π‘₯, 0) = β„Žπ‘¦(π‘₯, 0) = 0, for every π‘₯ ∈ ℝ. The value of this strategy is

    𝑉 (πœ–) = limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0𝑓(𝑒(πœ‰, 𝑑), 𝑦(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰.

    But,

    𝑉 (πœ–) ∢= limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0𝑓(𝑒(πœ‰, 𝑑), 𝑦(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘π‘‘π‘‘π‘‘πœ‰βˆ’

    βˆ’ limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0πœ†(πœ‰, 𝑑) [πœ•π‘¦(πœ‰, 𝑑)πœ•π‘‘ βˆ’

    πœ•2𝑦(πœ‰, 𝑑)πœ•πœ‰2 βˆ’ 𝑔(𝑒(πœ‰, 𝑑), 𝑦(πœ‰, 𝑑))] π‘‘π‘‘π‘‘πœ‰+

    + limπ‘‘β†’βˆž

    limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯π‘’βˆ’π‘Ÿ(πœ‰,𝑑)πœ‡(πœ‰, 𝑑)𝑦(πœ‰, 𝑑)π‘‘πœ‰ (9.32)

    where πœ†(.) is the co-state variable and πœ‡(.) is a Lagrange multiplier associated with the solvabilitycondition. In the optimum, the Kuhn-Tucker condition should hold

    limπ‘‘β†’βˆž

    limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯π‘’βˆ’π‘Ÿ(πœ‰,𝑑)πœ‡(πœ‰, 𝑑)𝑦(πœ‰, 𝑑)π‘‘πœ‰ = 0.

    By using integration by parts we find that

    ∫∞

    0πœ†(𝑑, π‘₯)πœ•π‘¦(𝑑, π‘₯)πœ•π‘‘ 𝑑𝑑 = πœ†(𝑑, π‘₯)𝑦(𝑑, π‘₯)|

    βˆžπ‘‘=0 βˆ’ ∫

    ∞

    0

    πœ•πœ†(𝑑, π‘₯)πœ•π‘‘ 𝑦(𝑑, π‘₯)𝑑𝑑

    and that

    ∫π‘₯

    βˆ’π‘₯∫

    ∞

    0πœ†(πœ‰, 𝑑)πœ•

    2𝑦(πœ‰, 𝑑)πœ•πœ‰2 π‘‘π‘‘π‘‘πœ‰ =

    = ∫∞

    0πœ†(πœ‰, 𝑑)πœ•π‘¦(πœ‰, 𝑑)πœ•πœ‰ ∣

    π‘₯

    πœ‰=βˆ’π‘₯βˆ’ 𝑦(πœ‰, 𝑑)πœ•πœ†(πœ‰, 𝑑)πœ•πœ‰ ∣

    π‘₯

    πœ‰=βˆ’π‘₯𝑑𝑑 + ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0

    πœ•2πœ†(πœ‰, 𝑑)πœ•πœ‰2 𝑦(πœ‰, 𝑑)π‘‘π‘‘π‘‘πœ‰, (9.33)

    where the second term is canceled by the boundary conditions (9.15). Then

    𝑉 (πœ–) = limπ‘₯β†’βˆž

    12π‘₯ ∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0(𝑓(𝑒(πœ‰, 𝑑), 𝑦(πœ‰, 𝑑))π‘’βˆ’πœŒπ‘‘+

    +πœ•πœ†(πœ‰, 𝑑)πœ•π‘‘ 𝑦(πœ‰, 𝑑) +πœ•2πœ†(πœ‰, 𝑑)

    πœ•πœ‰2 𝑦(πœ‰, 𝑑) + πœ†(πœ‰, 𝑑)𝑔(𝑒(πœ‰, 𝑑), 𝑦(πœ‰, 𝑑))) π‘‘π‘‘π‘‘πœ‰ βˆ’

    βˆ’ limπ‘₯β†’βˆž

    12π‘₯ (∫

    π‘₯

    βˆ’π‘₯πœ†(πœ‰, 𝑑)𝑦(πœ‰, 𝑑)|βˆžπ‘‘=0 π‘‘πœ‰ + ∫

    ∞

    0πœ†(πœ‰, 𝑑)πœ•π‘¦(πœ‰, 𝑑)πœ•πœ‰ ∣

    π‘₯

    πœ‰=βˆ’π‘₯𝑑𝑑)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 40

    If an optimal solution exists, then we may characterize it by applying the variational principle,πœ•π½(π‘’βˆ—, π‘¦βˆ—)

    πœ•πœ– = limπœ–β†’0𝐽(𝑒(πœ–), 𝑦(πœ–)) βˆ’ 𝐽(π‘’βˆ—, π‘¦βˆ—)

    πœ– = 0.

    But, defining the Hamiltonian function as 𝐻(𝑒, 𝑦, πœ†) = 𝑓(𝑒, 𝑦) + πœ†π‘”(𝑒, 𝑦), then

    πœ•π½πœ•πœ– = limπ‘₯β†’βˆž

    12π‘₯ {∫

    π‘₯

    βˆ’π‘₯∫

    ∞

    0[ π»π‘’(π‘’βˆ—(πœ‰, 𝑑), π‘¦βˆ—(πœ‰, 𝑑), πœ†(πœ‰, 𝑑))β„Žπ‘’(πœ‰, 𝑑)+

    + (πœ•πœ†(πœ‰, 𝑑)πœ•π‘‘ +πœ•2πœ†(πœ‰, 𝑑)

    πœ•πœ‰2 + πœ†(πœ‰, 𝑑)𝐻π‘₯(π‘’βˆ—(πœ‰, 𝑑), π‘¦βˆ—(πœ‰, 𝑑), πœ†(πœ‰, 𝑑))) β„Žπ‘¦(πœ‰, 𝑑)] π‘‘π‘‘π‘‘πœ‰

    βˆ’ ∫π‘₯

    βˆ’π‘₯πœ†(πœ‰, 𝑑)β„Žπ‘¦(πœ‰, 𝑑)∣

    βˆžπ‘‘=0 π‘‘πœ‰ + ∫

    ∞

    0πœ†(πœ‰, 𝑑)πœ•β„Žπ‘¦(πœ‰, 𝑑)πœ•πœ‰ ∣

    π‘₯

    πœ‰=βˆ’π‘₯𝑑𝑑 βˆ’

    βˆ’ limπ‘‘β†’βˆž

    ∫π‘₯

    βˆ’π‘₯πœ‡(πœ‰, 𝑑)π‘’βˆ’π‘Ÿ(πœ‰,𝑑)β„Žπ‘¦(πœ‰, 𝑑)π‘‘πœ‰} . (9.34)

    The last and the third to last expressions are canceled if limπ‘‘β†’βˆž[πœ‡(𝑑, π‘₯)π‘’βˆ’π‘Ÿ(𝑑,π‘₯) βˆ’ πœ†(𝑑, π‘₯)] = 0,and by the fact that β„Žπ‘˜(π‘₯, 0) = 0, for any π‘₯. Then, substituting in the Kuhn-Tucker conditionwe get a generalized transversality condition. We get the first order conditions by equating tozero all the remaining components of πœ•π½οΏ½