advanced master in innovative design...gain an advanced master in innovative design. the course...

120
STATUS: Final Advanced Master in Innovative Design Professional Project Solution concepts for “Promotion of a control signal in a distributed Motion Control System” at Drive Technologies Division of Siemens AG M ASTER T HESIS A NDREAS W AGNER WA-C ONSULT www.wa-consult.com M OBILE : +49 170 9124185 31 March 2011

Upload: others

Post on 17-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

STATUS: Final

Advanced Master in Innovative Design

Professional Project Solution concepts for “Promotion of a control

signal in a distributed Motion Control System” at Drive Technologies Division of Siemens AG

M A S T E R T H E S I S

ANDREAS WAGNER WA-CONSULT

www.wa-consult.com MOBILE: +49 170 9124185

31 March 2011

Page 2: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Abstract

ii

Abstract

The National Institute of Applied Science (INSA) in Strasbourg offers a one year course to

gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca-

demic teaching (theory, practical work and group work) focused around TRIZ. As part of the

course an individual project is to be prepared within a company, focused on managing an in-

novative design project. This individual project will result in a professional thesis.

The present professional thesis summarizes and outlines the approach taken to manage an

innovative design project at the Drive Technologies Division of Siemens AG (SAG) in Erlan-

gen, Germany.

Siemens AG is in the process of defining their next generation of Motion Control solutions. In

this scope the innovative design project aimed for development of conceptual solutions over-

coming an architectural problem in existing Motion Control systems, here the distribution of

an Enabling Signal in a distributed motion control system.

The methodical approach taken was a series of project workshops accompanied by interviews

with domain experts. During the project workshops various TRIZ tools were introduced to

provide an efficient and effective path towards the project goal.

The present professional thesis details the following project aspects:

Working principle of motion control systems from Siemens AG and architectural

problem in an environment with distributed components,

Initial task for project as defined by Siemens AG,

Execution of project workshops; here different views e.g. on project management, me-

thodical approach and technical progress are provided,

Introduction of TRIZ tools in Siemens AG workshops and reasoning for deviation

from toolset taught at INSA,

Parallel ‘offline’ task during time of project addressing the identified problems with

ARIZ and other TRIZ tools not introduced in Siemens AG workshops.

The official end of the innovative design project at Siemens AG was the hand-over of a list of

high-quality conceptual solutions to overcome the architectural problem alongside a solution

ranking based on quantitative and qualitative criteria. Both documents were the result of an

intensive and fruitful cross-functional Siemens AG team approach.

Page 3: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Preamble

iii

Preamble

Foreword

This professional thesis summarizes the application of my knowledge about the “Theory of

Inventive Problem Solving” and Inventive Design in an innovative design project. The foun-

dation of my knowledge was derived from the one year course to gain the Advanced Master

in Innovative Design at INSA Strasbourg.

The motivation to build up knowledge in inventive problem solving derives from my current

profession as a consultant. The consultant activities focus on projects for different companies

in the area of product and service innovation, intellectual property management and project

management. With the additional knowledge around TRIZ it will be possible to provide addi-

tional value to the offers for clients.

Thus the professional project at Siemens AG can be seen a prototype of a typical consultant

task for clients, namely managing innovative design projects on complex topics with multi-

disciplinary teams in a short timeframe with the focus on the following aspects:

Mastering the application of TRIZ through industrial case studies;

Understanding and assessing the conditions for using it within an industrial structure;

Integrating the human and organizational aspects inherent in managing an innovative de-

sign project.

Acknowledgements

First of all I would like to thank to the Siemens AG team who made the project possible and

spend their time in various workshops and interviews. I enjoyed the professional work envi-

ronment and the focused and fruitful sessions with them.

I would like to thank my wife and my daughters which I have left alone for nearly three

month spending on training in Strasbourg.

Lastly my thanks go to the teachers from the INSA Strasbourg who taught me about “In-

ventive Problem solving”, communication about and Innovation Management giving me the

capabilities to apply that acquired knowledge into my work.

Notations and Conventions

The professional project has been held at Siemens AG, Erlangen. Language during the work-

shops and interviews and for any written communication was German. The language for the

professional thesis is English. The following approach has been taken to make the results of

Page 4: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Preamble

iv

the workshops transparent for an English speaking reader: Workshop results have been trans-

lated into English where necessary and relevant original documents are provided in the Ap-

pendix.

Page 5: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Statement from Siemens

v

Statement from Siemens

Mr. Wagner implemented a very successful methodical approach for the project:

- clear goal setting, problem definition, elaboration of solutions, prioritizing solutions,

- usage of different TRIZ-Tools appropriate to the situation.

First he spent the dominant focus in the project:

- to frame the problem as a common starting point for the team for further discussions,

- to form a common understanding on the used evaluation criteria and their particular

weights.

In a second phase the solution space was worked out, the project team had the feeling that it

was completely covered with the found solutions.

In the final phase the three solutions with the highest match based on the evaluation criteria

were discussed deeper.

The workshop results are very helpful, in adding new criteria or changing existing ones to

derive decision proposals for the project. The results are planned to be used in the next gener-

ation of the SIEMENS motion control components.

Wagenpfeil / Kiesel / Kreienkamp

Siemens AG

Industry Sector

Drive Technologies Division

Motion Control Systems

Research and Development

Page 6: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Cross references

vi

Cross references

The following Table 1provides an overview of the AMID modules and their application

throughout the professional project.

Module What Chapter of Master Thesis

MODULE 1: INNOVATION PROCESS N/A

MODULE 2: INDUSTRIAL PROPERTY N/A

MODULE 3: PROJECT TEAM MANAGEMANT & COM-

MUNICATION

Chapter 3 and 4

MODULE 4 ANALYSIS OF INITIAL SITUATION Chapter 4 and 5

MODULE 5: BASIC PRINCIPLES OF TRIZ Chapter 4 and 5

MODULE 6: TOOLS & METHODS OF TRIZ Chapter 4 and 5

MODULE 7: THEORY & PRACTICE OF ARIZ Chapter 5

MODULE 8: ADVANCED PRACTICE OF ARIZ Chapter 5

MODULE 9: META-COGNITIVE APPROACH OF DESIGN N/A

MODULE 10: OPENNESS SEMINARS N/A

Table 1: AMID modules and application during project

Page 7: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Table of Contents

vii

Table of Contents

1 System and Problem 1

1.1 Industrial automation solutions from Siemens AG ................................................... 1

1.2 Introduction to motion control systems ..................................................................... 1

1.3 Motion control systems offered by Siemens AG ....................................................... 2

1.4 Working principle of SINAMICS components ......................................................... 5

1.4.1 DRIVE-CLiQ communication bus ..................................................................... 8

1.4.2 Line Module ....................................................................................................... 8

1.4.3 Motor Module .................................................................................................... 9

1.4.4 Control Unit ........................................................................................................ 9

1.4.5 Control Unit limitations and overcoming ......................................................... 10

1.4.6 Architectural problem in multi Control Unit environment .............................. 12

2 Task and Project 13

2.1 Initial problem statement ......................................................................................... 13

2.2 Initial project meeting .............................................................................................. 14

2.3 Project outline .......................................................................................................... 14

2.4 Project contract ........................................................................................................ 18

3 The workshops 19

3.1 Situation at client ..................................................................................................... 19

3.2 Sequence of workshops ........................................................................................... 19

3.3 Documents generated during workshops ................................................................. 22

4 Application of TRIZ related Tools 25

4.1 Innovation checklist ................................................................................................. 26

4.1.1 Introduction ...................................................................................................... 26

4.1.2 Application ....................................................................................................... 26

4.1.3 Result ................................................................................................................ 27

4.2 Technical contradiction, operating zone, operating time and Ideal Final Result .... 31

4.2.1 Introduction ...................................................................................................... 31

4.2.2 Application ....................................................................................................... 31

4.2.3 Result ................................................................................................................ 32

4.3 Function Analysis of system .................................................................................... 34

Page 8: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Table of Contents

viii

4.3.1 Introduction ...................................................................................................... 34

4.3.2 Application ....................................................................................................... 34

4.3.3 Result ................................................................................................................ 34

4.4 System Operator ...................................................................................................... 36

4.4.1 Introduction ...................................................................................................... 36

4.4.2 Application ....................................................................................................... 36

4.4.3 Result ................................................................................................................ 36

4.5 Creativity workshop ................................................................................................. 38

4.5.1 Introduction ...................................................................................................... 38

4.5.2 Application ....................................................................................................... 38

4.5.3 Result ................................................................................................................ 40

4.6 List of ideas, evaluation criteria and decision matrix .............................................. 42

4.6.1 Introduction ...................................................................................................... 42

4.6.2 Application ....................................................................................................... 42

4.6.3 Result ................................................................................................................ 45

5 TRIZ tools applied “offline” 48

5.1 Introduction .............................................................................................................. 48

5.2 Problem Graph ......................................................................................................... 48

5.3 ARIZ - Analysis of the initial situation ................................................................... 50

5.4 ARIZ - Selected steps .............................................................................................. 54

5.4.1 ARIZ-85c Step 1: Analyzing the problem ....................................................... 56

5.4.2 ARIZ-85c Step 2: Analyzing the problem model ............................................ 61

5.4.3 ARIZ-85c Step 3: Defining the ideal final result and the physical contradiction

63

6 Reflection of chosen approaches 65

6.1 Introduction .............................................................................................................. 65

6.1.1 Problem solving ................................................................................................ 65

6.1.2 Problem solving cycle and tools used during project workshops .................... 66

6.1.3 Problem solving cycle and TRIZ tools used as “offline” task ......................... 66

6.1.4 Comparison of approaches ............................................................................... 67

6.1.5 Comparison of results ....................................................................................... 67

7 Glossary 69

References 73

Referenced Web Resources 74

A Documents generated during workshops 75

Page 9: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

List of Figures

ix

List of Figures

Figure 1: Essential components of a typical motion control system .......................................... 2

Figure 2: Overview of components for SINAMICS S120 drive system.................................... 4

Figure 3: Sinamics S120 module setup ...................................................................................... 6

Figure 4: Circuit diagram for a one motor motion control application using Sinamics

components ................................................................................................................................. 6

Figure 5: Schematic view of one motor motion control application using Sinamics

components ................................................................................................................................. 7

Figure 6: Transmission of "infeed-ready" signal over DRIVE-CLiQ ........................................ 9

Figure 7: Two Control Units drive Motor Modules over different Line Modules in a non-

connected topology .................................................................................................................. 11

Figure 8: Two Control Units drive Motor Modules over different Line Modules in a mixed

topology .................................................................................................................................... 11

Figure 9: Current 'patch' solution to overcome architectural problem in multi Control Unit

environment .............................................................................................................................. 12

Figure 10: Extract of proposal for "TRIZ work, Transmission of ALM Signal" .................... 14

Figure 11: Extract of project outline ........................................................................................ 18

Figure 12: Contradiction and Ideal Final Result from Workshop 1 ......................................... 32

Figure 13: Re-definition of Ideal Final Result from Workshop 5 ............................................ 33

Figure 14: Function model of the existing “patch solution” .................................................... 35

Figure 15: Flow-chart of idea generation process .................................................................... 39

Figure 16: List of 48 Technical Parameter out of [Man08] ..................................................... 40

Figure 17: Processing the evaluation criteria ........................................................................... 43

Figure 18: Processing of ideas ................................................................................................. 44

Figure 19: Circuit diagram of solution concept 9 “Modulation DC-circuit” ........................... 47

Figure 20: Problem graph for initial project problem .............................................................. 49

Figure 21: Transformation during Analysis of Initial Situation ............................................... 50

Figure 22: Major steps of ARIZ ............................................................................................... 54

Page 10: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

List of Tables

x

List of Tables

Table 1: AMID modules and application during project .......................................................... vi

Table 2: Main focus of individual workshops .......................................................................... 20

Table 3: Sequence of workshops .............................................................................................. 21

Table 4: Documents generated during workshops ................................................................... 23

Table 5: Extract of innovation checklist .................................................................................. 30

Table 6: Extract of System Operator for SINAMICS energy management unit ..................... 37

Table 7: Derived trends from System Operator ....................................................................... 37

Table 8: Template of decision matrix ...................................................................................... 42

Table 9: Decision matrix with value ranges ............................................................................. 44

Table 10: Template for list of ideas ......................................................................................... 45

Table 11: Stages of ARIZ ......................................................................................................... 55

Table 12: Results of ARIZ steps 1 to 9 .................................................................................... 56

Page 11: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Industrial automation solutions from Siemens AG

1

1System and Problem

1.1 Industrial automation solutions from Siemens AG

Siemens AG offers solutions for industrial automation. Their portfolio includes solutions for

motion control, a domain in which the position and/or velocity of machines are controlled

using servo drives.

The remaining chapter provides an introduction to the working principle and basic architec-

ture of motion control systems. Furthermore the architecture and system components offered

by Siemens AG are introduced. Finally the architectural problem of the Siemens AG motion

control system to be tackled in the design project is described.

Specific terms and abbreviations are explained in the Glossary in Chapter 7.

1.2 Introduction to motion control systems

Motion control1 is a sub-field of industrial automation, in which the position and/or velocity

of machines are controlled using some type of device such as linear actuator, or an electric

motor, generally a servo drive.

The most common solution to move a load is using electromechanical components such as

motors. Each motor requires individual input signals to spin the motor and transform electri-

cal energy into mechanical energy.

Motion control is an important part of robotics and CNC machine tools, however it is more

complex than in the use of specialized machines, where the kinematics are usually simpler.

The latter is often called General Motion Control. Motion control is widely used in the pack-

aging, printing, textile, semiconductor production, and assembly industries.

The basic architecture of a motion control system contains:

A motion controller to generate set points (the desired output or motion profile) and

close a position and/or velocity feedback loop.

A servo amplifier to transform the control signal from the motion controller into a higher

power electrical current or voltage that is presented to the actuator or servo drive. Newer

"intelligent" drives can close the position and velocity loops internally, resulting in much

more accurate control.

A servo drive such as a linear actuator, or electric motor for output motion.

1 Definition for motion control is based on [1]

Page 12: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Motion control systems offered by Siemens AG

2

One or more feedback sensors such as optical encoders, resolvers or Hall Effect devices

to return the position and/or velocity of the actuator to the motion controller in order to

close the position and/or velocity control loops.

Mechanical components to transform the motion of the actuator into the desired motion,

including: gears, shafting, ball screw, belts, linkages, and linear and rotational bearings.

The following diagram in Figure 1 illustrates the essential components of a motion control

system.

Figure 1: Essential components of a typical motion control system

The Motion controller acts as the ‘brain’ of the motion control system. The interface between

the motion controller and servo drive it controls is critical when coordinated motion is re-

quired, as it must provide tight synchronization.

In an industrial application the motion controller provides one or more of the following com-

mon control functions:

Velocity control,

Position (point-to-point) control,

Pressure or Force control,

Trans-mutational vector mapping,

Electronic gearing.

1.3 Motion control systems offered by Siemens AG

The Siemens AG offers a wide range of modular motion control systems for different applica-

tions. The systems are grouped in product families.

The motion control drives include high-performance single drives and coordinated drives

(multiple-axis applications) with vector or servo functionalities that allow implementation of

customized high performance drive solutions.

Whether it is a continuous goods transport line or synchronized and highly dynamic process,

the high performance drive products from Siemens deliver solutions in many industrial appli-

cations including: packaging machines, printing presses, lifting gear, plastic machines, mill

Page 13: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Motion control systems offered by Siemens AG

3

trains and test rigs, textile machines, machine tools, paper machines, handling and assembly

systems.

In the scope of this project the SINAMICS S drive system family will be described in more

detail. The following Figure 2 taken from [3] provides an overview of the various components

being part of the SINAMICS S120 drive system.

Page 14: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Motion control systems offered by Siemens AG

4

Figure 2: Overview of components for SINAMICS S120 drive system

The most essential components to make up a Sinamics motion control system are:

Page 15: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

5

Siemens terms General terms

Control Unit CU3x0

The complete drive intelli-

gence is in the Control Units

(CU).

motion controller

Motor Modules

Motor Modules supply the mo-

tors with power from the DC

link.

servo amplifier

AC Motors servo drive

Sensor Modules feedback sensors

In addition and partly specific to the Siemens architecture the following components to a mo-

tion control system are:

Siemens terms Description

Line Modules Power converters, converting AC voltage into DC

voltage feeding a DC-intermediate circuit

Drive-CLiQ High-speed communication link

Line filter Placed between Line Modules and an external power

line, to attenuate conducted frequencies.

1.4 Working principle of SINAMICS components

The following Figure 3 shows a picture of a typical Sinamics S120 module setup with the

components (from left to right):

Control unit

Line module

Double Motor module

Single Motor module

Single Motor module

Page 16: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

6

Figure 3: Sinamics S120 module setup

Figure 4 shows a circuit diagram for the Sinamics components typically required for a single

motor motion control application.

Figure 4: Circuit diagram for a one motor motion control application using Sinamics

components

The following Sinamics components are shown:

Page 17: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

7

Line filter

Control unit

Line module

Motor module

SMI Motor

DRIVE-CLiQ connection

DC-circuit

Sensor module

The mode of action starts by applying the 3-phase AC voltage via line filter to the Line mod-

ule. There the AC voltage is converted into DC voltage fed into the DC-circuit. The motor

module which is connected to the DC-circuit converts the DC voltage into 2-phase AC volt-

age with a variable frequency and voltage level and feeds the SMI motor.

The control unit controls the Motor Module based on a pre-programmed motion sequence. To

provide closed-loop control the Control Unit receives the actual motion via DRIVE-CLiQ

signal connection from the Sensor module being attached to the SMI motor.

A more schematic view of the working principle is shown in the following Figure 5 and will

be used towards the problem definition in scope of the project.

Figure 5: Schematic view of one motor motion control application using Sinamics com-

ponents

The following components are shown:

Control unit

Active Line Module

DC-circuit

Single Motor Module

Motor

DRIVE-CLiQ connection

The following components are left out because they are not important for the project problem:

Sensor module

Line filter and 3-phase AC power supply

Page 18: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

8

The operation of the components per Figure 5 will be described in more detail in the follow-

ing paragraphs.

1.4.1 DRIVE-CLiQ communication bus

In the SINAMICS S120 drive system, the system components required for an application so-

lution are connected together through the high-performance interface DRIVE-CLiQ to form a

drive network. It permits the interconnection of components, even from different manufactur-

ers.

The interface supports simple data communication with the converter components, as well as

the integration of the motors and rotary and linear encoder systems in the drive system.

With DRIVE-CLiQ, the drive system can be configured automatically during commissioning.

By reading the specific data from the electronic rating plates of the drive components, error-

free parameterization of the drive configuration and rapid commissioning are assured.

Fast diagnostics in the event of a fault Status alarms can be transferred via DRIVE-CLiQ to

the drive components for evaluation in a higher-level controller.

DRIVE-CLiQ is based on the Ethernet hardware layer and a proprietary software layer and

provides a transmission rate of 100 Mbit/s and therewith has the performance required for

even critical closed-loop control tasks. DRIVE-CLiQ allows distributed drive concepts with

up to 100 m line length from Control Unit to the Motor Modules and to the measurement sys-

tems.

To achieve the performance DRIVE-CLiQ is a clocked communication bus where the Control

Unit provides the synchronization clock together with the datagrams. Connected components

have to synchronize on the Control Unit clock when receiving or transmitting datagrams.

An important characteristic of DRIVE-CLiQ is, that during normal operation phase the topol-

ogy reflects a 1:n communication. The Control Unit serves as a master device. The connected

components serve as slave device, being unable to communicate amongst each other. A com-

munication cycle takes typically 125 μs, wherein the Control Unit polls all connected compo-

nents.

1.4.2 Line Module

Line Modules centrally feed power into the DC link, regenerate into the line supply and com-

pensate any line fluctuations.

After power-on the Line Module starts to energize the DC-circuit. Based on the topology of

the system the power-up sequence takes up to 5 sec. After a certain voltage threshold has been

reached in the DC-circuit, the Line Module generates an “infeed-ready” signal and sends it via

the DRIVE-CLiQ to the Control Unit. Figure 6 outlines the communication flow for the “in-

feed-ready” signal towards the Control Unit.

The receipt of the signal enables to Control Unit to start operation.

Page 19: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

9

Figure 6: Transmission of "infeed-ready" signal over DRIVE-CLiQ

During operation the Line Module continues to energize the DC-circuit. Furthermore it con-

tinually senses the DC-circuit state. In the event of a “power-down” the Line Module gener-

ates a “power-down signal” and sends it via DRIVE-CLiQ communication bus to the Control

Unit.

On receipt of the “power-down signal” the Control Unit takes appropriate actions to shut the

application down.

1.4.3 Motor Module

Motor Modules operate as inverters supplying the connected motors based on Control Unit

signals.

1.4.4 Control Unit

Control Units handle drive and technological functions spanning axes and provide the central

link to higher-level controls.

The Sinamics S system goes with the concept of a central Control Unit which controls the

drives for all connected axes and also establishes the technological links between the drives

and/or axes. Since all the required data is stored in the central Control Unit, it does not need to

be transferred. Inter-axis connections can be established within a Control Unit and easily con-

figured.

The core functions of the SINAMICS S120 Control Unit are:

Basic functions: Speed control, torque control, positioning functions;

Intelligent starting functions for independent restart after power supply interruption;

BICO technology (see below for details) with interconnection of drive-related In-

put/Output for easy adaptation of the drive system to its operating environment;

Integrated safety functions for realizing the implementation of safety concepts;

Regulated in-feed/regenerative feedback functions for preventing undesirable reactions on

the supply, allowing recovery of braking energy and ensuring greater stability against line

fluctuations.

Page 20: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

10

Each of the Control Units is based on an object-oriented SINAMICS S120 standard firmware

which contains all of the most popular control modes and can be scaled to meet even the most

advanced performance requirements.

The internal state of each connected component is represented in a software based Drive Ob-

ject. A Drive Object is a self-contained software function with its own parameters and, if nec-

essary, its own fault messages and alarms.

Every Drive Object contains a large number of input and output variables which can be freely

and independently interconnected using Binector Connector Technology (BICO). A binector

is a logic signal which can assume the value 0 or 1. A connector is a numerical value, e.g. the

actual speed or current setpoint. The BICO signals can be configured to match physical In-

put/Output ports at the Control Unit.

A Control Unit provides the following connectivity:

6 DRIVE-CliQ Ports to connect system components

Physical Input/Output Ports

PROFIBUS Ports to connect optional higher-level controls.

1.4.5 Control Unit limitations and overcoming

Due to computation resource and communication speed limits the Control Units go with the

following restrictions:

Each Control Unit can handle up to 6 servo axes

Each Control Unit can handle up to 6 Motor Modules plus one Line Module plus 6 Sensor

Modules

In larger systems, where there is a demand to handle more than 6 servo axes it is possible to

introduce subsequent Control Units. Various topologies are possible, including the following

configurations for 2 Control Units driving up to 12 axes:

The Motor Modules are connected to one DC-circuit fed by one Line Module.

The Motor Modules are fed over two DC-circuit by two distinct Line Modules in an non-

connected topology.

The Motor Modules are fed over two DC-circuit by two distinct Line Modules in an

mixed topology.

The following Figure 7 provides a schematic view of the second configuration, whereas Fig-

ure 8 shows the third configuration.

Page 21: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

11

Figure 7: Two Control Units drive Motor Modules over different Line Modules in a non-

connected topology

Figure 8: Two Control Units drive Motor Modules over different Line Modules in a

mixed topology

Page 22: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

1 System and Problem Working principle of SINAMICS components

12

1.4.6 Architectural problem in multi Control Unit environment

The configuration shown Figure 8 provides an insight in the architectural problem implied

with the hierarchical topology chosen.

The DRIVE-CLiQ link is strictly a master-slave bus system. There is no “horizontal” com-

munication link between the two Control Units shown in 8 and the DRIVE-CLiQ is not capa-

ble to handle signal transmission between two master devices, here Control Units. However

for the configuration to work properly the “In-feed ready” from Active Line Module 2 has to

be received by Control Unit 1 and vice versa.

Siemens AG provides a solution for the architectural problem by drawing a signal wire be-

tween the Control Units to transmit the “in-feed ready” signal. The following Figure 9 shows

a circuit diagram including the wire between Control Unit 2 and Control Unit 1.

This configuration was taken as the initial project problem for the innovative design project.

Shortcomings and issues with the ‘patch’ solution are described in the following chapters

along with solution concepts developed during the innovative design project to address the

initial situation.

Figure 9: Current 'patch' solution to overcome architectural problem in multi Control

Unit environment

Page 23: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Initial problem statement

13

2Task and Project

The following chapter provides an overview of the steps taken towards the project start. It

includes the communication between the Author as consultant and Siemens AG as client:

to define the initial problem and

to agree on a project framework and schedule.

The following path with the indicated steps has been taken:

The remaining chapter highlights the main points of the indicated steps.

2.1 Initial problem statement

The initial document provided by Drive Technologies Division of Siemens AG in May 2010

serves as a problem statement. In a five page PowerPoint Document Drive Technologies Di-

vision of Siemens made a proposal entitled “TRIZ work, Transmission of ALM Signal”. The

original document is available in German only, an extract can be found in Figure 10. The

PowerPoint Document is divided into the following slides:

1. Title page

2. Modular Drive System SINAMICS

The slide provides a schematic diagram of the hierarchical topology of a SINAMICS

Drive System using two Control Units, one Line Module and 10 Motor Modules.

It furthermore tables the key-elements and their functionality of a modular drive sys-

tem with the Control Units as central components. An optional higher-level controller

is introduced.

Meeting at

Siemens AG

Initial Problem

Statement

Project Outline

Project Con-

tract

Page 24: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Initial project meeting

14

3. Problem statement: Infeed-ready signal from Line Module

The slide names the restrictions of the SINAMICS Drive System, as there are:

The amount of Motor Modules connected to one DC-circuit is limited

The amount of Drive Objects per Control Unit is limited by computation re-

sources and DRIVE-CLiQ bandwith

Motor Modules need the Infeed-read signal originated from the Line Modules

and transmitted via Control Unit

The slide continues in defining the problem by:

As soon as the Line Module and Motor Modules are connected to different

Control Units, there is missing a comfortable option for transmission of the In-

feed-ready signal.

The slide finishes by mentioning that a patch solution for the problem is the transmis-

sion of the Infeed-ready signal between Control Units over a dedicated wire connected

to the Input/Output ports of the Control Units.

4. Task: Promotion of Infeed-ready signal from Line Module Drive Object

The slide defines the task as follows:

Work out of a solution concept for transmission of the Infeed-ready signal

from an Line Module to all Motor Modules which are connected to the same

DC-circuit

The solution concept shall be:

o independent of chosen Control Units,

o without involvement of an optional higher-level controller,

o comfortable for the user,

o without significant increasing the costs of the Motor Modules

5. Last page

Figure 10: Extract of proposal for "TRIZ work, Transmission of ALM Signal"

2.2 Initial project meeting

Based on the Initial problem statement a two hour meeting took place on 21.05.2010 at Sie-

mens AG Erlangen. The aim of the meeting was to get to know each other and to synchronize

expectations regarding project schedule and results.

2.3 Project outline

As a result of the meeting a project outline was prepared by the Author. The original docu-

ment comprises six pages. It is available in German only, an extract can be found in Figure

11.

The project outline is structured in six chapters and contains the following key items:

Page 25: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Project outline

15

1. Introduction

(…) Both sides agreed to compile approaches for the architecture gap mentioned in the

context of a master work under employment of different TRIZ methods.

This project outline describes the selected proceeding and represents the expected project

result. Time and resources needed are measures. This project outline has the goal to obtain

with all project participants the same understanding over the aspects mentioned.

2. Task

(…)

As Task for the TRIZ project one formulated:

„Development of few (1-3) high-quality proposals to solve the transmission of the “in-

feed ready” signal to all Servo Drives, which use the same DC-circuit.“

The TRIZ project is to point new solutions with Siemens for the overcoming of the archi-

tecture gap.

It is to be further examined whether in the future independently of the architecture gap,

increased communication requirements between SINAMIC control units exist. These can

arise e.g. by a more efficient energy management or by the employment in a changed sur-

rounding field.

The Drive System can be divided into the following hierarchy levels:

1 Superordinate control (e.g. SIMOTION, SINUMERIK, in addition, third of-

ferers)

2 SINAMICS (Control Unit)

3 Motor modules (SMM) and DC-circuit (ALM)

4 Motors (M)

Initially the following abstract transfer options for the „Infeed-ready signal” between

sending and receiving SINAMICS Control Unit have been discussed:

1 Transmission of the operating

signal over superordinate control

(level 1)

Appears problematic, because:

· also controls of third offerers to be used

· a data mixture on the bus is unwanted

2 Transmission of the operating

signal „horizontally“ between the

SINAMICS control unit (level 2)

Used today as compromise via “single-wire”

increased configuration expenditure; other

configurations would have to be worked out

3 Transmission of the operating

signal over hierarchically subor-

dinated motor modules/DC-circuit

(level 3)

Appears promising, to boundary conditions

to be clarified

4 Generation of the operating signal

in receiving SINAMICS control

Necessary conditions must be clarified, if

necessary. ALM signals could be helpful

Page 26: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Project outline

16

unit

5 Operation of the control without

operating signal

Would be „The ideal final result”; “to clari-

fied what prevents solution

The following boundary conditions apply for the TRIZ project.

Siemens plans in foreseeable time:

a revision of the motor modules (level 3) and the intermediate circuit, in order to

integrate further functionality. Is to be paid attention to compatibility with the ex-

isting components.

no revision of the SINAMICS control unit (level 2).

No revision of the Drive CLiQ interface.

The TRIZ project is to be worked on by Mr. Wagner coordinating the work. The follow-

ing work forms are to be used:

Which Mr. Wagner Siemens expert

* Training -

* Single discussions (Interviewers)

* Workshops (Coordinator)

* Evaluation of solution concepts

* Summary of results -

The task is to be worked on interdisciplinary by Siemens experts from the following do-

mains:

Hardware (HW), Software (SW),

System communication, System Architect.

3. Methods

In the context of the TRIZ project proposals for solution in the Workshops are to be com-

piled by means of different TRIZ methods. With the method employment the training

course expenditure is required to weigh for the Workshop participants in relation to the

expected use.

Exemplarily the following TRIZ methods are mentioned:

* TRIZ System operator Analysis of a problem situation regarding the structural

conditions (system, subsystems, supersystems) as well

as the temporal operational sequence on the different

system levels (past/before, present/now, and fu-

ture/afterwards).

* Function analysis Analysis of the existing system. Identification of com-

Page 27: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Project outline

17

ponents and functions and derivative of contradictions.

* S-curve analysis Classification of the system in the life cycle along an S-

curve.

* Contradiction analysis Uncover technical and physical contradictions in the sys-

tem.

* IFR ideal final Result Compile system goal and function which can be ob-

tained. Guarantee that problem solution is in the trend of

the technical evolution shown and standardized.

* Resources analysis Identification of free resources, which can be used for a

solution.

* Material field analysis

and 76 standard solu-

tions

Modeling it problem by SU-field analysis and synthesis

by means of standard solutions.

The Workshops shall only use well-known software products (WinWord, Excel, Visio,

PowerPoint, and Mind map) for documentation of the results. No commercial or proprie-

tary TRIZ software shall be used.

4. Time estimation and resources need

For the treatment of the TRIZ project the following basic conditions are to be considered:

* Operating time area to result summary for

Siemens June 2010 to at the End of Decem-

ber 2010

* Minimum resources load the various Sie-

mens expert

* Operating time locally by Mr. Wagner Approx. 6 working days

* Pre/reinforcement time by Mr. Wagner Approx. 10 working days

* Completion master work by Mr. Wagner Approx. 8 working days

* Delivery master work February 2011

The following progression of the project and necessary resources can be outlined. Details

have to be coordinated with Siemens.

# Period Be-

fore

place

Which

Wag

ner

MA

HW

MA

SW

MA

com

e.

MA

Ar-

chit

.

NN

(??

)

1 07/2010 „Kick off “ Workshop 4 4 4 4 4 4

2 07/2010 - Training 24 - - - - -

3 08/2010 div. Single interview 25 5 5 5 5 5

4 09/2010 1st TRIZ Workshop 6 6 6 6 6 6

Page 28: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

2 Task and Project Project contract

18

problem definition

(System Operator,

IFR, function analy-

sis)

5 09/2010 - Post processing 1st

Workshop

16 - - - - -

6 10/2010 2nd TRIZ Workshop

contradiction analysis

and approaches

6 6 6 6 6 6

7 10/2010 - Post processing 2nd

Workshop 16 - - - - -

8 11/2010 Evaluation of ap-

proaches 4 4 4 4 4 4

9 11/2010 - Result summary 16 - - - - -

10 12/2010

-

02/2011

- Completion and de-

livery master work

60 - - - - -

(Values in hours of application)

5. Expected result

The result of the TRIZ project shall be 1-3 high-quality proposals for solution for the

above mentioned task. The approaches are evaluated along a co-ordinated evaluation ma-

trix.

The result summary covers the following written documentation:

the approaches, the evaluation result, the Workshop results, the search results.

6. References

[1] Slides „ALMFreigabe.ppt “, 5 sides; Author Mr. Kreienkamp (Siemens), of

18.05.2010

Figure 11: Extract of project outline

2.4 Project contract

The project outline was agreed on by Siemens AG and subsequently a contract has been

signed.

Page 29: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Situation at client

19

3The workshops

The project was setup as a series of project workshops with additional expert interviews. This

chapter provides an insight into the existing TRIZ knowledge of the client and walks through

the workshops with focus on the workshop structure and results.

3.1 Situation at client

During the initial meeting the author was informed that the Drive Technologies Division of

Siemens AG is already used to the usage of various TRIZ tools. Siemens AG internally offers

a TRIZ program for its employees based on the MATRIZ Level scheme from the Internation-

al TRIZ-Association [5]. Furthermore projects can book internal consultants with TRIZ expe-

rience. All these TRIZ activities are supported by the Siemens AG employee and TRIZ expert

Dr. Robert Adunka.

This knowledge lead to the mutually agreed decision to adopt and focus on TRIZ tools which

are already used at Siemens AG, i.e. Function Analysis for Products, Engineering contradic-

tions, Matrix and 40 Principles, Multi-screen approach and other. The complete ARIZ cycle

was not amongst the pre-known TRIZ tools, so it was decided not to introduce ARIZ in the

workshops.

Another driving factor for the TRIZ tools used throughout the series of workshops was the

Siemens AG request to rely on standard software for documentation of the workshop results.

This lead to the decision not to use proprietary supporting TRIZ software, e.g. the TRIZ-

acquisition software package [4] developed at INSA Strasbourg.

Furthermore Dr. Adunka participated in some of the TRIZ workshops as a ‘silent’ observer

and gave feed-back to the author.

3.2 Sequence of workshops

This chapter provides an overview of the sequence of five workshops held at Siemens AG

based on the agreed work scope. Each of the five workshops had a main focus towards gener-

ation of high-level solution concepts to address the initial problem. The following Table 2

provides an overview of the main focus for each of the workshops.

Workshop Main focus

1 Innovation checklist

2 Functional model

Page 30: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Sequence of workshops

20

3 System Operator

4 Creativity session

5 Ranking of ideas

Table 2: Main focus of individual workshops

The following Table 3 provides more details about the series of workshops being held, includ-

ing date, duration and subjects and structure of each workshop session:

# Date Duration Subjects of workshop

1 27.07.10 4 hrs

6 partici-

pants

Innovation Checklist; Technical Contraction

Presentation of project topic

Alignment of Problem amongst participants

Introduction to TRIZ principles

Start of filling Innovation Checklist

Work out of main Technical Contradiction and Ideal Final

Result

Next steps

Feed-back

2 23.09.10 6 hrs

6 partici-

pants

Functional model; Solution concepts via data chan-

nels

Work out on Innovation Checklist

Walk through results from expert interviews

Creation of Functional model of system

Introduction to list of gathered ideas

Introduction to list of evaluation criteria

Introduction of concept for directions for solution concepts

via data channels

Definition of directions for solution concepts via data

channels

Next steps

Feed-back

Page 31: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Sequence of workshops

21

3 27.10.10 6 hrs

6 partici-

pants

Typical problem topologies; System Operator

Operating diagrams for typical problem topologies

Re-definition of technical problem

Walk through and align list of collected ideas including

categorization

Walk through and align list of evaluation criteria

Start creation of System operator

Elaboration on directions for solution concepts via data

channels

Next steps

Feed-back

4 11.11.10 6 hrs

6 partici-

pants

Creativity session

Creativity session using Technical Parameters and Innova-

tive Principles

Finalize System Operator and derived Trends

Walk through and align list of collected ideas including

categorization

Next steps

Feed-back

5 07.12.10 6 hrs

6 partici-

pants

Evaluation of gathered ideas; finish

Final definition of Ideal Final Result for current problem

and overall System out of System Operator

Knock-out evaluation of individual solution ideas

Final evaluation of gathered ideas along list of criteria

Definition of remaining tasks

Finalization of project

Feed-back

Table 3: Sequence of workshops

The workshops started in July 2010 and ended in December 2010. In total the group of six

people from different departments spent 28 hours in the workshops.

The participants represented the following disciplines: hardware, software, project manage-

ment, system architect, customer requirements and innovation management.

Page 32: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Documents generated during workshops

22

3.3 Documents generated during workshops

During the sequence of workshops the documents per Table 4 have been used or created. Ta-

ble 4 also shows the evolution of the individual documents over the workshops from WS1

until WS5. The following abbreviations are used:

= document prepared before workshop and used during workshop

1st,

2nd

, 3rd

= versions of document

F = final and agreed version of document

Doc.-

ref.

Content WS1 WS2 WS3 WS4 WS5

Innovation Checklist; Technical Contraction

WS1_1 Agenda for workshop 27.07.2010

WS1_2 Modeling of Problems with TRIZ

WS1_3 Innovation checklist 1st

WS1_4 Definition of the initial problem by tech-

nical contradiction, operating zone, oper-

ating time and ideal final result

1st

Functional model; Solution concepts via data channels

WS2_1 Agenda for workshop 23.09.2010

WS2_2 Innovation checklist F

WS2_3 Function analysis of system including

tree structure, component analysis,

graphical functional model

WS2_4 List of gathered ideas and evaluation

criteria

1st

WS2_5 Operating diagrams for two typical prob-

lem topologies

1st

WS2_6 Definition of directions for solution con-

cepts via data channels

1st

Typical problem topologies; System Operator

WS3_1 Agenda for workshop 27.10.2010

WS3_2 Operating diagrams for two typical prob-

lem topologies

2nd

Page 33: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Documents generated during workshops

23

WS3_3 Definition of the initial problem by

technical contradiction, operating

zone, operating time and ideal final

result

F

WS3_4 List of gathered ideas and evaluation

criteria

2nd

WS3_5 Introduction to System Operator

WS3_6 System Operator Sinamics and derived

Trends

1st

WS3_7 Definition of directions for solution con-

cepts via data channels

2nd

Creativity session

WS4_1 Agenda for workshop 11.11.2010

WS4_2 Document: Description of task for crea-

tivity workshop

WS4_3 Result of creativity workshop with

idea collection and ranking

F

WS4_4 System Operator Sinamics and de-

rived Trends

F

WS4_5 List of gathered ideas and evaluation

criteria

3rd

Evaluation of gathered ideas; finish

WS5_1 Agenda for workshop 07.12.2010

WS5_2 Definition of Ideal Final Result for cur-

rent problem and overall system

F

WS5_3 List of gathered ideas and evaluation

criteria

F

WS5_4 Knock-out evaluation of individual ideas F

Table 4: Documents generated during workshops

The documents printed in bold represent the most relevant workshop results. They are ex-

plained in more detail in the following chapters:

Innovation check-list Chapter 4.1

Definition of the initial problem by technical contradiction, op- Chapter 4.2

Page 34: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

3 The workshops Documents generated during workshops

24

erating zone, operating time and ideal final result

Function analysis of system Chapter 4.3

System Operator Sinamics and derived Trends Chapter 4.4

Result of creativity workshop with idea collection and ranking Chapter 4.5

List of gathered ideas and evaluation criteria Chapter 4.6

Page 35: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Documents generated during workshops

25

4Application of TRIZ related Tools

The primary objective of the “Problem Analysis” process is to provide a comprehensive un-

derstanding of problem and opportunity situations. This main objective and the tools used

give rise to other sub-objectives:

Defining task, problem and optimization potential;

Identifying useful and harmful functions of the system;

Analyzing system and system surroundings; describing interconnections between various

aspects of system;

Eliminating expensive, harmful and environmentally damaging components;

Identifying and using available resources to their best effect.

During the sequence of workshops several tools were used to address the initial problem to-

wards high-level solution concepts. The remaining chapter goes into detail on the individual

tools and describes the results achieved.

Page 36: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Innovation checklist

26

4.1 Innovation checklist

4.1.1 Introduction

The innovation checklist is a tool to list system- and situation related aspects in a structured

way. By filling out an innovation checklist template a comprehensive and harmonized under-

standing throughout the group of the problem situation is established.

The innovation checklist is separated into seven topics related to the problem.

(1) It starts with data to be collected about the system, its current environment and envi-

ronment to be improved. The system is to be identified, the primary useful function is

to be formulated and system structure notified.

(2) By analysis of the system environment the available resources are identified may they

be material-related, field-related, functional, informative, time-related or space-related

resources.

(3) The innovation checklist goes on with the definition of the problem situation including

discussion of the intended improvements and avoidance of disadvantages. The ques-

tion about development history of the problem needs to be answered including earlier

attempts for problem solving.

(4) The degree of freedom to change the system needs to be analysed. The question about

what is allowed to be changed and what must not change is to be answered.

(5) The selection criteria for solution concepts including performance criteria and risks

are to answered

(6) During filling out the Innovation Checklist for ideas are collected in a pool of ideas.

(7) A generic list of resources is provided to identify the resources available in the system

and its environment.

4.1.2 Application

For the workshop at Siemens AG an innovation list template in German from the company

Quality Engineers, B. Gimpel was used. Reference to the author of the checklist was main-

tained. This template is a Word file and provides a short explanation for each of the checklist

points to be filled out.

The innovation checklist tool was introduced in workshop 1. The group started to fill out the

checklist template. The task led into discussions about the system to be selected and its main

useful function.

As ‘homework’ each of the participants filled out the remaining chapters of the innovation

checklist individually and send it back to the author for consolidation.

In workshop 2 the consolidated innovation checklist was presented and harmonized. The con-

tributions of individual members of the group were maintained using a colour scheme. The

final result was agreed amongst the group.

Page 37: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Innovation checklist

27

4.1.3 Result

The final result can be found in Appendix A. Because it is in German the following Table 5

presents an extract showing the most important entries for each chapter of the checklist.

1.1 Name of system

Selected system := Supply of requested energy for motors for the demanded movements

(Short form: Energy supply unit)

Overall system := Convert movements of electromechanical axis on behalf of an applica-

tion (e.g. higher-level control) in high quality

Components of selected system:

1. Fieldbus (here only the transverse communication amongst components, without

vertical communication to higher-level control)

2. Control Unit (1 or more)

3. DRIVE-CLiQ (1 or more)

4. Active Line Module (1or more)

5. Single Motor Module (1or more)

6. DC-circuit

not included:

motors,

higher-level control,

position sensors,

encoders

Figure of selected system:

Page 38: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Innovation checklist

28

1.2 Primary useful function of system

Energy supply unit steers movements

1.3 Structure of system

See figure of selected system under 1.1.

Attention: more complex system configuration possible

several modules can be connecte in parallel to increase performance

serveral Active Line Module formations can be distributes to different Control

Units in a complex way, i.e. CU1 controls two ALM, CU2 controls four SMM

etc.

1.4 Working principle

With focus on “in-feed ready” signal:

system startup voltage free DC-circuit empty

DC-circuit precharging precharging resistor activated

Charging time t depends on performance class of system and ranges from ms to

sec

Precharging stops when voltage of DC-circuit reaches pre-defined level

precharging resistor de-activated

“in-feed ready” signal generated in ALM-DO and distributed to SMM-DOs

(…)

3.1.1 Targeted improvement

The “in-feed ready” signal belonging to an axis shall be made available at the axis. The

provision of the signal shall happen automatically and free of errors without user

interaction, wiring, usage of I/O ports, projecting.

3. Fieldbus

2. Control Unit

6. DRIVE-CLiQ

5. Active Line Module

1. Single Motor Module

4. DC-circuit

Page 39: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Innovation checklist

29

3.1.2 Desired system structure

To find a way that the “in-feed ready” signal is distributed to the motor modules without

extra wiring. Thereby it has to be assured that only those motor modules receive the signal,

which belong to the same DC-circuit.

3.2.2 Mode of action of primary harmful function

User must worry explicitly about the signal coupling fitting ALM to the associated axis.

This produces complexity and fault liability concerning incorrect project engineering.

The disadvantage results architecture from the today's „central“ architectural approach.

Information between Line Module and Motor Module is to be always led over Control

Unit. That leads to clear additional expenditure, because the interfaces of the individual

Control Units cannot deal with all Line Modules (DRIVE-CLiQ vs. no DRIVE-CLiQ).

The SIMODRIVE equipment bus from former times is missing.

It is missing to communication path parallel to the DC-circuit.

3.3 History of problem

The actual problem results from the fact that by Modularity of the concept the Line

Modules and Motor Modules can be arranged as distributed.

With the predecessor products there were no

Line Modules, controlled by software (the „infeed ready “ signal was

distributed over wire in the “equipment bus“)

No Control Unit, which regulated more than 2 Motor Modules

At least with the predecessor product SIMODRIVE was wired parallel to the intermediate

circuit wiring a so-called ‚equipment bus' parallel to the ZK, which contained also this

signal.

With the SINAMICS a control unit regulates the Line Module and six Motor Modules.

Thus the “equipment bus” could be saved for this application statistics.

3.4 Analogous solution approaches

Peer-to-Peer communication existed for the drive solutions also in the past - solutions

were:

Simolink (however caution: Ring circuit, not applicable for synchronous

devices)

Slave to Slave transverse communication with PROFIBUS („monitoring “)

In the future Device to Device transverse traffic with PROFINET („monitor,

same principle as PROFIBUS)

Similar scenarios:

Similar problem situation: Connection of one or more encoders in a distributed

Page 40: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Innovation checklist

30

machine / plant in several places with single motor drives (1: n communication

principle)

Similar Problem situation: Distributed synchronisation with SIMOTION/

PROFINET with 1: n communication principle

On the SPS IPC fair the company ISW Stuttgart showed the modulation of the speed

reference valuue onto the DC-circuit

In energy engineering data are transmitted over large distances directly over energy

transmitting wires (modulated transmissions of small data sets). The usually substantial

expenditure according to device was unfavorable.

(…)

4.1 What can be changed?

Transmission of the “in-feed read” signal over Dc-circuit, if there is a solution for it

Hardware of the Line Modules / Motor Modules to certain extent

Software

change of starting behavior, introduction of learning mode;

Protocols on existing interfaces. If necessary new interfaces could be developed or

existing could be extended, which do not have to be specially served by the

customer, but configure themself.

Idea: Motor Module identifies over DC-cirucit-communication, to which Line Module it is

connected. Thus wiring scheme is examined. Communication on DC-circuit happens,

before the DC-circuit is switched on or in the preloading phase.

4.2 What must not change?

No changes which make the hardware structure incompatible

Hardware of Control Unit

Hardware of higher-level control

Hardware of fieldbus

Basic design shall stay constant. Customer interfaces shall stay the same.

Decentral topology shall continue to exist

Control Units shall support decentralized topology

Communication path shall support remote entities

Product cost shall not increase significantly

Table 5: Extract of innovation checklist

Page 41: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Technical contradiction, operating zone,

operating time and Ideal Final Result

31

4.2 Technical contradiction, operating zone, operating time

and Ideal Final Result

4.2.1 Introduction

Contradictions appear in the process when technical requests for improvement of an existing

system are made. A contradiction occurs when trying to improve one parameter or character-

istic of a technical system and then the same or other characteristics or parameters of the

technique are affected negatively. If there is no technical or physical contradiction then it is

not inventive problem. Technical Contradictions are typically related to properties of the

whole technical system whereas Physical Contradictions relate to physical properties of one

characteristic of an element of the system.

The formulation of the Technical Contradiction aids in understanding the root of a problem

better and reveal the solution for the problem. TRIZ emphasizes the contradictions and rec-

ommends resolve them instead of usual engineering trade-offs.

It is unknown usually in advance how to eliminate the formulated contradiction in reality, but

there is always the possibility of formulating an imaginary solution named as the Ideal Final

Result.

The Ideal Final Result describes the solution to a technical problem, independent of the

mechanism or constraints of the original problem. It is the upper limit of the "ideality" equa-

tion:

Evolution is in the direction of:

Increasing benefits,

Decreasing costs,

Decreasing harm.

The Ideal Final Result in principle has the following characteristics:

The ideal system occupies no space, has no weight, requires no labour, requires no

maintenance, etc.;

The ideal system delivers benefit without harm (no undesired side effects.).

4.2.2 Application

For the workshop at Siemens AG the notation for contractions used during the AMID 2010

course was used. However the basic notation was transformed into a mind map.

The concept of contradiction and Ideal Final result was introduced in workshop 1. In work-

shop 5 it was updated to reflect the reformulation of the initial problem.

Page 42: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Technical contradiction, operating zone,

operating time and Ideal Final Result

32

4.2.3 Result

The result of the contradiction and Ideal Final Result formulated and agreed throughout the

workgroup in workshop 1 is shown in the Figure 12. The contradiction pairs were built based

on the existing ‘patch’ solution to provide the “in-feed ready” signal in a distributed Motion

Control system environment. The current ‘patch’ solution goes with a wire connecting two

Control Units to promote the “in-feed ready” signal.

Figure 12: Contradiction and Ideal Final Result from Workshop 1

Page 43: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Technical contradiction, operating zone,

operating time and Ideal Final Result

33

Figure 13: Re-definition of Ideal Final Result from Workshop 5

Page 44: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Function Analysis of system

34

4.3 Function Analysis of system

4.3.1 Introduction

Function Analysis is a process for mapping systems with problems by listing all the compo-

nents and all their interactions. This includes all negative, ineffective and excessive interac-

tions in the system. Key results of Function Analysis are:

Understanding the System and Highlighting Problems

Defining the Simplest Building Blocks for Engineering Systems

Problem Identification and Correct Problem Description

Problem List

The standard Function Analysis approach goes with the three steps:

Component analysis: determine the relevant elements of the technical system and its su-

per-system

Interaction analysis: analyze the interaction between the elements

Function modeling: model and weight the functions performed by the elements.

4.3.2 Application

For the workshop at Siemens AG a template was prepared based on Siemens AG internal

training material. The concept of Function Analysis was introduced in workshop 2.

4.3.3 Result

The final result can be found in Appendix A. Because it is in German the following Figure 14

presents the English version of the function model for the existing ‘patch’ solution connecting

two Control Units over a wire.

Page 45: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Function Analysis of system

35

Figure 14: Function model of the existing “patch solution”

Page 46: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools System Operator

36

4.4 System Operator

4.4.1 Introduction

The system operator is a tool to review the initial problem in terms of time and space. It is

particularly helpful when the problem has been stated one-dimensional only, i.e. without

looking towards the next generation of products eventually with changing requirements.

The basic principle of operation divides systems and its environment into nine segments. The

central box represents the existing system accompanied by its super-system and sub-system.

To the left are the past and to the right are the expected future system representations.

The system operator supports the identification of resources and constraints, specification of

the design requirements and is useful when evaluating solution candidates.

The exercise shall help the workgroup to overcome the psychological inertia of present and

system level only thinking before applying one of the problem solving methods of TRIZ.

4.4.2 Application

The system operator tool was introduced in workshop 3 via a short presentation.

As time span between past system box and present system box seven years were chosen. This

is the life time of one product generation making it possible to compare last, current and next

generation of Siemens AG drive control systems.

The group started to fill out the present system box in a prepared Excel template. This was

mostly a copy and paste operation from the Innovation Checklist. Thereafter the present su-

per-system and present sub-system box were filled in leading into group discussions about the

industrial environment hosting current systems.

As ‘homework’ each of the participants filled out the remaining boxes individually and send it

back to the author for consolidation.

In workshop 4 the consolidated system operator was presented and harmonized. The result

was agreed amongst the group. The discussion about the filling of the past system box un-

veiled the root cause for the current problem to transmit the “in-feed ready” signal amongst

different Control Units. The previous product generation had a parallel signal bus following

the DC-circuit line providing the capability of promoting the “in-feed ready” signal between

all connected units.

Out of the final System Operator certain system trends were derived as a support towards

evaluation of ideas.

4.4.3 Result

The final result can be found in Appendix A. Because it is in German the following Table 6

presents an extract showing the most important trends identified in the system operator.

Page 47: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools System Operator

37

Trend Past Present Future

Industrial sector

Number of axis

Project planning

tools

Communication line

2 + general usage

60

Fit for purpose

Parallel bus

3 + general usage

>100

Complex, low usability

DRIVE-CLiQ, field bus

Multi, no differentiation

TBD

Simple, self-organizing, one tool

fits all approach

TBD

Diagnosis support

Components

Topology

Energy and Signal

flow

No support for diagnosis

Centralized components

Rigid topology

Energy and signal flow

bundled

Diagnosis of energy flow

De-centralized components

Freedom in topology

Separation of energy flow and

signal flow but system does not

fully support this

Full system diagnosis

Self-adapting components

Fully flexible topology

Transparent energy flow and signal

flow, fully supported by system

Components

Communication

means

Integration level

Monolithic assembly

Device bus

uP

Separate components

DRIVE-CLiQ

ASIC

Autarchic power supply

GBit Ethernet

New ASIC

Table 6: Extract of System Operator for SINAMICS energy management unit

As a next step the following system trends were derived from the System Operator:

# Derived Trend

1 Project planning simpler and integrated

2 Energy efficiency and transparency to customer

3 Expansion of business area (solution business and product business)

4 Autarchic and self-configuring components

5 Fast bi-directional signal communication

6 Higher functional integration to reduce system components

7 Coupled control of axis (mathematical transformation of coordinates)

8 Fully observable and controllable

9 Energy feed and feed back in power networks (rules are changing)

Table 7: Derived trends from System Operator

Page 48: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Creativity workshop

38

4.5 Creativity workshop

4.5.1 Introduction

A creativity workshop shall generate high-level ideas for the project problem based on gath-

ered system and problem information. The approach chosen was based on Technical Parame-

ters defining the problem domain and Innovative Principles defining abstract solution con-

cepts. The selection of the appropriate Technical Parameters to be enhanced gives a pointer

to Inventive Principles providing abstract solution concepts. The 48 Technical Parameter and

40 Innovative Principles tabled in [Man08] built the foundation for the exercise.

Each Technical Parameter in [Man08] comes with a description of its meaning and a range of

synonyms, antonyms and similar meanings. Furthermore lists of Inventive Principles are pro-

vided per Technical Parameter with the following focus:

Inventive Principles to be considered in each problem, if the Technical Parameter shall be

enhanced

List of Inventive Principles (in decreasing order) to be considered, if the Technical Pa-

rameter shall be enhanced

Each Inventive Principle in [Man08] comes with complete descriptions and detailed solutions

triggers. These serve as abstract thinking guides and shall inspire the reader to generate ideas

and solutions.

4.5.2 Application

The creativity session took place during workshop four. The author prepared and distributed

at the beginning of the session a hand-out with the following elements:

1. The task

2. The technical contradiction (Mind map taken from workshop 3)

3. List of identified resources (taken from Innovation checklist)

4. Identified data channels (taken from workshop 3)

5. Flow-chart of proposed idea generation process

6. Selection of 11 Technical Parameters out of the list of 48 taken from [Man08]

In addition two examples of the book [Man08] were provided to the group.

The task per (1) of the hand-out was defined as follows:

o Generate ideas for the promotion of an Enabling Signal amongst Control Units

connected to the same DC-circuit

o Use:

Available resources

Page 49: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Creativity workshop

39

Selected Technical Parameter

Innovative Principles

o Take down ideas on cards

o Duration 2hrs

The flow-chart per (5) of the hand-out of the proposed idea generation process is shown in

Figure 15.

Figure 15: Flow-chart of idea generation process

Per (6) of the hand-out out of the list of 48 Technical Parameters found in [Man08] a sub-list

of 11Technical Parameters were chosen as shown in Figure 16. The selection was made to

help focus the group on the relevant Parameter for the project problem.

Page 50: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Creativity workshop

40

Figure 16: List of 48 Technical Parameter out of [Man08]

4.5.3 Result

The result of the creative session can be summarized as a series of steps as follows:

1. Generation of ideas and solution concepts including discussion amongst group members,

2. Writing each idea onto a card and pinning the card to a pin-wall,

3. Grouping ideas into categories and finding headlines for categories,

4. Ranking ideas using a simple ranking scheme based on score points (each group member

had five point to spread over ideas),

5. Based on the ranking result deciding on the ideas to follow-up.

A representation of the workshop session result, i.e.:

the idea cards and categories with headlines,

the Ranking result,

Page 51: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools Creativity workshop

41

was generated as an Excel sheet. The representation is in German and can be found in Appen-

dix A.

In total twelve ideas were generated and grouped in six categories. The ranking resulted in

two ideas with five scoring points each, one each with four and one idea with three scoring

points. The rest of the ideas had one or no scoring point.

The group decided to follow-up on the most promising four ideas with the highest ranking.

An extract, showing the headlines and the ideas with the highest ranking is listed below:

Headlines

Direct transmission

Identification during projection

Transmission via field bus

Identification through “launching”

Identification through system

Harmonisation of system structure

Ideas with highest ranking

Analysis of Line Module clock frequency as in-feed ready signal (5 scores)

“wire” inside DC-circuit rail (5 scores)

Definition of Line Module topology in engineering system (4 scores)

Identification of Line Module via voltage characteristic (e.g. voltage level during init-

phase) (3 scores)

Page 52: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

42

4.6 List of ideas, evaluation criteria and decision matrix

4.6.1 Introduction

During the series of workshops the group generated ideas towards addressing the initial prob-

lem. Three sources for ideas could be identified as follows:

The ideas were systematically generated using different TRIZ tools,

The ideas were ‘just’ expressed during the workshop sessions as an outcome of some con-

notation,

Ideas, already generated prior to the series of workshops were repeated and the group was

able see the value in the given framework.

In addition the discussions and workshops unveiled evaluation criteria for the solution con-

cepts to adequately address the problem in the given system environment. Both the ideas and

evaluation criteria were gathered and put in an Excel sheet for further processing.

The goal was to build a decision matrix for systematic analysis of the solution concepts. A

decision matrix is a means to evaluate solution concepts. It consists of establishing a set of

evaluation criteria upon which the potential options can be scored, and summed to gain a total

score which can then be ranked. The advantage of this approach to decision making is that

subjective opinions about one alternative versus another can be made more objective.

Criteria Solution concept

# Criteria details Weighting factor

(W)

Fulfilment level

(F)

W x F

1

...

Σ

Table 8: Template of decision matrix

4.6.2 Application

During the workshops various evaluation criteria were gathered and processed as shown in

Figure 17.

Page 53: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

43

Figure 17: Processing the evaluation criteria

In step (1) the collection of evaluation criteria was a continuous process throughout the

series of workshops.

In step (2) the list of criteria was discussed and refined. A total of 33 relevant evaluation

criteria were chosen by the team.

In step (3) a weighting factor scheme was introduced. The weighting factor reflects the

importance of an evaluation criterion to the situation. One out of the following four

weighting factors was chosen for each evaluation criteria:

- KO: (knockout) the criteria must be fulfilled; if not, the idea under evaluation will

not undergo further discussion

- 9: very important evaluation criterion

- 5: rather important evaluation criterion

- 3: “nice to have” evaluation criterion

A total of nine knockout criteria were chosen. A total of 14 very important, 3 rather im-

portant and 6 “nice to have” evaluation criteria were chosen.

In step (4) a rating scale for each criterion was chosen using the following scheme:

- OK / NOK: knockout criteria met / not met

- 9: high/very high level of fulfilment

- 3: medium level of fulfilment

- 0: no/low level of fulfilment

Criteria Solution concept

# Criteria details Weighting factor

(W)

Fulfilment level

(F)

W x F

KO: (knockout)

9: very important

5: rather important

3: “nice to have”

OK/NOK: knockout criteria met/not met

9: high/very high level of fulfilment

3: medium level of fulfilment

0: no/low level of fulfilment

Page 54: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

44

1 Support of complex

system architectures

KO OK

33 Increase of system

complexity from cus-

tomer standpoint

9 9 81

Σ 1149

Table 9: Decision matrix with value ranges

During the workshops various ideas were gathered and processed as shown in Figure 18.

Figure 18: Processing of ideas

In step (1) the collection of ideas was a continuous process throughout the series of work-

shops.

In step (2) the ideas were categorized to fall into one of the following categories:

- Communication

- Modulation

- Architecture

- Signal generation

- Control

In step (2) a second categorization scheme based on the flow of the “in-feed ready” signal

was introduces as follows:

- Signal flow over higher-level / super-system communication means

- Signal flow over peer-to-peer / system communication means

- Signal flow over lower-level / sub-system communication means

Table 10 shows the template for the list of ideas.

In step (3) each idea in the list was checked against the knockout criteria.

In step (4) three most promising solution concepts were chosen to undergo the scoring.

The solution concepts were chosen to represent each of the possible flows of the “in-feed

read” signal as per step (2).

Page 55: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

45

In step (5) each of the three selected solution concepts underwent the scoring process.

Each rating was multiplied by the weight. The points for each option were added. The

outcomes were solution concepts with certain scores. The relative scores generated mean-

ingful discussions.

# Name Category Idea description

KO

Hig

her

-lev

el

Pee

r-t

o-p

eer

Low

er-l

evel

Table 10: Template for list of ideas

4.6.3 Result

Step (1): During the workshops at total of 25 ideas were generated.

Step (2): The 25 ideas fell into the following categories

o Communication = 13

o Modulation = 3

o Architecture = 5

o Signal generation = 3

o Control = 1

Step (3): Out of the 25 ideas 10 were identified as not applicable, i.e. knockout. The re-

maining 15 ideas were taken as candidates for the scoring process. The remaining 15 ideas

fell into the following categories:

o Communication = 10

o Modulation = 2

o Architecture = 1

o Signal generation = 2

o Control = 0

Step (4): Out of the 15 remaining ideas three ideas were selected to undergo the scoring

process. The following three ideas were selected:

# Name Category Idea description

KO

Hig

her

-lev

el

Pee

r-t

o-p

eer

Low

er-l

evel

4 CU-CU

Communi-

Communica-

tion

Introduction of a CU-CU

communication via higher-

1

Page 56: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

46

cation 1 level instance using existing

media

5 CU-CU

Communi-

cation 2

Communica-

tion

Introduction of a CU-CU

communication without

higher-level instance using

new media, e.g. DRIVE-

CLiQ

1

9 Modula-

tion DC-

circuit

Modulation Transmission of „in-feed

ready“ signal via DC-circuit.

Introduction of modulation

of signals over DC-cirucit

1

Step (5): The scoring process resulted in the following scoring sums:

# Name Category Idea description Scoring sum

9 Modula-

tion DC-

circuit

Modulation Transmission of „in-feed

ready“ signal via DC-circuit.

Introduction of modulation of

signals over DC-circuit

1179

4 CU-CU

Communi-

cation 1

Communica-

tion

Introduction of a CU-CU

communication via higher-

level instance using existing

media

1149

5 CU-CU

Communi-

cation 2

Communica-

tion

Introduction of a CU-CU

communication without high-

er-level instance using new

media, e.g. DRIVE-CLiQ

924

The complete final result in German and can be found in Appendix A.

The following Figure 19 shows a circuit diagram for the solution concept 9, “Modulation DC-

circuit”, where the “in-feed ready” signal is transmitted via DC-circuit. The red blocks as ap-

pendix to the individual modules indicate the presence of a modulation / de-modulation unit

placed on the DC-circuit. The red arrows indicate the data path for the individual signals. The

solution concept shows an innovative way to close the communication gap between two or

more Control Units.

The hardware experts from the project group successfully checked the mode of action using

existing out of the shelf equipment. They furthermore gave a promising indication about the

additional costs for introduction of such modulation / de-modulation units.

Page 57: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

4 Application of TRIZ related Tools List of ideas, evaluation criteria and decision

matrix

47

Figure 19: Circuit diagram of solution concept 9 “Modulation DC-circuit”

Page 58: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” Introduction

48

5 TRIZ tools applied “offline”

5.1 Introduction

During the professional project only a view tools out of the TRIZ tool-set were used. This was

mainly due to the agreement with the client per Chapter 3.1 to focus on TRIZ tools which are

already uses at client. This set of tools does not include ARIZ and other TRIZ-related tools

thought at INSA. This lead to the decision to apply various TRIZ tools to address different

aspects of the project problem in parallel to the project. This chapter describes the approaches

taken and the results achieved.

5.2 Problem Graph

Introduction

The tool “Problem Graph” can be applied during the analysis of initial situation. It was intro-

duced during Module 8 of the AMID 2010 course [Cav10]. The tool uses a graphical repre-

sentation to express a problem graph. It can be applied to complex and fuzzy initial situations

with the aim of finding the core problem to be solved. The building blocks of the graph are

‘problems’ and ‘partial solutions’ expressed as sentences reduced to their essentials.

The aim of application of the tool is to apprehend a fuzzy initial situation and to turn it into a

clearly stated Problem Graph. A ‘Starting Problem’ has to be identified, which is the problem

which appears to be most relevant. In the next steps an ‘as complete as possible’ graph of the

problematic shall be developed.

The syntax for describing the problem is a sentence with the syntax: <subject> + <verb> +

<complement>. The syntax shows that the problem is not notified as a contradiction. The syn-

tax for describing the partial solutions is: <Verb in infinitive form> + <complement>. Only

known partial solutions shall be notified, i.e. no ideas.

Certain rules shall be applied to the graph to identify the core problem which can be different

from the starting problem.

Application

The tool “Problem Graph” was applied to the innovative design project. As starting problem

the initial project problem was taken. Only partial solutions expressed by the experts were

added to the graph. The result is shown in Figure 20.

Page 59: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” Problem Graph

49

Figure 20: Problem graph for initial project problem

Result

Figure 20 shows a short problem graph without having any long chains of problems indicating

the root problem. To the author it became clear during the exercise that the initial problem is

well enough defined and that there is no need to apprehend any fuzzy initial situation to de-

rive a core problem.

Page 60: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Analysis of the initial situation

50

5.3 ARIZ - Analysis of the initial situation

Introduction

During Module 6 of the AMID 2010 course the concept of “Analysis of the initial situation”

as found in ARIZ 85a was introduced ([Kuc10], [Dub10]). This is a nine step algorithm to

reduce the research area and to transform an ‘Initial Situation’ into a specific problem.

Here ‘Initial Situation’ can be defined as any situation with chosen undesirable effects, name-

ly features or properties. However in the ‘Initial Situation’ there is no clear problem state-

ment. The transformation process aims towards formulation of a technical contradiction to

define the specific problem as outcome of the ‘Initial Situation’. The following Figure 21

([Dub10]) shows the transformation process supported by the “Analysis of initial situation”.

Figure 21: Transformation during Analysis of Initial Situation

Application

Selected steps out of the nine steps of the analysis of the initial situation have been applied to

the ‘Initial Situation’ of the project as follows. The steps are numbered from 0.1 to 0.9.

The steps were performed either as a ‘homework’ of the author or during tutorial session

throughout the AMID 2010 course, partly with support of the teachers, namely Dmitry Ku-

charavy and Sébastien Dubois.

Certain answers and phrases are taken from the Innovation Checklist found in Chapter 4.1 and

other results from the different TRIZ related Tools applied to the project problem during the

workshops.

0.1 Determine the final goal of a solution.

a. What is the technical goal (what characteristic of the object must be changed)?

A motor control system converts position control signals to electrical motor parameters.

The system consists of 1+ control units, a power supply, 1+ motor supplies and communi-

cation lines. After Power-On the power supply generates an “in-feed ready” signal to the

Control Unit. Larger systems contain 2+ Control Units. There is no communication link

between them. An auxiliary solution goes with an I/O wire between the Control Units to

transmit the “in-feed ready” signal. This solution has drawbacks and needs configuration.

A better solution is sought for.

b. What characteristic of the object cannot be obviously changed in the process of solving

a problem?

Page 61: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Analysis of the initial situation

51

No changes which make the hardware structure incompatible

Hardware of Control Unit

Hardware of higher-level control

Hardware of fieldbus

Basic design shall stay constant. Customer interfaces shall stay the same.

Decentral topology shall continue to exist

Control Units shall support decentralized topology

Communication path shall support remote entities

Product cost shall not increase significantly

c. Which expense will be reduced if the problem is solved?

Not performed

d. What is the roughly acceptable expense?

A solution shall only have a minimal cost increase to the components.

e. What is the main technical / economical characteristic that must be improved?

To find a way that the “in-feed ready” signal is distributed to the motor modules without

extra wiring. Thereby it has to be assured that only those motor modules receive the sig-

nal, which belong to the same DC-circuit.

0.2 Investigate a "bypass approach".

Imagine that the problem, in principle, cannot be solved. What other, more general prob-

lem, can be solved to reach the required final result?

a. Proceed to the super-system (for the given system where the problem originated

from) and reformulate the original problem at the level of the super-system.

Transmission of the signal over super-system components and data channels provided by

super-system.

b. Proceed to the sub-systems (the given system contains a set of sub-systems) and re-

formulate the original problem at the level of sub-systems (e.g. substances).

Transmission of signal over sub-system components and data channels provided by sub-

system.

c. Reformulate the original problem for three levels (super-system, system, sub-system)

by replacing the required action (or feature) with an opposite action (or feature).

Not performed

Page 62: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Analysis of the initial situation

52

0.3 Determine which problem, the ORIGINAL or the BYPASS, makes the most sense to

solve.

The original problem was chosen to be solved

0.4 Determine the required quantitative characteristics:

The following characteristics were chosen which have most effect on undesirable effect:

Projection effort in €

Bandwidth of data channel in bits

0.5. Increase the required quantitative characteristics by considering the time of inven-

tion implementation.

The characteristics from step 0.4 are intensified during the time of implementation (max.

2 years):

Projection effort in € 0 €

Bandwidth of data channel in bits 8 bits

0.6 Define the requirements for the specific conditions in which the invention is going to

function.

a. Consider specific conditions for manufacturing the product: in particular, the accepta-

ble degree of complexity.

Manufacturing costs are not applicable

Projection costs to be considered; the solution shall configure itself without explicit pro-

jection effort

b. Consider the scale of future applications

Future application of motion control systems will provide (see System Operator results in

Table 6):

o Full system diagnostics

o Self-adapting components

o Flexible topology

o Transparent energy flow and signal flow, fully supported by system

0.7 Examine if it is possible to solve the problem by direct application of the Inventive

Standards. If the problem has been solved, go to development of a technical solution. If

the problem is still unsolved, go to 0.8.

Identification of S1, S2:

Page 63: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Analysis of the initial situation

53

o S1: Product = power signal function

o S2: = Tool = power signal wire

The interaction of the tool and product shall be enhanced, i.e. the efficiency of the SFM. The

standards from Class 2 Evolution of SFMs, groups 2.1 and 2.2 were checked. A closer look

was taken on 2.1.1 Transition to chain SFM, 2.1.2 Transition to dual SMF and 2.2.1 Transi-

tion to more controlled fields.

The problem could not be solved by applying the various transformations.

0.8 Define the problem more precisely utilizing patent information.

Not applied

0.9 Use STC (Size, Time, Cost) operator.

The STC operator was applied as follows:

The problem could not be solved through intensification.

Page 64: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

54

5.4 ARIZ - Selected steps

ARIZ stands for Algorithm for Inventive Problem Solving. It is a series of steps that leads

from initial problem, which can be formulated wrongly to a well-defined formulation of a

system conflict. ARIZ supports the incremental better understanding of the problem by re-

formulating the initial problem during the process. It combines different TRIZ tools to support

problem analysis and finding solution concepts for technical problems.

Introduction

During Module 7 of the AMID 2010 course the concept of ARIZ or Algorithm for Inventive

Problem Solving as found in ARIZ 85c was introduced [Kuc10].

The following Figure 22 ([Dub10]) shows the transformation process during application of

ARIZ starting from ‘Initial situation’ towards the ‘Engineering solution’.

Figure 22: Major steps of ARIZ

The ARIZ 85c process has up to nine steps and can be separated into the stages as per Table

11.

Stage Aim Steps (S1 .. S9)

Analytical

stage

Problem Definition and

Reformulation

S1: Analysing the problem

S2: Analysing the problem model

Page 65: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

55

Operational

stage

Resolving Physical con-

tradiction and

Problem refining

S3: Defining Ideal Final Result and

Physical Contradiction

S4: Mobilizing and utilizing of sub-

stance-field resources

S5: Applying the Knowledge base

Evaluation

and Engi-

neering

stage

Developing Solution

concept,

Analyzing Problem

solving process

S6: Changing or substituting the prob-

lem

S7: Analysing the method of resolving

the physical contradiction

S8: Applying the obtained solution

S9: Analysing the problem solving

process

Table 11: Stages of ARIZ

The expected results of each step are listed in the following Table 12.

Steps (S1 .. S9) Results

(S1): Analysing the problem Technical contradiction

Mini-problem definition

Model of problem

Partial solutions

(S2): Analysing the problem model Operational Zone

Operational Time

List of Resources

Partial solutions

(S3): Defining Ideal Final Result and

Physical Contradiction IFR definitions

Physical Contradiction definitions

Partial solutions

(S4): Mobilizing and utilizing of sub-

stance-field resources Unexpected view

Derived resources list

Partial solutions

(S5): Applying the Knowledge base List of Partial solutions

(S6): Changing or substituting the

problem Engineering solution concept

(S7): Analysing the method of resolv-

ing the physical contradiction Ideality level for Solution concept

Novelty (patent ability) for SC

Page 66: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

56

List of sub-problems to implement SC

Final Solution Concept

(S8): Applying the obtained solution

“Key” for analogous problems

New application for SC

Forecast about Super-System

Records to Knowledge Base

(S9): Analysing the problem solving

process Improved Creativity of Person

Proposals to improve ARIZ

Research themes to improve Knowledge

Base

Table 12: Results of ARIZ steps 1 to 9

Application

Selected steps out of the nine steps from ARIZ have been applied to the problem of the pro-

ject as follows. The steps were performed either as a ‘homework’ of the author or during tuto-

rial session throughout the AMID 2010 course, partly with support of the teachers, namely

Dmitry Kucharavy and Sébastien Dubois.

Certain answers and phrases are taken from the Innovation Checklist found in Chapter 4.1 and

other results from the different TRIZ related Tools applied to the project problem during the

workshops.

5.4.1 ARIZ-85c Step 1: Analyzing the problem

The main purpose of Part 1 is the transition from an indefinite initial problem situation to the

clearly formulated and extremely simplified description (model) – Problem Model.

As an initial task specific task were removed as follows:

Specific term Generalized term

Wire Transmitter

Power signal function performed Power signal is transmitted

I/O port Signal driver

Configuration effort Setup cost

1.1. formulate the mini-problem

A technical system for supplying requested energy for motors for demanded movements

includes power supplies, motor supplies, Control Units, signal transmitters, signal drivers

power signals.

TC1: If there is a power signal transmitter then the power signal is transmitted but signal

drivers are used and setup cost exists

Page 67: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

57

TC2: If there is no power signal transmitter then the power signal is not transmitted but

no signal drivers are used and no setup cost exists.

It is necessary, with minimum changes to the system, to transmit power signal but with-

out signal drivers used and at no setup costs.

1.2. define the conflicting elements

Product: second Control Unit

Tool: Signal transmitter

Function: to transmit power signal

1.3. describe graphic models for technical contradictions

In the graphic model of ARIZ 85c step 1.3 the following rules apply:

o The element A is always the Tool as identified in step 1.2

o The element B is always the Product as identified in step 1.2

o The element C can be the Product or other elements, e.g. environment

The following graphic conflict model was chosen.

TC1: transmitter present

Page 68: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

58

C2: transmitter absent

1.4. select a graphic model for further analysis

The model for TC1 was chosen because it supports the Main Useful Function as indicated

in the problem description.

1.5. intensify the conflict

The initial reaction is that intensification of the problem description is not possible be-

cause “present / absent” cannot be intensified. However the “Time / Size / Cost” - Opera-

tor can be used to check if intensification is still possible. Use all elements from the cho-

sen TC, i.e.

o Tool = power signal wire

o Product = power signal function

o Conflict = cost, effort, …

Candidates for intensification are:

o Setup costs raise

o Number of signal drivers used

An intensified conflict can be expressed as follows:

o Consider the power signal is transmitted but it uses all available signal drivers and

the setup costs are prohibitive expensive.

1.6. describe the problem model

The conflicting pair

- The power signal is transmitted

- The function uses all available signals drivers and the setup costs are prohibitive

expensive

The intensified conflict definition

Page 69: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

59

see Step 1.5

X-element

One must find an X-element which will neutralize usage of signal drivers and setup costs.

The graphic conflict model from Step 1.3 / Step 1.4 will be transformed into a graphic

conflict model indicating the action of the X-element.

1.7. apply the inventive standards

The graphic conflict model from Step 1.6 will be simplified and transformed into the follow-

ing Su-Field model:

The Su-Field shows both useful and harmful actions between the two substances.

The following class and group of the standards have been identified:

Class 1: synthesis of Su-fields

Group 1.2: breaking harmful actions / decomposition of SFM to eliminate or neutralize

harmful interaction

The standards from that group have been checked and the following standards were identified

as promising:

Page 70: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

60

Standard 1.2.1: Introduce 3rd

substance S3 (from outside) between S1 and S2 to block

harmful action. The standard is only applicable if it is not necessary to maintain a direct

contact between the substances. The 3rd

substance should be inexpensive or free.

Standard 1.2.2: is equal to 1.2.1 but S3 is modification of the two original substances.

Standard 1.2.3: Eliminate harmful effect of a field upon a substance. Introduce a sub-

stance to draw off upon itself the harmful effect of the field.

The application of the selected standards to the Problem Model did not solve the problem.

Page 71: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

61

5.4.2 ARIZ-85c Step 2: Analyzing the problem model

The main purpose of Part 2 is to identify available resources (space, time, substances, and

fields) that may be useful for solving the problem.

2.1 define the Operational Zone (OZ)

Analyze and describe the Operational Zone (OZ).

The Operational Zone is:

the connection zone between the Control Units

2.2 define the Operational Time (OT)

Analyze and describe the Operational Time (OT).

T2 = power-off-time, i.e. time before conflict

T1 = power-on time, i.e. time where conflict appears

Page 72: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

62

2.3. Define the Substance-Field resources (SFR)

Define the Substance and Field Resources (SFR) of the analyzed system, the environment, and the product. Compose a list of SFR.

1. System internal resources

1.1 Resources of tool = transmitter

o Wire

o Copper insulation

o Signal energy

o Conductivity

1.2 Resources of product after intensification

o Signal driver

o Micro-Processor + Software + Timer

o Electrical energy

o Field bus

2. Available external resources

Control unit 1

Power supply unit

Motor control unit

Field bus

Local area network

3. Resources of super-system

Motor movement

High voltage current

Setup / configuration software

Page 73: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

63

5.4.3 ARIZ-85c Step 3: Defining the ideal final result and the physical

contradiction

As result of applying Part 3 the image of the Ideal Final Result (IFR) should be formulated.

The Physical Contradiction (PhC) that prevents the achievement of the IFR should be identi-

fied too. The ideal solution is not always achievable, but the IFR indicates the direction of the

most powerful solution.

3.1. formulate IFR-1

The first ideal final result was formulated using the following pattern:

The X-element, without complication of the system and without harmful effects, eliminates:

[the signal drivers and setup costs]

during [power-on time]

inside the [connection zone between the Control Units]

and keeps the tool’s ability to provide

[transmission of power signal].

Remarks:

The tool’s ability the function of the tool

Transmission: convey the power signal by absent! transmitter

No signal drivers no transmission source

3.2. intensify the definition of IFR-1

The formulation of IFR-1 was intensified by introducing additional requirements:

The introduction of new substances and fields into the system is prohibited, it is nec-

essary to use the Su-Field Resources from 2.3 only.

The following order for application of existing Su-Field Resources was taken into account:

SFR of tool SFR of environment SFR of super-system SFR of product

which provides four principle paths for analysis. In practice the problem conditions cut off

some directions.

(1) SFR of tool

no resource applicable

(2) SFR of environment / external available

Control Unit 1

MCU

(3) Product

Control Unit 2

Page 74: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

5 TRIZ tools applied “offline” ARIZ - Selected steps

64

Select X-element out of [Control Unit 1], [MCU], [Control Unit 2] to form the following in-

tensified definition of IFR-1.

The X-element without complication of the system and without harmful effects, eliminates [the

usage of signal drivers and setup costs] during [power time] inside the [connection zone be-

tween control units] and keeps the tools ability to provide [power signal transmission].

Idea for solution concept derived during formulation of 3.2:

Somehow as a “one time” task the power-on time will be measured and the result

transmitted to and stored in Control Unit 2. Control Unit 2 delays start of operation for

the pre-measured time.

3.3. identify the Physical contradiction for the Macro-level

Identify and describe the Physical contradiction at Macro-level using the following pattern

The Control Unit 1 has to be “transmissive” to provide the power signal and does not have to

be “transmissive” to prevent usage of signal drivers and setup costs.

3.4. identify the Physical contradiction for the Micro-level

Identify and describe the Physical contradiction at Micro-level using the following pattern:

There should be particles of a substance <indicate their physical state or action> in

the Operational Zone in order to provide <indicate the macro-state according to step

3.3>

and there should not be the particles (or particles should have the opposite state or

action)

in order to provide <indicate another macro-state according to step 3.3>

No valid physical contradiction for the micro-level of the project problem found

3.5. formulate IFR-2

Identify and describe the Ideal Final Result (IFR-2) using the following pattern:

The Operational Zone <indicate>

has to provide <indicate the opposite macro- or micro-states>

itself during the Operational Time <indicate it>.

No valid IFR-2 for the project problem found

3.6. apply the Inventive Standards to resolve the Physical contradiction

Check the possibility of applying the Inventive Standards to solve the new Physical Problem

that was formulated as IFR-2. If after doing this, the problem is still unsolved, go to Part 4. If

the problem is solved using the Inventive Standards it is possible to go to Part 7, however it is

recommended to continue the analysis through Part 4 anyway.

Inventive Standards to resolve Physical contradiction not applied

Page 75: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

6 Reflection of chosen approaches Introduction

65

6Reflection of chosen approaches

6.1 Introduction

The aim of the professional project was to manage an innovative design project. The method-

ical approach taken was a series of project workshops at the client using selected TRIZ tools

already known to the client (see Chapter 3.1 for details). The selected TRIZ tools were not ‘in

sync’ with the TRIZ tools and pedagogical approach thought during the AMID 2010 course.

For example the AMID 2010 course did not introduce the Innovation checklist which was

used during the project workshops. On the other side the AMID 2010 course strongly focused

on ARIZ 85c and the initial steps of ARIZ 85a, both algorithms were not used during the pro-

ject workshops.

The author decided to apply different TRIZ tools taught during AMID 2010 in parallel to the

innovative design project to address different aspects of the project problem (see Chapter 5

for details) and to be able to compare the results of the different approaches.

This chapter discusses the different approaches chosen towards solving the initial project

problem during the series of workshops at Siemens AG and during the parallel “offline” activ-

ities.

6.1.1 Problem solving

A problem can be seen as a gap between an initial or existing situation and the desirable situa-

tion [Sav00]. Problem solving then is a transformation taking one or more steps to span the

gap between the existing situation and the desirable situation or at least towards a situation

closer to the desirable one.

One can distinguish between routine problems and non-routine problems. A routine problem

can be defined as one where all steps to a solution are known. A non-routine problem contains

at least one critical step, i.e. a step which is mandatory towards the solution, but it is unknown

how to solve it. Inventive problems fall into the category of non-routine problems, i.e. they

contain at least one critical step towards a solution and the solution itself is unknown. Prob-

lem solving of inventive problems can lead into different directions. The aim of application of

TRIZ tools is to find technical solutions. Because one or more critical steps have to be solved

the technical solution can be named as an innovative solution.

The application of TRIZ tools to inventive problems aims for a systematic innovation ap-

proach in products and processes, where the “trial-and error” and “tradeoff thinking” ap-

proach is eliminated.

Page 76: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

6 Reflection of chosen approaches Introduction

66

Independent of the TRIZ tools used it is possible to identify the following stages of a typical

problem solving cycle as part of a product development process [Fey05]:

Recognition of need

Cleary defined problem

Conceptual solutions

Prototype

Detailed design

TRIZ tools can support problem solving throughout the whole cycle; however a focus can be

set on the first three stages, i.e. the transformation of an initial situation into conceptual solu-

tions. Different TRIZ tools can be allotted to the different stages and transformations during a

problem solving cycle.

6.1.2 Problem solving cycle and tools used during project workshops

Phase Tool

Analysis Innovation checklist

Functional Analysis of system

Ideality

System Operator

Abstraction Technical contradiction

Idea generation Inventive Principles

Technical parameters

Resources

Specialization

Evaluation Evaluation criteria

Decision matrix

Note: terms in bold not standard TRIZ tools

6.1.3 Problem solving cycle and TRIZ tools used as “offline” task

Phase Tool

Analysis Graph of problems

ARIZ 85a initial steps

ARIZ 85c Step 1: Analyzing the problem

ARIZ 85c Step 2: Analyzing the problem model

Page 77: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

6 Reflection of chosen approaches Introduction

67

Abstraction ARIZ 85c Step 3: Defining Ideal Final Result and Physical Contradic-

tion (partially)

Idea generation

Specialization

Evaluation

6.1.4 Comparison of approaches

During the project setup phase several abstract schemes to address the initial project problem

were formulated (see Chapter 2.3). This was done without knowing any solution concepts but

by formulation of principle communication paths for transferring the signal in question. Look-

ing at these abstract schemes it becomes clear that most of them are solution approaches by-

passing the initial project problem. In ARIZ 85a Step 0.3, the following decision has to be

made during analysis of the initial situation: “Determine which problem, the original or the

bypass, makes the most sense to solve.” The project workshops focused on the latter one.

During the “offline” activities a different approach was chosen. The author tried to solve the

original problem, i.e. he tried to intensify the initial project problem during the various ARIZ

steps to see if there is a point in time where ARIZ guides towards a solution for the original

problem.

The approaches can be summarized as focusing on different problems:

Workshops bypass problem

“offline” original problem

6.1.5 Comparison of results

The project workshops resulted in a few solution concepts. The most promising three solution

concepts were scored using a decision matrix (see Chapter 4.6.3). The results met the clients’

expectations.

The “offline” activities resulted in some partial solutions without unveiling a feasible solution

concept. The results did not meet the author’s expectations.

The following table compares different aspects of the solution approaches taken:

Feature Project workshops “offline” activities

Feasible solution concepts

found

Yes No

Group result Yes No

Efficient path towards solu- Yes Questionable

Page 78: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

6 Reflection of chosen approaches Introduction

68

tion concepts ARIZ has many pitfalls and time

consuming tasks to perform

Approach easy to introduce

to non-TRIZ domain experts

Yes No

ARIZ steps are non-intuitive for

newcomers and would need timely

introduction

Applicability of tools used on

specific project problem

Adequate Questionable

ARIZ appears to be a better fit for

non-IT problems

ARIZ is a TRIZ instrument to support the problem solving cycle. [Sav00] states that ARIZ

aims for resolving technical problems with a high degree of difficulty. He further on notes

that:

ARIZ is specially aimed at solving non-typical inventive problems by elaborating various

TRIZ heuristics;

Less than 1% of all technical problems require modern ARIZ (most inventive problems

can be solved by individual TRIZ heuristics and/or instruments).

It appears to the author that the application of ARIZ to the project problem under the bounda-

ry conditions formulated by the client would not have led to promising solution concept in the

timeframe and with the available resource.

Page 79: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

7 Glossary Introduction

69

7Glossary

The following glossary makes use of definitions found in [2], [3] and other Web-sources.

Term Definition

AC Alternating Current. Typical power source that comes 'out of the wall'.

Single phase and three phase are standard. In the USA the standard val-

ues are 120VAC single phase and 208VAC three phase.

Actuator Device for output motion, e.g. hydraulic pump, air cylinder, linear actu-

ator, or electric motor.

Amplifier In motion control this is the component that follows the command from

a controller and provides power to the motor. In the strictest sense, am-

plifiers operate in current mode where the output current is proportional

to the input command signal. In the motion control industry, the terms

amplifiers and drives are often interchanged.

Analog The property of having continuous variability in output.

Axis The components that control each degree of freedom in a machine can

be considered an axis. An X-Y-Z machine is a three axis machine where

the X and Y axes control movement in the horizontal plane and the Z

axis controls up and down motion. Each axis can consist of a controller,

drive, motor, and transmission components necessary to couple to the

load.

Closed loop Closed loop controls use feedback to correct for errors in the system.

Central heating in a building is a common example. The thermostat

measures the temperature and turns the heat on or off as necessary. If

the temperature is too low the heat turns on, if the temperature is too

high the heat turns off. The result is the temperature will hover around

the set-point throughout the day regardless external fluctuations like

time of day or the weather.

Closed loop control in motion control takes the form of a motor, drive,

encoder and controller. The encoder is the feedback and senses if the

motor is out of position. If out of position the system corrects itself until

it is in the correct location.

DC Direct Current. A current source that is constant.

Digital Expression of discrete numerical values. Digital components communi-

cate and interact using the 1's and 0's of binary code.

Page 80: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

7 Glossary Introduction

70

Drive In motion control this component follows the command from a control-

ler and provides power to the motor. A drive can operate in current

mode, velocity mode or position mode. It can be commanded by many

means such as analog signals, step and direction, encoder following and

through network commands among others.

Drive system A drive system includes all components of a family of products (e.g.

SINAMICS) belonging to a drive. A drive system includes components

such as → Line Modules, → Motor Modules, → Encoders, → Motors,

→ Terminal Modules and → Sensor Modules, as well as complemen-

tary components such as reactors, filters, lines, etc.

DRIVE-CLiQ

Abbreviation of Drive Component Link with IQ.

Communication system for connecting the various components of a

SINAMICS drive system, such as the → Control Unit, the → Line

Modules, the → Motor Modules, the → Motors and speed/position en-

coders.

The DRIVE-CLiQ hardware is based on the Industrial Ethernet standard

and uses twisted-pair lines. The DRIVE-CLiQ line provides the trans-

mitted and received signals and also the +24 V power supply.

Encoder A high precision feedback device that gives position and velocity data.

Resolution ranges from just a few hundred counts per revolution to over

a million counts per revolution.

An encoder is a measuring system capturing actual values for the speed

and/or angular/position values and provides them for electronic pro-

cessing. Depending on the mechanical construction, encoders can be

incorporated in the → Motors (→ Motor encoder) or mounted on the

external mechanics. Depending on the individual type of movement, we

distinguish between rotary encoders and translatory encoders (e.g. linear

encoder). In terms of measured-value provision, we distinguish between

→ Absolute encoders (code sensors) and → Incremental encoders.

Industrial Auto-

mation

Making products under the control of computers and programmable

controllers. Manufacturing assembly lines as well as stand-alone ma-

chine tools (CNC machines) and robotic devices fall into this category.

Legacy Legacy products are older products that are no longer manufactured.

Line filter Line filters are filters in the converter input which protect the network

from harmonic loads and/or interference voltages created in the convert-

er.

Line filters can be passive or active filters, for the lower-frequency har-

monics (designated with the term line feedback) with 5, 7, 11, 13, etc.

times the line frequency, and also filters for high frequency interference

Page 81: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

7 Glossary Introduction

71

voltages from 10 kHz onward (i.e. RFI suppression filters).

With SINAMICS, the term line filter only designates passive RFI sup-

pression filters.

Motion Control Motion control is a sub-field of automation, in which the position and/or

velocity of machines are controlled using some type of device such as a

hydraulic pump, linear actuator, or an electric motor, generally a servo.

Motor Module A Motor Module is a power unit (DC‑AC inverter) ensuring the power

supply for the connected motor.

Power is supplied through the → DC link of the drive group.

A Motor Module must be connected to a → Control Unit via →

DRIVE-CLiQ. The open-loop and closed-loop control functions of the

Motor Module are stored in the Control Unit.

There are → Single Motor Modules and → Double Motor Modules.

PROFIBUS Field bus in accordance with the IEC 61158 standard, sections 2 to 6.

Sensor A sensor is a device that measures a physical quantity and converts it

into a signal which can be read by an observer or by an instrument.

Servo Servo control, which is also referred to as "motion control" or "robotics"

is used in industrial processes to move a specific load in a controlled

fashion.

Servo amplifier The servo drive is the link between the controller and motor. Also re-

ferred to as servo amplifiers, their job is to translate the low energy ref-

erence signals from the controller into high energy power signals to the

motor.

Servo drive The servo drive is the link between the controller and motor. Also re-

ferred to as servo amplifiers, their job is to translate the low energy ref-

erence signals from the controller into high energy power signals to the

motor.

Stepper motor A stepper motor is an electromechanical device which converts electri-

cal pulses into discrete mechanical movements. The shaft or spindle of a

stepper motor rotates in discrete step increments when electrical com-

mand pulses are applied to it in the proper sequence. Advantages: Af-

fordable solution for low torque and low/medium performance position-

ing. Disadvantages: Lower efficiency and performance than servos.

Open loop An open loop system does not rely on feedback for control. A washing

machine is a good example. The machine goes through its cycles based

on a timer. It spends a set amount of time on each process then moves to

Page 82: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

7 Glossary Introduction

72

the next.

Position loop The position loop regulates the position of the motor or system. The

position loop uses feedback such as an encoder to ensure that the actual

position is equal to the commanded position. The position loop will

compensate for position errors by applying more torque to push the sys-

tem back into position.

Power supply The source that supplies voltage and current to the drive.

PWM Pulse Width Modulation. AMC drives use PWM to control the current

to the motor. By changing the Pulse Width (duty cycle) the output volt-

age and current can be controlled.

Page 83: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

References

73

References

[Alt85]

G.S. Altshuller. Algorithm of inventive problem solving, 1956-1985, 33 pages.

Source: http://www.seecore.org/d/ariz85c_en.pdf

[Alt85-2]

G.S. Altshuller. Analysis of the initial situation, 1985, 2 pages. Source:

http://www.seecore.org/d/ais85a_en.pdf

[Cav10]

Denis Cavallucci. Innovative Design, Module 8, Analysis of Initial Situation (Day 4),

April 01, 2010, hand-out, 30 pages.

[Dub10]

Sébastien Dubois. Analysis of the initial situation – Introduction to ARIZ, Module 8,

AMID 2010, hand-out, 37 pages.

[Fey05]

Victor Fey and Eugene Rivin. Innovation on Demand, 2005, Cambridge University

Press, ISBN 978-0-521-82620-4.

[Kuc10]

Dimitry Kucharavy. Analysis of the initial situation, Module 8, March 23, 2010, hand-

out, 22 pages.

[Kuc10-2]

Dimitry Kucharavy. ARIZ: algorithm of inventive problem solving, March 23, 2010,

hand-out, 70 pages.

[Man08]

Darrell Mann, Simon Dewulf, Boris Zlotin, Alla Zusman. Matrix 2003 Update der TRIZ

Widerspruchsmatrix (aus dem Englischen von Horst Th. Nähler und Carsten

Gundlach), 2008, ISBN 978-3-00-0241994.

[Sav00]

Semyon D. Savransky. Engineering of creativity, 2000, CRC-Press, ISBN 0-8493-

2255-3.

Page 84: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Referenced Web Resources

74

Referenced Web Resources

[1] http://en.wikipedia.org/wiki/Motion_control (accessed on Februray 15, 2011).

[2] http://www.a-m-c.com/support/glossary.html (accessed on Februray 15, 2011).

[3] https://eb.automation.siemens.com/goos/catalog/Pages/ProductData.aspx?catalogRegio

n=GB&language=en&nodeid=10045435&tree=CatalogTree&regionUrl=/uk#activetab=

product& (accessed on Februray 16, 2011).

[4] http://lgeco.insa-strasbourg.fr/trizacquisition/versions/light/ (accessed on February 21,

2011)

[5] http://www.triz-wiki.de/attach/TRIZUnternehmenDeutschland/Adunka_2008-06-

05_Vortrag_052808105044.pdf (accessed on February 21, 2011)

Page 85: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Appendix A

75

A Documents generated during

workshops

The appendix A contains the final version of the documents in German generated during the

workshops in the following sequence:

1 Innovation check-list

2 System Operator Sinamics and derived Trends

3 Result of creativity workshop with idea collec-

tion and ranking

4 List of gathered ideas and evaluation criteria

Page 86: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Appendix A-1

Innovation check-list

Page 87: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 1 / 23

Version: 2010-09-19 [WA] (3 Rückläufe eingefügt)

“Die genaue Formulierung eines Problems ist wesentlich schwieriger als dessen Lö-

sung, welche dann nur noch eine Frage des abstrakten Denkens und der experimen-

tellen Kenntnisse ist.” [Albert Einstein]

Page 88: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 2 / 23

1. System Informationen über das zu verbessernde System

1.1 Systembezeichnung

Benutzen Sie die Standardbezeichnung für ihr System – falls eine solche existiert.

Übersetzen Sie diese in eine allgemeinverständliche Umgangssprache. Verwen-

den Sie dabei das Motto: „Wie erkläre ich es meinem Kind?“

Gesamtsystem := Bewegungen von elektromechanischen Achsen im Auftrag einer

Applikation (z.B. überlagerten Steuerung) in hoher Qualität umsetzen.

Ausgewähltes Teilsystem := Bereitstellung angeforderter Energie für Motore für die

geforderten Bewegungen (Kurzform: Energiebereitstellungseinheit)

Komponenten des ausgewählten Teilsystems:

1. Feldbus (hier nur für Querbeziehungskommunikation, aber ohne vertikale

Kommunikation zu übergeordneter Steuerung)

2. CU (1+)

3. DRIVE-CLiQ (1+)

4. ALM (1+) (nicht BLM)

5. SMM (1+)

6. Zwischenkreis

(nicht: Motore, übergeordnete Steuerung, Positionssensoren, Drehgeber)

Erläuterung zu Komponenten des ausgewählten Teilsystems:

1. Feldbus := Kommunikationspfad zwischen CU, Querbeziehungskommunikation

2. CU := Regelung von Antrieben (SMM) und Einspeisungen (ALM)

3. DRIVE-CLiQ := Kommunikationpfad zwischen CU und ALM / SMM

4. ALM := Verfügbarmachen eines Zwischenkreises (hier geregelt) (3P≈ V=); V=

innerhalb Betriebsbereich halten; Energiebereitstellung für SMM

5. SMM := Entnahme Leistung aus ZK und variable Bereitstellung Energie für M (V=

3P≈)

6. Zwischenkreis := Stromverteilerleiste

Bild des ausgewählten Teilsystems

Page 89: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 3 / 23

1.2 Primär nützliche Funktion des Systems (PNF)

Ein System stellt dann eine Funktion zur Verfügung, wenn etwas anderes beein-

flusst wird. Eine Funktion beschreibt man mit einem Verb, das die Aktivitäten eines

oder mehrerer Objekte im System charakterisiert. Unspezifische Begriffe, wie „zur

Verfügung stellen“ und „erzeugen“ sollten vermieden werden.

Bewegungen steuern.

Energiebereitstellungseinheit steuert Bewegungen

[gesteuerte Umsetzung von elektrischer Energie in mechanische Bewegung]

1.3 Systemstruktur

Die Struktur oder Konstruktion des Systems wird im statischen Zustand – wenn

das System nicht arbeitet – beschrieben und mit Konstruktionsunterlagen, Zeich-

nungen, Skizzen illustriert. Nehmen Sie auch verbale Beschreibungen des Ent-

wicklers bzw. Konstrukteurs zu Hilfe

Siehe screen-shot oben

Achtung: komplexe Systemstruktur möglich

Mehrere Module parallel schaltbar zur Leistungssteigerung

Mehrere ALM-Verbände komplex auf CU verteilt, z.B. CU1 regelt 2 ALM;

CU2 regelt 4 SMM usw.

1.4 Arbeitsweise

Beschreiben Sie das System, wie es bei der Ausübung der primär nützlichen

Funktion (PNF) arbeitet und wie die Subsysteme und Einzelelemente interagieren.

4. Feldbus

5. CU

6. DRIVE-LIiQ

3. ALM

2. SMM

1. Zwischenkreis

Page 90: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 4 / 23

Charakterisieren Sie jedes Subsystem sequentiell hinsichtlich Art und Ziel der In-

teraktion.

Hier Fokus auf Signal: „Betriebsbereit / in-feed ready“

System einschalten spannungslos ZK leer

ZK aus Netz vorladen Vorladeseq. aktivieren Vorlade-R einklinken (t= x ms

– y sec (je nach Leistungsklasse))

Wenn V_Kondensator = V_ZK Vorlade-R entfernen ZK belastbar , Vorla-

dung abgeschlossen

Schalter kann je nach Leistungsklasse Relais, Schütz, … sein

In-feed ready Signal in ALM-DO erzeugt zur Weiterverteilung an SMM-

DO‘s

In-feed ready Signal := V_ZK ist in Toleranzbereich, Vorladung abgeschlos-

sen, keine interne Fehlerzustände, Netz verfügbar , …

Page 91: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 5 / 23

2. System-Umfeld Informationen über das Umfeld des zu verbessernden Systems.

Welche Über- und Untersysteme gibt es? Welche gleichberechtigten Systeme sind

zugegen? Wie interagieren die Systeme miteinander.

Übersystem = Steuerung die über Feldbus mit System kommuniziert, Engineering-

system STARTER mit dem das System engineert wird (Parametrierung, IBN, Diag-

nose), optionale Bedienfelder wie BOP und AOP

Übersysteme:

- Steuerungen (SINUMERIK, SIMOTION, SIMATIC, Fremdhersteller, ...)

- Feldbusse (PROFIBUS, PROFINET, CU-Link, CAN und was wir sonst so können)

- Eingänge/Ausgänge von überlagerter Steuerung an CUs und zurück

Untersysteme:

- Drehgeber,

- Motoren,

- Antriebsperipherie mit I/O Ports (digital, analog)

Übersystem = gesamter Antriebsverband an einer Steuerung (Sinumerik / Simotion

etc)

Untersystem = angeschlossene Motoren mit Gebern bzw. einspeisende Netze

2.1 Gleichberechtigte Systeme

Beantworten Sie folgende Frage: Welche gleichberechtigten Systeme sind zuge-

gen?

Gleichberechtigt := hier aus Sicht Einspeisung betrachtet; nicht aus Sicht der lo-

gischen Koppelung (DRIVE-CLiQ, Feldbus)

Gleichberechtigt = andere Antriebsverbände ohne ZK-Verbindung (ohne energe-

tische Verbindung)

2.1.1 Vorhandene Interaktionen

Beantworten Sie folgende Frage: Wie interagiert das System mit diesem/diesen

gleichberechtigten System(en) (positiv, negativ, überhaupt nicht, möglicher-

weise)?

Wenn nach Def. 2.1, dann besteht keine Interaktion (keine Querverkehrsbezie-

hung zwischen Systemen an unterschiedlichen ZK)

Was passiert, wenn eine CU zwei ZK regelt? Dann kommen an der CU zwei

„infeed-ready“ Signale zusammen. ( Berücksichtigen; siehe whiteboard [1])

Page 92: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 6 / 23

Kommunikation zyklisch (Echtzeit) und azyklisch. Im Engineering erzeugte Da-

ten werden geladen. Aus dem System werden Ist-Daten (Istwerte, Diagnosein-

formationen, Isttopologie DRIVE-CliQ) ausgelesen.

Mit den gleichberechtigten Systemen (bei Bedarf)

- über die überlagerte Steuerung (Applikation)

- über Feldbusquerverkehr (falls von diesem unterstützt)

- digitale Ein- / Ausgänge (Draht)

Alle diese Möglichkeiten erfordern eine Projektierung durch den Anwender

Möglicherweise über das Netz, an das sie ggf. gemeinsam angeschlossen sind.

2.1.2 Mögliche Interaktionen

Gemeint sind die Systeme, die zwar nicht direkt mit dem betrachteten System

wechselwirken, aber dies möglicherweise unter bestimmten Voraussetzungen

tun könnten. Schreiben Sie diese Voraussetzungen auf und präzisieren Sie die-

se.

Notfallbedingungen, z.B. programmiertes Verhalten, wenn ALM ausfällt und

Motoren noch Energie benötigen, um in sicheren Endzustand zu fahren.

Wechselwirkungen über das Energieversorgungsnetz Spannungseinbrüche / -

überhöhungen, unsymmetrische Belastungen) sind bei starken Beschleuni-

gungs- bzw. Bremsvorgängen oder beim Anfahren eines Verbandes möglich.

2.2 Übersysteme / natürliche Umgebung

Beantworten Sie folgende Frage: Welche Über- und Untersysteme gibt es? Ge-

meint sind Über- oder allgemeine Systeme, in denen das betrachtete System ein

Subsystem oder eine Komponente ist. Was ist die natürliche Umgebung des Sys-

tems (Luft, Wasser, ...)?

Übersysteme: Werkzeugmaschine, Produktionsmaschine; Maschinenmechanik

Natürliche Umgebung: Luft, evtl. Wasser bei Wasserkühlung

Programmable Logic Control (PLC) zur Prozesssteuerung

Einspeiseenergie

Integration von Steuerung und Antrieb an eine Maschine/Applikation, (die fest in

einer Werkhalle steht).

Übersystem = gesamter Antriebsverband an einer Steuerung (Sinumerik / Simoti-

on etc)

Untersystem = angeschlossene Motoren mit Gebern bzw. einspeisende Netze

Page 93: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 7 / 23

Natürliche Umgebung: Luft (oft verunreinigt durch Öle, Stäube etc.)

2.3 Verfügbare Ressourcen

Ressourcen im Umfeld des relevanten Systems werden gerne übersehen. Listen

Sie diese auf und nutzen Sie die Ressourcencheckliste im Anhang.

Steuerung und Feldbus

Mechanische Kopplung

Zwischenkreis-Kopplung

Überlagerte Steuerung

Feldbus

Freie DRIVE-CLiQ Ports

Zwischenkreis

Elektronikstromversorgung (24=)

I/O Ports

Parameter (Einstellmöglichkeiten am Antrieb)

Meist wird Luft oder Wasser zur Kühlung der Leistungskomponenten eingesetzt.

Alle Komponenten sind neben dem Zwischenkreis auch mit 24V-Spannung ver-

sorgt und befinden sich auf einer metallisch leitfähigen Rückwand. Alle Module

sind durch einen PE-Leiter verbunden.

Page 94: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 8 / 23

3. Detailinformation zur Problemsituation

Es geht darum, alle Informationen zu sammeln, die das Problem betreffen. Als Prob-

lem ist hier all das zu verstehen, was am derzeitigen Zustand bzw. System als unge-

nügend, störend, behindernd oder verbesserungswürdig empfunden wird

Von der Logik her stellt dieser Punkt die Verbindung zwischen der primär nützlichen

Funktion (PNF) und der primär schädlichen Funktion (PSF) bzw. den schädlichen

Funktionen her.

3.1 Ziel

3.1.1 Angestrebte Verbesserung

Beantworten Sie folgende Frage: Was soll am System verbessert werden?

Das zur Achse gehörige In-feed ready Signal (von der entsprechenden ALM)

soll an der Achse bereitgestellt werden. Die Bereitstellung soll möglichst auto-

matisch und fehlerfrei erfolgen ohne Anwenderinteraktion, Verkabelung, I/O-

Port Verbrauch, Projektierung etc.

Es soll eine komfortablere Übertragung des ALM-Betrieb Signals erfolgen. Die

Übertragung soll CU-übergreifend genauso einfach einrichtbar und projektier-

bar sein, wie die Übertragung innerhalb einer CU

Es gibt heute keinen Weg, wie das „Betriebsbereit-Signal“ der Einspeisung ein-

fach an alle Leistungsteile übertragen werden kann.

3.1.2 Wünschenswerte Systemstruktur

Hier dürfen Visionen zum Tragen kommen, die sich in Richtung des idealen

Systems bewegen (Idealitätsprinzip).

An der Achse steht das entsprechende In-feed ready Signal automatisch und

fehlerfrei zur Verfügung.

Hierfür ist aus AW-Sicht:

- keine spezielle Verkabelung,

- kein Verbrauch von I/O Ports,

- keine explizite Projektierung und auch

- keine Unterstützung der überlagerten Steuerung / des überlagerten Feld-

busses notwendig.

Idealerweise sollten die ohnehin vorhandenen Ressourcen/Verkabelung ge-

nutzt werden.

Die Achse findet automatisch ihre zugehörige ALM und das zugehörige In-feed

ready Signal

- Die Übertragungsstrecke für „infeed-ready“ Signal ist vorhanden, ohne dass

Page 95: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 9 / 23

zusätzliche Verbindungen (Hardware / Anwenderprojektierung) eingerichtet

werden müssen

- Der Anwender muss sich nicht mit diesem Thema beschäftigen (nicht überle-

gen wie und woher er das Signal bekommt)

Es wird ein Weg gefunden, wie ohne zusätzlichen Verdrahtungsaufwand diese

Information an die Leistungsteile gelangt. Dabei muss sichergestellt werden,

dass nur die Leistungsteile die Info erhalten, die am gleichen ZK hängen.

3.2 Problem

3.2.1 Primär schädliche Funktion (PSF)

Beantworten Sie folgende Fragen: Was soll am System verbessert werden?

Welcher Nachteil soll eliminiert werden (primär schädliche Funktion PSF).

Schädliche Funktionen von Ersatzlösungen:

Ersatzlösung1: Übertragung über explizite Leitung

- muss verkabelt werden

- BICOs müssen projektiert werden; I/O-BICOs müssen projektiert werden und

Zuordnung der Motormodule zum ZK-Verband müssen projektiert werden

Risiko: Anwender projektiert falsch

Risiko: I/O Ports bereits belegt für Maschinenapplikation

Ersatzlösung2: Übertragung über CU-Link (durchgetunnelter Profinet-Bus über

DRIVE-CLiQ)

- muss projektiert werden

- behindert einen potentiellen künftigen Wegfall dess CU-Links – eigentlich soll

die CU-CU-Kommunikation über den Feldbus/PROFINET erfolgen

- es gibt Szenarien (mehrere Cus über Feldbus/PROFINET gekoppelt) in de-

nen kein CU-Link vorhanden ist und trotzdem die Verteilung der ALMs nicht der

CU-Struktur entspricht

Ersatzlösung3:

- Feste Freigaben über Parametrierung unabhängig vom Zustand der ALM

Risiko: falsche/keine Fehlerreaktion

Ersatzlösung4:

- Querverkehrsprojektierung über Feldbus („obenrum“); dafür brauche ich

übergeordnete Steuerung als Master

Risiko: nicht alle Busse unterstützen dies

- Anwender muss sich um die Verfügungstellung dieses Signals kümmern.

- Mangels anderer Möglichkeiten muss in manchen Anwendungen tatsächlich

ein Draht gezogen werden

Page 96: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 10 / 23

Die Information steht nicht oder nur mit großem logistischen Aufwand zur Ver-

fügung. D.h. für bestimmte Antriebsfunktionen steht eine notwendige Info nicht

zur Verfügung, wenn „Draht nicht gezogen“.

3.2.2 Wirkungsweise der PSF

Beantworten Sie folgende Fragen: Wie entsteht der Nachteil? Wie wirkt er?

Anwender muss sich explizit um die Signalkopplung passende ALM zur zuge-

hörigen Achse kümmern. Dies erzeugt Komplexität und Fehleranfälligkeit bzgl.

fehlerhafter Projektierung.

Siehe Punkte vorher

Der Nachteil entsteht durch die heutige „Zentrale“ Architektur. Dabei sind In-

formationen zwischen Einspeisung und Leistungsteil immer über eine CU zu

leiten. Das führt zu deutlichem Mehraufwand, weil die Schnittstellen an der CU

nicht mit allen Einspeisungen umgehen können (DQ vs. kein DQ).

Es fehlt der SIMODRIVE Gerätebus von früher.

Es fehlt Kommunikationspfad parallel zum ZK.

3.3 Problemhistorie

Beschreiben Sie die Problementstehung und dessen Vorgeschichte

Das eigentliche Problem entsteht dadurch, dass durch die Modularität die ALM

und die Achse verteilt werden können.

Bei den Vorgängerprodukten gab es (meines Wissens) keine

Line Module, die durch Software geregelt wurden („infeed-ready“ Signal

wurde über Draht im Geräte-“bus“ verteilt)

Keine Control Units, die mehr als 2 Antriebe geregelt haben

Zumindest beim Vorgängerprodukt SIMODRIVE wurde parallel zur Zwischen-

kreisverdrahtung ein sogenannter ‚Gerätebus’ parallel zum ZK verdrahtet, der

auch dieses Signal enthielt.

Mit dem SINAMICS regelt eine Control Unit das Line Modul und 6 Achsen.

Dadurch konnte für dieses Mengengerüst der Gerätebus eingespart werden.

Wurde beim Systemdesign SINAMICS in den Anfängen (vor 7+ Jahren) nicht

als kritisch gesehen und daher nicht von Anbeginn gelöst.

Nach welchen Entwicklungsschritten des Systems trat das Problem auf?

Modularisierung (Übergang von SIMODRIVE zu SINAMICS)

Eigentlich von Anfang an bei SINAMICS, verschärft wurde es beim vermehrten

Einsatz von Vielachsanlagen (mehr als 6 Achsen); früher galt üblich: 4 Achsen;

Page 97: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 11 / 23

aktuelle Anforderungen > 30 Achsen; max. Achszahlen: 300.

In der Verfeinerung des Konzeptes und der Erweiterung des Einspeisungsport-

folios (weg von ALM hin zu SLM, PLM) wurde der Mangel klar.

Verstärkung der Einspeisung (mehr KW) verschärft Problem, da mehr Achsen

angeschlossen werden können.

Welche Lösungsversuche wurden bisher unternommen?

Siehe Ersatzlösung 1 + 2 + 3 + 4

Für das Produkt Draht und Querverkehr, ob es schon andere Überlegungen

gab können vielleicht A. Kuhn und A. Wagenpfeil sagen

Mir sind keine bekannt.

Warum sind diese Versuche gescheitert?

Ersatzlösungen sind nicht optimal

(1) benötigt ein explizites Kabel und Projektierung

benötigt Projektierung des CU-Links (ließe sich evtl. noch verstecken) und trägt

nicht für Feldbus/PROFINET-Kopplungsszenarien

Für Produktlösung siehe Aufgabe

Mir sind keine Versuche bekannt.

Gibt es heute geänderte Randbedingungen, so dass diese Lösungsansät-

ze jetzt funktionieren könnten?

NEIN !

???

s.o.

3.4 Analoge Lösungsansätze

Wurden diese oder ähnliche Probleme bereits an anderer Stelle gelöst?

Können diese Lösungen auf das aktuelle Problem übertragen werden?

Wenn nein: unter welchen Randbedingungen wäre eine Übertragung mög-

lich?

Peer-to-Peer Kommunikation gab es im Antriebsbereich auch in der Vergan-

genheit – Lösungen dafür waren:

o Simolink (aber Vorsicht: Ringleitung, nicht bei taktsynchronen Gerä-

ten einsetzbar)

Page 98: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 12 / 23

o Slave-Slave-Querverkehr bei PROFIBUS („mithören“)

o Künftig Device-Device-Querverkehr bei PROFINET („mithören, glei-

ches Prinzip wie PROFIBUS)

Ähnliche Szenarien:

o Ähnliches PROBLEMMUSTER: Anschluss eines oder mehrere Ma-

schinengeber in einer verteilten Maschine/Anlage der an mehreren

Stellen von den Einzelantrieben genutzt wird (1 : n Kommunikati-

onsmuster)

Ähnliches PROBLEMMUSTER: Verteilter Gleichlauf bei SIMOTION / PROFI-

NET mit 1 : n Kommunikationsmuster

ISW-Stuttgart hat auf der SPS-IPC-Messe eine Modulation des Drehzahlsoll-

werts auf den Zwischenkreis gezeigt

In der Energietechnik wurden und werden Daten über große Entfernungen di-

rekt über Energieleitungen übertragen (modulierte Übertragungen kleiner Da-

tenmengen). Nachteilig war der meist erhebliche gerätetechnische Aufwand.

Möglicherweise können Sie einen alternativen Entwicklungsweg des Sys-

tems beschreiben, der das Problem vermieden hätte. Lässt sich das System

derart weiterentwickeln, dass die gegenwärtigen Nachteile nicht mehr rele-

vant sind? Lassen sich die hierbei auftretenden Probleme leichter lösen?

Einschränkung der Projektierung durch Restriktion der Topologie. Wenn die

ALM-Topologiestruktur der CU-Struktur entsprechen würde, wäre das Problem

einfacher lösbar. (Keine Geräteübergreifende Topologie, aber KOnzequenz:

viele kleine Einspeisungen setzen)

Wenn in den CUs automatisch alle Signale aller ALMs verfügbar wären und die

Zuordnung ALM zu Achse klar ist wäre das Problem gelöst. („broadcast“; aber

ALM Achszuordnung schwierig)

Vielleicht kann die Regelung so verändert werden, dass das Bereit-Signal bzw.

eine schnelle Reaktion nicht erforderlich ist.

P.S.: Die ZK-Spannung wird bereits jetzt im Motormodul gemessen.

Unterscheide Vorladephase von Ausfallphase/Abschaltvogang.

Beim Abschalten könnte ggf. auf das „infeed-ready“ Signal verzichtet werden.

Dies ist aber applikationsabhängig. Ersetzen des „infeed-ready“ Signal aus

ALM durch lokale Messung in MM nicht möglich.

Stand der Technik sind heute sog. Powerline Kommunikationsbaugruppen (De-

volo etc.), die versprechen bis zu 200Mbit über die übliche 230V-

Hausinstallation übertragen zu können. Ein Set aus Sender und Empfänger

kostet dabei als Einzelhandelspreis ca. 100 EUR, d.h. die Materialkosten

müssten deutlich unter 20 EUR liegen. Wenn es gelänge, derartige Kommuni-

Page 99: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 13 / 23

kation über den ZK aufzubauen, wäre das Problem lösbar. Im Unterschied zum

Hausnetz ist der ZK deutlich mehr mit schnellen Transienten „versaut“, so dass

die Funktion per Test nachzuweisen wäre. Die benötigten datenraten sind aber

deutlich geringer, als in der IP-Technik notwendig, so dass hier per intelligenter

Protokolle (Interleaving / Protokollwiederholung etc.) die Robustheit steige-

rungsfähig ist.

Page 100: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 14 / 23

4. Veränderungsspielraum

Schreiben Sie auf, was am existenten System geändert werden kann und was nicht.

Welche technischen, ökonomischen oder anderweitigen Eigenschaften sollten kon-

stant bleiben, sich nicht verringern, sich nicht erhöhen?

Finden Sie den Grad der zulässigen Veränderungen am System heraus und be-

schreiben Sie ihn. Die Freiheitsgrade für Veränderungen hängen im Wesentlichen

vom gegenwärtigen Fertigungsstand des Systems (F&E, Pilot, Produktion, G&V,

etc.) ab.

Erläutern Sie die Gründe für diese dem System auferlegten Restriktionen und geben

Sie an, unter welchen Bedingungen diese Einschränkungen aufgehoben werden

können. Ergeben sich daraus neue, sekundäre Probleme, klären Sie, ob es nicht

vorteilhafter ist, diese neuen Herausforderungen anzunehmen.

4.1 Was darf verändert werden?

Schreiben Sie auf, was am existenten System geändert werden kann.

Einziehen von Device-Device Querverkehr bei PROFINET um 1 : n Kommunikati-

on bereitzustellen (hat starke Nebenwirkungen, überlagerte Steuerung, PROFI-

NET, löst Zuordnungsproblem nicht??, Konfigurations-/Projektierungsaufwand; )

Voraussetzung: Device-Device Querverkehr über PROFINET möglich. Dann Zu-

ordnung Servo-DO zu ALM per Projektierung herstellen – wäre zwar nicht optimal

aber vorstellbar, da überschaubar (Erweiterung im Engineering) ( Topologie

muss projektiert werden, Projektierungsmodul erweitern, WIZARD: nur eine ALM

einschalten und lesen, welche MM „leben“).

Übertragung des In-feed ready Signals über Zwischenkreis, wenn es hierfür eine

Lösung geben würde.

Hardware der Linemodule / Motormodule in gewissem Umfang (Überarbeitung)

Software; Telegramm-Projektierung ändern (implizite Änderung während Projek-

tierung „unter der Haube“)

Anlaufverhalten ändern, Lernmodus einführen; dies muss übergesteuerte Steue-

rung machen (IBN Schritt), damit ALM-DO Beziehung festlegen/lernen; aber:

Identifkation dauert.

Idee: MM identifiziert über ZK-Kommunikation, an welcher ALM es hängt. Damit

wird Verdrahtung geprüft.

Komm. auf ZK passiert, bevor der ZK eingeschaltet wird oder in der Vorladepha-

se.

Protokolle über vorhandene Schnittstellen. Es dürfen ggf. neue Schnittstellen ent-

stehen oder bestehende erweitert werden, die jedoch durch den Kunden nicht

extra bedient werden müssen, sondern sich selbst konfigurieren.

Page 101: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 15 / 23

4.2 Was darf nicht verändert werden?

Schreiben Sie auf, was am existenten System nicht geändert werden kann.

Keine Änderungen die HW-Struktur inkompatibel verändern.

Hardware von Control Unit, Steuerung, Feldbus

Das Design darf sicher nicht maßgeblich leiden. Abmessungen und vorhandene

Kundenschnittstellen müssen konstant bleiben.

Dezentrale Topologie muss weiterexistieren. CUs können verteilt stehen, Kom-

munikationspfad muss Entfernung überbrücken können.

Kosten dürfen sich nicht signifikant erhöhen.

Page 102: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 16 / 23

5. Auswahlkriterien für Lösungskonzepte

5.1 Performance Indikatoren

Was sind Zielgrößen (Targets) für das System und wie wichtig sind diese?

Zeitliche Anforderungen an die Aktualität des In-feed ready Signals (z.B. Übertra-

gung mindestens nach 5 ms bereitstehen).

Die Lösung muss unterschiedliche Topologien unterstützen

- Cus über CU-Link gekoppelt

- Cus über PROFINET gekoppelt

- Cus über PB gekoppelt – evtl. sind hier Komforteinschränkungen zulässig

Die Lösung sollte möglichst projektierungsfrei erfolgen.

Die Lösung sollte mit vorhandenen Ressourcen umsetzbar sein.

Die Lösung sollte möglichst entkoppelt von äußeren Randbedingungen sein z.B.

keine spezifische Funktionalität der überlagerten Steuerung erfordern.

Frage:

Ist die Zuordnung ALM zum DO statisch bzw. zum Engineeringzeitpunkt statisch

festgelegt oder gibt es Szenarien, bei denen sich zur Laufzeit diese Zuordnung

ändern kann (modulare Maschine)?

Sind bei Fremdsystemeinbindungen z.B. SINAMICS über Ethernet IP an überla-

gerte Steuerung gekoppelt funktionale Einschränkungen zulässig?

Lösung von Kosten her umsetzbar sein.

Lösung soll unabhängig vom Einspeisetyp sein (ungeregelt (nur Dioden), geregelt

(auch mit Rückspeisung), SMART line (Mischform: ungeregelt einspeisen, gere-

gelte Rückspeisung)

? Muss MM ALM Rückkanal existieren, um z.B. Energiebedarf anzumelden?

allg. Kommunikationsanforderung parallel zum ZK; Skalierbarkeit des Datenka-

nals (Datenbreite) und Bandbreite; aber: azyklische / zyklische Komm.

(Info: es existieren Ideen zu Vorsteuerung, erwartete Lastbedarfe behandeln, Ver-

luste reduzieren, Leistungshalbleiter schonen, …)

Es gibt eine maximale Reaktionszeit für das Motormodul beim Weggang des Be-

reit-Signals.

Die Lösung sollte mit allen Feldbussystemen funktionieren.

Die Lösung sollte unabhängig von der Art der überlagerten Steuerung sein

Günstig (ganz wichtig) und transparent für Anwender (auch ganz wichtig).

Zukunftsfähig (Erweiterbarkeit, um zusätzliche Daten zu übertragen)

5.2 Risiken

Welche Risiken und Nachteile können bei der Umsetzung des Lösungsvorschlags

Page 103: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 17 / 23

auftreten?

Abhängigkeiten zur überlagerten Steuerung.

Device-Device-Querverkehr PROFINET noch nicht umgesetzt bzw. wenn es um-

gesetzt wird dann erst im TIA-Portal. (zeitliche Randbedingungen für Umsetzung

und Randbedingung bei Kontext)

Verlagerung des Problems auf Übersystem erhöht Komplexität und Fehleranfäl-

ligkeit; reduziert Verfügbarkeit der Funktion.

Signifikante Verteuerung des Systems

Die Kosten könnten höher als zumutbar sein.

Page 104: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 18 / 23

6. Ideenpool

Hier haben Sie den Freiraum, alles das hinzuschreiben und zu skizzieren, was vor-

erst nicht in das obige Schema hineinzupassen scheint.

Vor allem sollten Sie jede Idee sofort festhalten (je unsinnig sie auch im Moment er-

scheint).

1 : n Kommunikation über Dev-Dev-QVK PROFINET erzeugt gewisse Abhängigkeit

zur überlagerten Steuerung. Das grundsätzliche Kommunikationsmuster erscheint

zielführend da es auch die Übertragung weiterer Daten ermöglicht und damit z.B.

auch Ausbaupotential in Richtung Energieeffizienz aufweist.

Das Broadcasten aller In-feed ready Signale scheint eine einfache Lösung darzu-

stellen.

Interessant ist noch die Frage, welche weiteren ALM-Signale künftig potentiell noch

benötigt werden.

Können VariableLink Konzepte des TIA-Portals für die Lösung genutzt werden?

Nutzung des vorhandenen Zwischenkreises für die In-feed ready Signalübertragung.

Welche Randbedingungen hätte dieser Weg?

Wie schafft man es, dass man für Booksize- und Blocksize-Geräte möglichst homo-

gene Lösungen aus Anwender- bzw. Steuerungssicht schafft?

Ideen (ohne Überprüfung auf Machbarkeit)

- Nutzung der 24 V Versorgung

- Zusätzlicher Draht parallel zur 24 V – Verschienung

- Modulation auf den Zwischenkreis

- Ableiten des Signals aus der gemessenen Zwischenkreisspannung

- DQ- Verbindung zur nächsten CU

<…>

Page 105: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 19 / 23

7. Anhang: Ressourcenliste

Die Liste hilft, Ressourcen im Umfeld des relevanten Systems zu finden.

7.1 Stoffliche Ressourcen

Z.B.

Abfall

Rohmaterialien und Produkte

Systembestandteile

Zwischenkreis

Feldbus / PROFINET

.

leicht verfügbare, preiswerte Materialien

Materialien in verschiedenen Zustandsformen

Substanzfluss

Materialien mit speziellen Eigenschaften

7.2 Feldförmige Ressourcen

Z.B.

Energie im System

Energie aus der Umgebung

auf mögliche Energiequellen aufbauen

Nebenprodukte

Abfall des Systems wird zur Energiequelle des Systems

7.2.1 Mechanische Felder

Druck, Druckunterschiede

Kompressionskräfte

Spannungskräfte

Drehmoment

Gravitationskräfte

Trägheitskräfte

linear

rotatorisch

Gleitreibung

Haftreibung

Oszillierende Bewegungen

Flüssigkeitsbewegungen

Page 106: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 20 / 23

Impulskräfte

Stoßwellen

Oberflächenkräfte

Oberflächenspannungen

Kapillare Anziehungskraft

Benetzen

Osmose

Diffusion

Absorption

Van der Waals-Kräfte

7.2.2 Thermische Felder

Temperatur

Hitze

Kälte

Temperaturunterschiede

7.2.3 Chemische Felder

Chemische Reaktion

Kontrolle einer chemischen Reaktion

Elektrodenpotenzial

Energie,

die notwendig ist, um eine Reaktion zu starten

die durch eine Reaktion entsteht

Geruch

Geschmack

7.2.4 Elektrische Felder

Elektrische Ladung

Elektrostatische Felder

Elektrische Potenzialunterschiede

Elektrische Spannung

Elektrische Antriebskräfte

Galvanisieren

7.2.5 Elektromagnetische Felder

Radiowellen

Mikrowellen

Infrarotstrahlung

Page 107: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 21 / 23

Sichtbare Strahlung

Ultraviolettes Licht

Röntgenstrahlung

Radioaktivität

7.2.6 Magnetische Felder

Magnetismus

Unterschiede im magnetischen Feld

Page 108: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 22 / 23

7.3 Funktionale Ressourcen

Z.B.

Primäre Funktion bietet selbst Ressourcen

o PROFINET

Device-Device Querverkehr

Controller-Controller Querverkehr

schädliche Effekte nutzen

sekundäre oder Hilfsfunktionen nutzen

7.4 Informationsressourcen

Z.B.

Information durch Substanz selbst überbracht

Information ist inhärente, innewohnende Eigenschaft

Bewegliche Information

Temporäre, flüchtige Information

Information über eine Zustandsänderung

7.5 Zeitliche Ressourcen

Z.B.

im voraus arbeiten

Vorbereitungszeit nutzen

Vertakten

schrittweise Abfolge organisieren

parallel arbeiten

mehrere Schritte gleichzeitig

Nacharbeiten

im Nachhinein Aktivitäten setzen

7.6 Räumliche Ressourcen

Z.B.

Leerraum

Andere Dimension

vertikale Anordnung

Verschachtelung

7.7 Abgeleitete Ressourcen

Z.B. abgeleitete Ressourcen, die zur Kompensation

schädlicher Effekte im System eingesetzt werden können

Page 109: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Innovations-Checkliste (Quelle: B. Gimpel, Quality Engineers)

Problem: Übertragung des „Betrieb-Signals“ der Einspeisung zu al-len Servo-DO’s, die den gleichen Zwischenkreis benutzen

Andreas Wagner [A_01 Innovation Checklist (DE)] Seite 23 / 23

Chemische Umsetzung

Prozessierung

Akkumulation

Etc.

Page 110: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Appendix A-2

System Operator Sinamics and derived Trends

Page 111: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Vergangenheit – (7J) Gegenwart

Sup

er-

Syst

em

Werkzeugmaschine SimoDrive ( < 32-Achsen)

Prod.maschine MasterDrive(> 60-Achsen)

General-motion-control (Lüfter, HVAC, …)

Projektierungswerkzeuge (adäquat)

Übergeordnete Maschinensteuerung

Antriebsregelung

Werkzeugmaschine ( < 64-Achsen)

Produktionsmaschine (> 100-Achsen)

Kräne (ortsfest und variable)

General-motion-control (Lüfter, HVAC, …)

Sonderanwendungen

Projektierungswerkzeuge (nicht ausreichend

Anwendergerecht / mehrachsfähig)

Komplexere Projektierungsabläufe

Übergeordnete Maschinensteuerung (eigen, fremd)

Antriebsregelung

Syst

em

* Bereitstellung angeforderter Energie für Motore für die geforderten

Bewegungen (Kurzform: Energiebereitstellungseinheit)

* Zentraler Ansatz (Regelung, Einspeisung, … in einem Schaltschrank)

* Starre Einspeisetopologie

* Energiefluss und Signalfluss gebündelt

bei Einachsgeräten durch Modulaufbau

bei Mehrachsgeräten durch parallele Führung von Bus-Signalen und

Zwischenkreis

* Geringere Flexibilität

Sinamics Antriebssteuerung

--> Teilfunktion Energiemanagement

--> Teilfunktion Diagnose Energiefluss für offline-Auswertung

* Bereitstellung angeforderter Energie für Motore für die

geforderten Bewegungen (Kurzform:

Energiebereitstellungseinheit)

* Dezentraler Ansatz (wg. DRIVE-CLiQ räumlicher Verteilung

der Komponenten, lokale Hub/Sternverteiler)

* Freie Einspeisetopologie (Zuordnung der Leistungsteil-

Komp. zu Einspeisung und CU ist frei) --> Trennung

Energiefluss von Signalfluss

* Höhere Flexibilität

* diese Flexibilität wird derzeit noch nicht durch das System

unterstützt (Diagnose, Identifikationen)

Sub

-Sys

tem

* Einachsregelungsbaugruppe (CU, Leistungsteil) in einem Gehäuse

* Autarke Einspeisung (Regelung analog, Steuerung über Klemmen,

direkt von PLC angesteuert)

* Gerätebus (u.a. mit infeed ready signal)

Komponenten

* CU

* Einspeisung (z.B. ALM) Regelung digital

* MM

* ZK

* DRIVE-CLiQ

* Feldbus

Page 112: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

ZukunftSingle axis usability

Einheitliche Projektierungswerkzeuge

SINAMICS für alle Arten von Antrieben, keine Unterscheidung zwischen Werkzeug und Produktionsmaschinen

Hochintegration mit dem Ziel, die Anzahl der benötigten Komponenten (MLFB-Nr.) zu reduzieren.

Kräne höherer Leistung

mathematische drag and drop Projektierungstools

verstärkte Anwendung von AFEs bei regenerativen Kraftwerken

zusätzliche Automatisierungs- und somit Antriebsmärkte im Nischenbereich

komplexe Antriebsregelung

Anwendungs- / Aufgabenorientierte Projektierung (Telegramme und BICO's ergeben sich daraus)

Integration mit Anlagenprojektierung (Sizer, unterstützt bei Auslegung und Bestellung)

Mehr Ethernet-basierte Feldbusse

PN Device-Device QVK im TIA-Portal / SINAMICS verfügbar

Energiemanagement (Erfassung energierelevanter Daten, produktionsoptimierte Energienutzung)

- Antrieb stellt entsprechend Schnittstellen hierfür bereit.

Energiemanagement erfolgt auf unterschiedlichen Ebenen

in der Automatisierungshierarchie (CU-lokal, Maschinenteil, Maschine)

Engineeringwerkzeuge, Tools die im Produktivbetrieb und Service der

Maschine relevant sind sind im Netzwerk verteilt ("Cloud Computing")

Datenübertragungsinhalte zwischen Geräten (Steuerungen, Antriebe,

Leistungsteilen) wird implizit vom System generiert (vereinfachtes UI)

PROFINET Vernetzung ist Mainstream

Antriebe sind über IT-Mittelen (z.B. TCP/IP, ftp) erreichbar - in den Antrieben sind Webservices integriert

Antriebe werden verstärkt auch im Produktgeschäft (mit eingeschränkter Flexibilität, verbesserter Usability) eingesetzt

Product Lifecycle Maschine und Product Lifecyle beim Endkunden sind integriert

unter anderem

* Unterstützung der flexiblen Topologie durch das System (Diagnose, Identifikationen)

* Bereitstellung ... (wie in Gegenwart)

* Dezentraler Ansatz ... (wie in Gegenwart)

"Concept Drive" Antriebssteuerung --> Teilfunktion Energiemanagement

* Bereitstellung angeforderter Energie für die Motoren (Kurzform Energiebereitstellungseinheit)

* Bereitstellung von Energie für seperate antriebsnahe Komponenten sowie antriebsferner Maschineneinheiten

* Mischung zentraler als auch dezentraler Antriebseinheiten

* Selbsterkennende Einspeiseeinheiten und automatische Zuordnung der Antriebe an CU mit freien Ressourcen

* Höchste Flexibilität

* Höchste EMV Anforderungen - neue Filtersysteme oder EMV-freie Umrichtersysteme

Zusätzlich zu "heute":

Massnahmen zur Energieeffizienz

Achszahl für eine CU erhöht sich weiter

für Produktgeschäft wird Flexibilität reduziert und Usability verbessert

für Lösungsgeschäft bleibt Flexibilität, Usability insbesondere bzgl. Diagnose und

Serviceability wird verbessert

die Transparenz zwischen Energiefluss und zugehöriger CU / MM wird für den Anwender verbessert

die CU / MM stellt Informationen über Energieverbrauch bereit

* Autarke Einspeisung (Regelung digital auf Komponente, Steuerung über moduleigene Klemmen, direkt von PLC)

* Kommunikationskanal zu CU bezüglich Übertragung von Statusinformationen / Diagnose über Feldbusmittel ( Topologie-

Identifikationen)

* Kommunikationskanal zu CU bezüglich Steuernung von Sonderfällen

* wie in Gegenwart

* MM und ALM mit einer MLFB bei separater Vorladung

* ZK "ohne" Längenbegrenzung

* separate Zusatzkomponenten um Anforderungen lokaler Gegebenheiten gerecht zu werden

Innovation der Leistungsteile

(Kompatibilität, Kostensenkung, punktuelle Leistungserweiterung)

Komponenten

- neuer ASIC DSAC2

- Gbit Ethernet für Teile von DQ bzw. für PROFINET

- neben drahtgebunden Ankopplungen spielen optische Übertragungen und Wireless

Lösungen zunehmend eine Rolle

Page 113: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching
Page 114: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Appendix A-3

Result of creativity workshop with idea collection and ranking

Page 115: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

"Schachtel" auf Feldbusebene

immer da, ohne Projektierung

l

Direkte Übertragung Übertragung über FeldbusIdentifikation durch

SystemStrukturharmonisierung

Identifizierung durch

Projektierung

Identifikation durch

"Taufe"

ALM Taktfrequenz als

ALM-Bereitsignal auswerten

lllll

"Draht" in ZK-Schiene

lllll

ALM Topologie in Eng. System

definieren

- heute im SIZER vorhanden

- im ES zusätzlich einbringen

llll

Taufe der MM (Zugehörigkeit

zur ALM) über z.B. BOP

ALM Identifikation über

Spannungscharakteristik

(z.B. Spannungshöhe in

Initphase)

lll

CU-Struktur und ALM-

Struktur zur Deckung

bringen

(CU Rechenleistung

aufdoppeln)

l

Übertragung über Lichtleiter

("grüne LED")

"Draht durch Lichtleiter ersetzen

l

RFID-Tags auf MM für

ALM-Zuordnung

Erkundung der ZK Topologie

- Topologieerkundung (CU-ALM

1:1)

- Propagieren der ALM-ID über ZK

Übertragung über Schirmblech

(ID oder ALM-Signal)

Bleche folgen ZK-Verschienung

Spannungslosen ZK als

Informationskanal nutzen

(24 morsen)

Ideensammlung und Kategorisierungaus TRIZ-Workshop 2010-11-11

Page 116: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

In Ideenliste übernommen

1

ALM Taktfrequenz als

ALM-Bereitsignal auswerten

lllll

Direkte Übertragung

1"Draht" in ZK-Schiene

lllllDirekte Übertragung

2

ALM Topologie in Eng. System

definieren

- heute im SIZER vorhanden

- im ES zusätzlich einbringen

llll

Übertragung über Feldbus /

Identifizierung durch

Projektierung

3

ALM Identifikation über

Spannungscharakteristik

(z.B. Spannungshöhe in

Initphase)

lll

Identifikation durch

System

4

Übertragung über Lichtleiter

("grüne LED")

"Draht durch Lichtleiter ersetzen

l

Direkte Übertragung

4

CU-Struktur und ALM-Struktur zur

Deckung bringen

(CU Rechenleistung aufdoppeln)

l

Strukturharmonisierung

4

"Schachtel" auf Feldbusebene

immer da, ohne Projektierung

l

Übertragung über Feldbus

5

Übertragung über Schirmblech

(ID oder ALM-Signal)

Bleche folgen ZK-Verschienung

Direkte Übertragung

5Taufe der MM (Zugehörigkeit

zur ALM) über z.B. BOP

Übertragung über Feldbus /

Identifikation durch

"Taufe"

5RFID-Tags auf MM für

ALM-Zuordnung

Übertragung über Feldbus /

Identifikation durch

"Taufe"

5

Erkundung der ZK Topologie

- Topologieerkundung (CU-ALM 1:1)

- Propagieren der ALM-ID über ZK

Identifikation durch

System

5

Spannungslosen ZK als

Informationskanal nutzen

(24 morsen)

Identifikation durch

System

Ranking der Ideensammlungaus TRIZ-Workshop 2010-11-11

Page 117: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

Appendix A-4

List of gathered ideas and evaluation criteria

Page 118: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

# Name Kat. Idee KO

üb

ergeo

rd

net

pee

r-to

-

pee

ru

nte

rgord

net

1 Dezentrale Architektur Architektur

Aufhebung der „zentralen“ Architektur. Bisher sind Informationen zwischen Einspeisung

und Leistungsteil immer über eine Control Unit zu leiten. Das hat Nachteile, weil die

Schnittstellen an der CU nicht mit allen Einspeisungen umgehen können. (Einachslösung,

Regelung wieder im Leistungsteil; SIMODRIVE Architektur, löst nur Teilproblem; Komm.

über DRIVE-CLiQ, ALM ist Master) ==> nicht kompatibel 1

2 Aufhebung Modularität Architektur

Aufhebung der Modularität. Die Modularität ermöglicht es, dass die ALM und die

Achse/das Leistungsteil verteilt angeordnet werden können.

ALM-Topologiestruktur soll der CU-Struktur entsprechen.

=> Einschränkung in Projektierung; eine Einspeisung pro CU; keine gerätefremden MM auf

Einspeisung;

=> nicht kompatibel aus Kundensicht, nicht kostenoptimal 1

3 Einspeisung mit CU Architektur

CU sitzt in der Einspeisung (Lösung ähnlich 2. Aufhebung Modularität)

=>  Nicht kompatibel aus Kundensicht; 1

4

LK1

CU-CU Kommunikation Kommunikation

Einführung einer CU – CU Kommunikation mit übergeordneter Instanz mit

* bestehenden Medien: PROFINET (nicht Profibus -> „legacy“)

Einbeziehen von Device-to-Device Querverkehr bei PROFINET, um 1:n Kommunikation

bereitzustellen.

* Neues Medium: bitte nicht einführen !

(Jedes Device ist direkt oder indirekt via DO adressierbar) 1

5

LK2

CU-CU Kommunikation Kommunikation

Einführung einer CU – CU Kommunikation ohne übergeordnete Instanz mit

* bestehenden Medien: keine

* neue Medien: z.B. über DRIVE-CLiQ Kabel von CU <--> CU 1

6 Peer-to-peer Verbdg. Kommunikation

CU1 (DRIVE-CLiQ Port als Master) --> CU2 (DRIVE-CLiQ Port als Slave)

Ggf. eigenes Protokoll fahren, z.B. TCP/IP (geht heute nicht)

=>  Portverbrauch

=>  Inhomogene Lösung

=>  Weckt Begehrlichkeiten 1 1

7 DQ erweitern (siehe 5) Kommunikation

Topologie finden, dass Kaskadierung von CU möglich wird. Weiter ist Problem der

unterschiedlichen Taktung im System zu lösen.

Ich kann keine Ringverbindung aufbauen.

DQ-Verbdg:

CU1 -> ALM1 -> MM1.1 -> MM1.2 -> CU2 -> MM2.1 -> MM1.3

CU1 -> ALM1 -> MM1.1 -> MM1.2 -> MM2.1 -> MM1.3 -> CU2

CU1 = Master; CU2 = Slave; 1

8 DQ Patch panel Architektur

Patch-Panel zur Aufnahme eines Drive-CliQ Anschlusses von Control Unit 1 UND Control

Unit 2.

Topologie:

CU1 -> DQ1 -> Patch -> ALM -> SMM_1.1

CU2 -> DQ2 -> Patch -> SMM_2.1

==>  Geht nicht 1 1

9

LK3

Modulation ZK Modulation

--> Übertragung des „in-feed ready“ Signals über Zwischenkreis.

Einführung einer Modulation von Signalen auf den Zwischenkreis und Abgreifen der

Signale an der Achse/an den Leistungsteilen.

Identifikation + Signalübertragung 1

10 Robuste Modulation ZK Modulation

(Detaillierung von Idee: Modulation ZK):

Mit Einführung der Modulation zusätzlich Implementierung „intelligenter“ Protokolle

(Interleaving / Protokollwiederholung /…) zur Steigerung der Robustheit der

Datenübertragung. 1

11 ALM Statuserkennung Kommunikation

Detektion des ALM Status durch MM:

Wie detektiert MM, dass ALM sich abgemeldet hat?

Charakteristik des ZK über A/D Wandler messen, z.B. Innenwiderstand oder Spektrum

Störsignale/Senderkennung (z.B. ALM eigene Taktung erkennen). 1

12 ALM Senderkennung Kommunikation

Detektion des ALM Status durch MM:

ALM sendet periodisch ohne Zusatzhardware Senderkennung (= Bereitsignal) auf ZK,

dieser wird von MM detektiert

Nutze auf Senderseite IGBT vom ALM;

neue Detektionshardware auf Empfängerseite (MM) nötig

(in Zukunft Vorladung getaktet --> KO-Kriterium) 1

13 Draht zu ZK Architektur

Bei neuen Leistungsteilen soll parallel zu ZK ein „Draht“/Bus gezogen werden.

Das könnte Teil der Abschirmung/Schirmblech sein, welches erweitert wird.

Z.B. Lichtleiter

Kommunikationskanal (Identifikation + Signalübertragung) 1

Version 07.12.2010

Page 119: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

14 Signal broadcasten Kommunikation

Bereitstellung aller Signale aller ALM in allen CUs.

„Broadcasten“ aller „in-feed ready“ Signale.

(Kommunikationskanal unklar; Identifikation vorschalten)

DETAILLÖSUNG, keine sep. Bewertung

15

Eindeutige

Zuordnung 1 Kommunikation

Eindeutige Zuordnung ALM zu Achse/Leistungsteil durch:

(BEI INBETRIEBNAHME oder beim HOCHFAHREN)

A)     CU schaltet ALM einzeln aktiv und identifiziert aktive MM (-> Identifikationslauf) ->

MM kann zu beliebigen Zeitpunkt eingeschaltet werden -> modulare Maschine, d.h. nur

Teilverbände sind aktiv oder neue Pfade werden online zugeschaltet (-> Identifikationslauf

bei jeder Topologieänderung durchführen)

i) 1 x beim Einfahren der Anlage

ii) beim Hochfahren (reicht nicht)

iii) online bei Topologieänderung

C)     ALM Identifikation über ZK, wenn ZK Kommunikationspfad bereitstellt (-> ALM

müssen identifizierbar sein)

ERGÄNZUNGSLÖSUNGEN ZUR IDENTIFIKATION, der SIGNALÜBERTRAGUNG

VORGESCHALTET

16

Eindeutige

Zuordnung 2 Kommunikation

Eindeutige Zuordnung ALM zu Achse/Leistungsteil durch:

B)    Projektierung; ALM explizit projektieren; Zuordnung ALM -> MMs explizit

modellieren; darauf aufbauend zugehörige Kommunikationsbeziehungen / Mapping

implizit implementieren (mit weiterer Lösung kombinieren, z.B. mit ProfiNET); dies kann

skalierbar sein (CU-link, PROFINET, Draht)

ERGÄNZUNGSLÖSUNGEN ZUR IDENTIFIKATION, der SIGNALÜBERTRAGUNG

VORGESCHALTET

17

Eindeutige

Zuordnung 3 Kommunikation

Eindeutige Zuordnung ALM zu Achse/Leistungsteil durch:

C)     ALM Identifikation über ZK, wenn ZK Kommunikationspfad bereitstellt (-> ALM

müssen identifizierbar sein) 1

18 Robuste Regelung Regelung

Modifikation der Regelung so, dass eine schnelle Reaktion auf das „in-feed ready“ Signal

nicht erforderlich ist

==> wegen Ausfallszenarien nicht umsetzbar 1

19

selbstkonfigurierende

Schnittstelle (phys.) Kommunikation

Einführung neuer Schnittstellen so, dass diese sich selbst konfigurieren

=>  Nicht gewollt, wenn physikalische Schnittstellen 1

20

selbstkonfigurierende

Schnittstelle (log.) Kommunikation

Einführung neuer Schnittstellen so, dass diese sich selbst konfigurieren

=>  denkbar wenn nur Software

21 Modulation 24V Modulation

Nutzung der 24V Versorgung zur Übertragung des „in-feed ready“ Signals

=> Geht nicht 1

22 DQ-Patch panel Signalgenerierung

Ableiten des Signals aus der gemessenen Zwischenkreisspannung

=>  Geht nicht wegen Latenzzeit auf ZK 1

23 Mithörfunktion Kommunikation

Prinzip: Komponente 2 spricht à Komponente 1 hört mit und extrahiert Nutzdaten à CU

empfängt und verwirft Nutzdaten

Prinzip mithören ist beim Profibus verwirklicht

=>  Geht nicht, Informationen können nur upstream mitgehört werden

=> Geht nicht, keine CU-CU Kommunikation möglich 1

24 ALM-Taktfrequenz Signalgenerierung

ALM-Taktfrequenz als ALM-Bereitsignal auswerten

ALM taktet mit eingeprägter Frequenz (z.B. 4kHz); das erzeugt Oberwellen auf dem ZK;

diese können im MM ausgewertet werden 1

25

ZK paralleler Datenbus

wie 13) Kommunikation "Draht" entlang/parallel zur ZK-Schiene zur Signalisierung zwischen ALM und MM 1

26

Identifikation bei

Projektierung

(wie 16) Projektierung

ALM Topologie wird im Engineering System (ES) definiert (heute schon in SIZER

vorhanden, muss zusätzlich in ES eingebracht werden)

(erste Phase eines 2-Phasen-Konzept [1.Identifikation-2.broadcast via Feldbus])

27 ALM-Identifikaton Signalgenerierung

ALM Identifikation durch MM über Spannungscharakteristik auf ZK

(z.B. eindeutige Spannungshöhe in Init-Phase, wenn ZK noch spannungslos)

(erste Phase eines 2-Phasen-Konzept [1.Identifikation-2.broadcast via Feldbus]) 1

Page 120: Advanced Master in Innovative Design...gain an Advanced Master in Innovative Design. The course takes overall 440 hours of aca The course takes overall 440 hours of aca- demic teaching

# Kriterium abgestimmt #

LK

1

Σ1

LK

2

Σ2

LK

3

Σ3

1

Unterstützung komplexer Systemarchitekturen

Bsp.: mehrere ALM pro Zwischenkreis zur Leistungssteigerung

Bsp.: ALM Verband komplex verteilt auf Cus KO OK OK OK

2

Bereitstellung "infeeed ready" so, dass nur die Leistungsteile das Signal

erhalten, die am gleichen Zwischenkreis hängen KO OK OK OK

3 Bandbreite Datenkanal für "infeed ready" 1 bit @ ca. 5..10 ms KO OK OK OK

4 Kompatibilität der Lösung mit Kundenschnittstellen KO OK OK OK

5

Lösung muss unabhängig vom Einspeisetyp sein (ungeregelt, geregelt,

Rückspeisung) KO OK OK OK

6

Lösung soll einsetzbar sein für booksize-Geräte und Chassis-Geräte und

blocksize-Geräte (diese nur bei herausgeführten ZK) KO OK OK OK

7

keine Einführung von neuen Medien (neuer Feldbus, z.B. CAN zusätzlich zu

Profi-Bus) bei Kommunikation über Feldbus KO OK OK OK

8 Technisches Umsetzbarkeit (= 1/Risko) KO OK OK OK9 Parallelschaltung von Einspeisungen muss unterstützt werden KO OK OK OK

10 Richtung Ideales Endresultat [Nutzen/(Aufwand+Kosten) --> max.] 9 3 27 3 27 9 81

11

time to market (für kompatible Zwischenlösung vor 2014; d.h. dann keine

Änderung der zyklischen Übertragung ggü. Zielkonzept) 3 9 27 9 27 0 0

12 Lokalität der Erweiterung = Eingriff durch Kd. (hoch=9, mittel=3; gering=0) 5 3 15 3 15 9 45

13 Preiserhöhung (gering=9; mittel=3; hoch=0) 9 9 81 3 27 3 27

14 0 0 0

15

Unterstützung verschiedener Feldbusse (Profinet, CAN, …)

aber nicht Profibus (legacy) 9 3 27 9 81 9 81

16

Kompatibilität der Lösung mit bestehender Hardware-Struktur der heutigen

Komponenten 9 9 81 9 81 9 81

17 Unterstützung räumlich entfernter CU (max. 150 m) 9 9 81 3 27 9 81

18

Bereitstellung "infeed ready" Signal automatisch (projektierungsfrei)

Annahme: durchgängige Projektierungschain gemäß Zielkonzept 9 9 81 9 81 9 81

19

wenn Projektierung "infeed ready" Signal, dann mit Konsistenzcheck

Annahme: Zielkonzept wird umgesetzt 9 9 81 9 81 9 81

20 Bereitstellung "infeed ready" Signal ohne explizite Verkabelung 9 9 81 0 0 9 81

21 implizite Signalkopplung von ALM zu Motormodul (Kennung) 9 9 81 9 81 9 81

22 Bandbreite Datenkanal für "infeed ready" x bit <8, 16, 32, …> @ ca. 5..10 ms 9 9 81 9 81 9 81

23 Lösung darf keine signifikante Kostenerhöhung bedeuten 0 0 0

24 Bereitstellung "infeed ready" Signal ohne CU I/O Port / DQ-Port Verbrauch 5 9 45 0 0 9 45

25

Lösung soll erweiterbar sein bezüglich Bandbreite (z.B. für

Vorsteuerkonzept) 5 9 45 9 45 9 45

26 Signallaufzeit (Quelle bis Senke) für "infeed ready" max. 5 ms 3 0 0 9 27 9 27

27

Unterstützung räumlich entfernter CU (max. 800 m) (für Chassis-Anlagen

==> Topologien hinterfragen) 3 3 9 0 0 3 9

28

Bereitstellung "infeed ready" Signal ohne Unterstützung durch überlagerte

Steuerung 3 0 0 9 27 9 27

29

Lösung soll Rückkanal MM --> ALM mit Realzeitanforderungen unterstützen,

um z.B. Energiebedarf anzumelden (? Bandbreite ?) (Vorsteuerkonzept:

prediction Lastzyklus; typisch 250us; 125us max.) 3 3 9 9 27 3 9

30 Lösung soll erweiterbar sein bezüglich Hin-/Rückkanal (bi-direktional) 3 9 27 9 27 9 27

31 Lösung invariant gegen Funktionsverlagerung 9 9 81 3 27 9 81

32 0 0 0

33 technologisches Risiko (gering=9; mittel=3; hoch=0) 9 9 81 9 81 3 27

34

Erhöhung Systemkomplexität aus Herstellersicht (gering=9; mittel=3;

hoch=0) 9 3 27 3 27 0 0

35 Erhöhung Systemkomplexität aus Kundensicht (gering=9; mittel=3; hoch=0) 9 9 81 3 27 9 81

36 0 0 0

37 0 0 0

38 0 0 0

1149 924 1179

Version 07.12.2010