advanced high temperature alloys

Upload: alvaedison00

Post on 14-Oct-2015

38 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/24/2018 Advanced High Temperature Alloys

    1/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys1

    Prof. Dr.-Ing. Uwe GlatzelMetals and Alloys

    University BayreuthSS 2014

    Advanced High

    Temperature Alloys

  • 5/24/2018 Advanced High Temperature Alloys

    2/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys2

    Lecturer:

    Prof. Dr.-Ing. habil. Uwe Glatzel born Dez. 1960

    Physik-Diplom (B.Sc. and M.Sc) in Tbingen

    (exchange year in Corvallis, Oregon, USA)

    PhD thesis at the Institute for Metals Research, TechnicalUniversity Berlin, Prof. Monika Feller-Kniepmeier

    post-doc (1 Jahr) at Stanford University

    Habilitation TU-Berlin

    Gerhard-Hess award of the German Science Foundation

    (DFG) for young scientist (400.000 )

    1996-2003 full professor for Metals and Alloys, Jena

    since April 2003 Bayreuth (Chair for Metals and Alloys)postal address:

    Ludwig-Thoma-Str. 36b phone: +49 (0) 921 - 55-5555

    D-95447 Bayreuth, Germany e-mail: [email protected]

  • 5/24/2018 Advanced High Temperature Alloys

    3/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys3

    R. Brgel,Handbuch Hochtemperatur-Werkstofftechnik, Vieweg R.C. Reed, The Superalloys - Fundamentals and Applications, Cambridge Univ. Press

    M.J. Donachie, S.J. Donachie, Superalloys - A Technical Guide, ASM International

    H. Frost, M.F. Ashby,Deformation-Mechanism Maps, Pergamon Press

    M.F. Ashby,Materials Selection in Mechanical Design, Elsevier

    G. Meetham, M. Van der Voorde,Materials for High Temperature Engineering Applications, Springer

    J. Betten, Creep Mechanics, Springer

    R.E. Reed-Hill,Physical Metallurgy Principles, PWS-KENT Publishing

    D.R. Askeland: Materialwissenschaften, Spektrum Lehrbuch; 1994

    W.D. Callister: Materials Science and Engineering - An Introduction, Wiley, New York, 1999

    H. Schumann,Metallographie, Deutscher Verlag fr Grundstoffindustrie, Leipzig

    F. Vollertsen, S. Vogler, Werkstoffeigenschaften und Mikrostruktur, Hauser Verlag

    P. Haasen,Physikalische Metallkunde, Springer-Verlag, Berlin

    H.-J. Bargel, G. Schulze, Werkstoffkunde, VDI-Verlag, Dsseldorf

    P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion, Trans. Tech. Publ.

    N. Cumpsty,Jet Propulsion, Cambridge Univ. Press

    Literature

    lecture notes: http://www.metalle.uni-bayreuth.dethen "Lehre" then "Vorlesungen",

    you will find the link to this lecture notes and three review talks we will do at the end.

  • 5/24/2018 Advanced High Temperature Alloys

    4/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys4

    What You Should Know:

    basic thermodynamics

    introduction to diffusion

    introduction to dislocations phase diagrams

    theory of elasticity

    ... basic materials science courses

  • 5/24/2018 Advanced High Temperature Alloys

    5/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys5

    1. Introduction, Basics

    2. Stability of Microstructure

    3. Mechanical Properties

    a) Staticb) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    6/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys6

    Introduction

    only alloys will be looked at (no ceramics, no

    polymers).

    no coatings (BUT : practically all high

    temperature systems are coated!), simply not

    enough time.

  • 5/24/2018 Advanced High Temperature Alloys

    7/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys7

    Motivation for High

    Temperature Alloys

    efficiency of Carnot heat enging

    (with hot and cold temperatures). Several research

    projects related to jet engines, stationary gas turbines

    and waste-to-energy plant are carried out within my

    group with the goal to increase Th.

    melting processes (glass, metal, ... ).

    chemical process (PTFE, ... ).

    many other applications ...

    jet engines, see Single Crystal Ni-Base Superalloys

    max

    minmax

    TTT =

  • 5/24/2018 Advanced High Temperature Alloys

    8/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys8

    Maximum Temperatures for

    Applications of Different Materials

    Groupmaximum service temperature

    [C]deformation/damage mechanism

    Polymer up to 300 melting, decomposing (pyrolyze)

    Glass up to 800 viscous flow

    Metals

    Fe-Basis (coated) up to 1100Fe-ODS up to 1300

    Ni- and Co-base up to 1200

    Pt-base up to 1600

    refractory metals in inert

    atmosphere above 1600

    MoSi2up to 1800

    creep, dislocation climb,

    grain boundary sliding

    Ceramics SiC up to 1600

    viscous flow, glass transition

    temperature, grain boundary

    sliding

    Composits (SiC/C) up to 1600 complex

  • 5/24/2018 Advanced High Temperature Alloys

    9/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys9

    Overview Materials

    temperature [C]500 1500 2000

    usable

    strength

    source:

    Plansee AG,

    Reutte,

    Tirol,

    Austria

  • 5/24/2018 Advanced High Temperature Alloys

    10/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys10

    Taking Density into Account

    500 1500 2000temperature [C]

    usable

    strength

  • 5/24/2018 Advanced High Temperature Alloys

    11/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys11

    Oxidation Resistance

    500 1500 2000temperature [C]

    usable

    stren

    gth

  • 5/24/2018 Advanced High Temperature Alloys

    12/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Tmof platinum

    Refractory Metals:

    12

    Most common definition ofrefractory metals (refractory =

    widerspenstig, halsstarrig):

    two elements of the 5. and

    three elements of the 6. period

    with melting points higher

    than Pt. Processing in general

    by powder metallurgy.

    wider

    definitionof

    refractory

    metals

  • 5/24/2018 Advanced High Temperature Alloys

    13/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Density

    13

    Ru, Rh, Pd

    Re

    W

    Ta

    Hf

    Pt

    Au

    Tc

    Mo

    Nb

    Pd

    Ag

    Os, Ir

    Ni

  • 5/24/2018 Advanced High Temperature Alloys

    14/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Abundance of Elements

    14

    to find 1 Rh atom

    within a bunch of

    Si-atoms is

    comparable to

    find one

    individual person

    within the word

    population U.S. Geological Survey Fact Sheet 087-02 (2002)

  • 5/24/2018 Advanced High Temperature Alloys

    15/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys15

    Material Choice

    temperature

    environment

    moving/non-moving part

    design complexity (how to manufacture)

    price constrictions (depending on application

    of system). Reduction of 1 kg in weight:car ~ 0 - 5

    plane ~ 100 500

    aerospace ~ 100.000 - 500.000

  • 5/24/2018 Advanced High Temperature Alloys

    16/123University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys16

    Influence of ... on ...

    temperature: phase transitions, volume fractions, ...

    diffusion (recrystallization, dislocation climb, diffusional creep, ... )

    thermal fatigue (TF)

    mechanical: creep

    fatigue (low cycle, LCF, high cycle fatigue, HCF)

    environment:

    oxidation corrosion

    combinations:

    thermo-mechanical fatigue (TMF)

    stress corrosion cracking, stress oxidation, ...

  • 5/24/2018 Advanced High Temperature Alloys

    17/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys17

    Basics

    Thermodynamics KineticsBoltzmann-statistics: energy of

    movement increases with temperatureTk

    2

    3u Batomkin =

    TR

    Q

    0 e

    =

    Tk3Tk2

    32u2u BBatomkinatomtotal ===

    Arrhenius-plotTR3Umol

    total = 0,33 eV, bzw. 32 kJ/mol bei 1000C

  • 5/24/2018 Advanced High Temperature Alloys

    18/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys18

    Vacancy Concentration

    F = U - TS non-zero vacancy concentration is

    in thermodynamic equilibrium

    T[C] 20 300 450 800 1000 1200 1454

    T/Tm 0.17 0.33 0.42 0.62 0.74 0.85 1.00

    cv 10-23 310-12 10-9 10-6 10-5 710-5 310-4

    TR

    Q

    v

    vac

    ec

    = Qvacnickel= 1,36 eV (energy necessary to create one vacancy)

    equilibrium vacancy concentration for nickel

  • 5/24/2018 Advanced High Temperature Alloys

    19/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys19

    Nickel Vacancy Concentration

    Nickel Vacancy Concentration

    temperature [C]

    0 200 400 600 800 1000 1200 1400 1600

    vacancyconcentration

    100

    10-5

    10-10

    10-15

    10-20

    10-25

    Tm

    Nickel Vacancy Concentration

    temperature [C]

    0 200 400 600 800 1000 1200 1400 1600

    vacancyconcentration

    [10-4]

    1,00

    0,75

    0,50

    0,25

    0,10

    Tm

    Tk

    Q

    vB

    vac

    ec

    =

    with:

    Qvacnickel= 1,36 eV

    kB= 8.60210-5eV/K

    Tm/2

  • 5/24/2018 Advanced High Temperature Alloys

    20/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys20

    Diffusion

    cDj =

    1. Fick's law

    [j] = (atoms) m-2 s-1

    [D] = m2 s-1

    [c] = (atoms) m-3

    vacancy diffusion or

    volume diffusion

  • 5/24/2018 Advanced High Temperature Alloys

    21/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys21

    Coefficient of Diffusion

    Qvac energy to create a vacancy

    Qmigration activation energy to migrate a vacancy

    Qsd activation energy for volume diffusionQsd= Qvac+ Qmigration

    Tk

    Q

    Tk

    QQsdmigrationvac

    eDeDD

    +

    == 0

    )(

    0

    Qsd 17 kB Tm Qsdnickel 2.5 eV = 244 kJ/mol

    (for a perfect crystal; defects will lower the activation energies)

  • 5/24/2018 Advanced High Temperature Alloys

    22/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys22

    Qsdversus Tm

    400 kJ/mol

    0.137 kJ/(molK)

    17 kBNA

  • 5/24/2018 Advanced High Temperature Alloys

    23/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys23

    Dependence Melting Point and

    Enthalpy of Vacancy Creation

    elementTm

    [C]17RTm

    Qvac

    [eV]

    crystal

    structure

    Pb 327 0.88 0.57 fcc

    Al 660 1.36 0.68 fccCu 1 085 1.99 1.29 fcc

    Ag 1 235 2.21 1.12 fcc

    Ni 1 455 2.53 1.78 fcc

    Pt 1 768 2.98 1.32 fcc

    Mo 2 623 4.23 3.00 bcc

    W 3 422 5.40 4.00 bcc

  • 5/24/2018 Advanced High Temperature Alloys

    24/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys24

    Coefficient of Diffusion

    Steep slope indicates a

    high activation energy.

    Small elements diffuse

    faster.

    Diffusion in fcc crystals

    slower than in bcc crystals.

    fcc

    -iron bcc

    -iron

  • 5/24/2018 Advanced High Temperature Alloys

    25/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys25

    Coefficient of Diffusion with Defects

    Coefficient of diffusion of Th

    in W.

    Overall velocity for diffusiondepending on grain boundary

    thickness, grain size and

    dislocation density.

    surface diffusion

    grain boundary diffusion

    volume diffusion

    pipe

    diffusion

  • 5/24/2018 Advanced High Temperature Alloys

    26/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys26

    Pipe Diffusion

    Deff= Dsd+ adisl. Ddisl.

    adisl. area of dislocation core

    ( 5b2 0.3 nm2)

    dislocation density

    Ddisl. pipe diffusion along

    dislocation core

    atom flux ~ Darea

    dashed line: diffusion in crystal by the velocity of pipe diffusion

    2~ grainsd

    grain

    dDtimeatoms

    nbDdD2

    .disl

    2

    grainsd =identical atom fluxes if:

    nbD~time

    atoms 2.disl

    .disl

    volume diffusion

    dominant

    pipe diffusiondominant

    increasing

    decreasing

    disl.

    disl.

    sd

    grain

    2

    .disl

    sd

    d

    b

    D

    D =

  • 5/24/2018 Advanced High Temperature Alloys

    27/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys27

    Grain Boundary Diffusion

    Deff= Dsd+ / d Dgrain bound.

    with:

    effective grain boundary

    thickness ( 2 b 0.5 nm)

    d grain size

    Ddisl. pipe diffusion along dislocation

    core

    dashed line: diffusion in crystal by the velocity of grain boundary diffusion

    volume diffusion

    dominant

    grain boundary diffusion

    dominantfine

    grain

    coarse

    grain

    gb

    sd

    gb

    graingb

    2

    grainsd dDdD =identical atom fluxes if:graingb

    sd

    dD

    D =

  • 5/24/2018 Advanced High Temperature Alloys

    28/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys28

    Diffusional Creep

    Nabarro-Hering creep (pure volume diffusion)

    Coble creep (grain boundary diff.)

    Tkd

    D2

    2

    grain

    diffusionself

    NH

    =

    Tkd

    D

    2 3grain

    boundarygrain

    C

    =

    thickness of grain boundary, atomic volume

    NH-c

    C-c

  • 5/24/2018 Advanced High Temperature Alloys

    29/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys29

    Combined NH and Coble Creep:

    2

    grain

    eff

    3

    grain

    boundarygrain

    2

    grain

    diffusionself

    CNHcreepdiffusiond

    D

    Tk~

    d

    D

    d

    D

    Tk2

    +

    =+=

    for real geometry (non-cuboidal grains)

    grain

    boundarygrain

    diffusionselfeffd

    DDD

    +=

    grain

    gb

    sdd

    DD

    =identical creep rates if:

    graingb

    sd

    dD

    D =

  • 5/24/2018 Advanced High Temperature Alloys

    30/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys30

    Activation Energies Indicating

    Mechanism Changes

    Single crystal aluminium, oriented such that {111} slip is activated.

    Lytton, Shepard and Dorn, Trans. AIME212(1958) 220

    ~ Qsd

  • 5/24/2018 Advanced High Temperature Alloys

    31/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys31

    Diffusion in Ordered Structures

    (Intermetallic Phases)

    High binding energieshigh activation energieslow coefficient of diffusion

    Example NiAl: very high enthalpy of ordered B2

    structurehigh enthalpy outweighs low entropyordered up to Tm

    TmNi= 1,455CTm

    Al= 660C

    TmNiAl= 1,638C

  • 5/24/2018 Advanced High Temperature Alloys

    32/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys32

    Second Fick's Law

    cDt

    c=

    Can be concluded directly from first Fick's law.

    Similar in heat transfer systems, electrical

    potential, ... .

    0. 5 1 1. 5 2

    0. 2

    0. 4

    0. 6

    0. 8

    1

    f1(x)

    f2(x)

    f3(x)

    ( )x1)x(f1 =

    =

    5.0

    x1)x(f2

    =05.0

    x1)x(f3

    ( )

    =

    tD2

    xccc)t,x(c 011

    solution to these

    boundary conditions:

  • 5/24/2018 Advanced High Temperature Alloys

    33/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys33

    Thermal Conductivity

    The most simple, stationary case: no heat radiation, constanttemperatures in front and back of component.

    coefficient of heat (or thermal)

    conductivity: = a cp

    a coefficient of temperature conductivity

    cp heat capacity

    density

    ... coefficient of heat transfer

    cDj =

    Tq =

    cDt

    c=

    Tat

    T=

    compare:

  • 5/24/2018 Advanced High Temperature Alloys

    34/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys34

    Temperature Distribution with

    Thermal Barrrier Coating (TBC)

    Wrmedmm-

    schicht

    Haftvermittlerschicht Grundwerkstoff

    hot air

    cooling air

    TBC bond coat substrate

    In case of transients, the temperature should reach a stable distribution as fast as possible in

    order to reduce thermal stresses (temperature conductrivity as high as possible).

    In case of stationary circumstances, heat conductivity leads to heat flow into the solid.

  • 5/24/2018 Advanced High Temperature Alloys

    35/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys35

    Material Parameters at RT

    Km

    W

    KkgJ

    3

    cm

    g

    s

    m10

    26

    material/property

    heat cond.

    heat cap.cp

    density

    temp. cond.a

    ferritic steel 45 460 7.8 13.0

    austenite steel 15 500 8.0 3.8

    Ni-base alloys 11 450 8.2 3.0

    Mo 145 240 10.2 59.0

    Ti alloys (-rich) 7 530 4.5 2.9

    Al 210 890 2.7 87.0

    Al2O3bei RT

    ( Al2O3bei 1000C )

    25

    ( 6)

    800 3.9 8.4

    source: Brgel

    Attention: Heat conductivity strongly depends on alloy composition, see steels and pure

    Ni with 91 W/(mK)in comparison to Ni-base alloys with 11 W/(mK)

  • 5/24/2018 Advanced High Temperature Alloys

    36/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys36

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Staticb) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

  • 5/24/2018 Advanced High Temperature Alloys

    37/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys37

    Microstructure is NOT stable

    annealed deformed

    stress-relieved recrystallized

  • 5/24/2018 Advanced High Temperature Alloys

    38/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys38

    Recrystallization

    time dependence of

    recrystallization can be

    approximated by

    Avrami-Johnson-Mehl

    function:

    n

    0tt

    r e1f

    =

    , deformed

    partly re-crystallized

    fully re-crystallized

  • 5/24/2018 Advanced High Temperature Alloys

    39/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys39

    Grain Coarsening

    driving force: reduction of grain boundary

    energy

    T > 0.7 Tm

    no pre-deformation necessary

    self-similar system

    Ostwald ripening d ~ t1/3

    (big grains eat upsmall grains)

    new grains have low dislocation density

  • 5/24/2018 Advanced High Temperature Alloys

    40/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys40

    Grain Coarsening

    monomodal

    bimodal (some grain

    boundaries are pinned,

    e.g. by precipitates)

  • 5/24/2018 Advanced High Temperature Alloys

    41/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys41

    Precipitate Hardening

    Requirements:

    solid solution at higher

    temperatures (ability to

    homogenization heat

    treatment)

    during cooling a two-phase

    region should be reached

    in general: cooling rate as

    high as possible, thereafterannealing (in the two-phase

    region) to let grow the

    precipitates

    solution heat treatment

    quenching

    annealing

    furnace cooling

  • 5/24/2018 Advanced High Temperature Alloys

    42/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys42

    Thermodynamic Kinetic

  • 5/24/2018 Advanced High Temperature Alloys

    43/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys43

    Example: Al-Cu Alloy

    Guinier-Preston

    Zones leading to

    -Precipitates

    (Al2Cu) have

    paved the way

    to the success ofAl-alloys

    solution heat treatment

    quenching

    annealing

    quenching

    annealing

    supersaturated solid solution

    Other Examples of

  • 5/24/2018 Advanced High Temperature Alloys

    44/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys44

    Other Examples of

    precipitate hardening:

    nickel-base superalloy

    Al2Cu in AlCu alloy:

    platinum-base superalloy

    Ti D d f

  • 5/24/2018 Advanced High Temperature Alloys

    45/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys45

    Time Dependence of

    Precipitation Hardening

    dT precipitate size T distance between precipitates

    fT volume fraction of precipitates

    nucleation, growth, coarsening

    T = const.

  • 5/24/2018 Advanced High Temperature Alloys

    46/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys46

    Coherent - Semicoherent - Incoherent

    misfit( ) a

    a

    a

    aa

    a

    aa

    aa

    aa:

    p

    mp

    m

    mp

    mp21

    mp

    +

    =

    (mit Orientierungsbezug) (ohne Orientierungsbezug)

    E C id ti f

  • 5/24/2018 Advanced High Temperature Alloys

    47/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys47

    Energy Consideration for

    Precipitate Hardening

    Gtotal= Gvol+ Gboundary+ Gstrain+ Gdefect

    total change in free enthalpy

    enthalpy of formation of matrix to precipitate (scales with volume)

    enthalpy of phase boundary (scales with surface)

    strain enthalpy (elastic energy + dislocation line energy)

    reduction of enthalpy by precipitation coupled with a defect

  • 5/24/2018 Advanced High Temperature Alloys

    48/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys48

    Heterogeneous Nucleation

    dislocationssubgrain

    boundaries

    stacking faults

    coherent

    twin boundaries

    incoherent

    vacancy cluster

    surface (internal

    and external)

    grain boundaries

    precipitates

  • 5/24/2018 Advanced High Temperature Alloys

    49/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys49

    TEM-Micrograph of TiC Precipitates at

    Dislocations in an Austenitic Steel

  • 5/24/2018 Advanced High Temperature Alloys

    50/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys50

    Ostwald-Ripening of Precipitates

    d3- d03~ Dt here for T/Tm0.74

    ' particle size in IN 738 LC at

    T = 920C.

    particle coarsening constant of50 nm h-1/3

    +0,5 m after 1.000 h

    +1 m after 8.000 h

    1 year

  • 5/24/2018 Advanced High Temperature Alloys

    51/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys51

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Staticb) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    ( )

  • 5/24/2018 Advanced High Temperature Alloys

    52/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys52

    Room Temperature (RT) versus

    High Temperature (HT) Deformation

    most alloy properties at room temperature are time and

    rate independent (elastic constants, tension stress, ... ),

    tension stress experiment.

    For T > 0.4 Tmthe properties (deformation) will be timetemperature and rate dependent, creep experiment.

    deformation hardening fine grain hardeningsolid solution

    strengthening

    precipitate

    hardening

    cold deformation (RT) strong medium medium to strong medium to strong

    creep (HT)

    temporary hardening,

    reduced creep rupture

    strength, may lead to

    recrystallization

    reduced strength with

    fine grain material

    coarse grain,

    better single crystal

    medium medium to strong

    El ti (E )M d l d

  • 5/24/2018 Advanced High Temperature Alloys

    53/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys53

    Elastic (E-)Modulus and

    Poisson's Ratio

    )1(2

    EG

    +=shear modulus G

    Ni-base superalloys 120 115 110 105 0,39 - 0,41

    85 @ 1000C

    Change in Materials Properties

  • 5/24/2018 Advanced High Temperature Alloys

    54/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys54

    Change in Materials Properties

    with Temperature

    Material properties of steel and

    Ni-alloys at elevated

    temperatures. Comparison

    between short-term and long-

    term parameters.

  • 5/24/2018 Advanced High Temperature Alloys

    55/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys55

    Tension Creep Experiment

    (UTS)

    (YS)

    design by YS or UTS

    design by t1%

  • 5/24/2018 Advanced High Temperature Alloys

    56/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys56

    High Temperature Deformation

    dislocation glide (Peierls stress, in fcc and hcp very small and for T >

    0.15 Tmnegligible)

    cross slip of screw dislocations and dislocation interactions (for a low

    stacking fault energylarger dislocation spacingthermal

    activation necessary, T > 0.2 Tm, influence on deformation rate)

    climb of edge dislocations to overcome obstacles:

    diffusion at complete

    dislocation line

    T > 0.4 Tm

  • 5/24/2018 Advanced High Temperature Alloys

    57/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys57

    Dislocation Climb

    climb of edge dislocations to

    annihilate each other.

    arrangement in low energyconfigurations (sub-grain

    boundaries), climbing around

    abstacles (leaving the glide

    plane)

    movement of screw

    dislocations with kink

    http://c/Users/Uwe%20Glatzel/Documents/W/Vorlesungen/SS09/Advanced%20High%20Temperature%20Alloys/4-Douglas.wmv
  • 5/24/2018 Advanced High Temperature Alloys

    58/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys58

  • 5/24/2018 Advanced High Temperature Alloys

    59/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys59

    Internal Back Stress

    Dislocations climb allows annihilation of dislocationsand to establish a constant dislocation density,

    resulting in an internal back stress of:

    dislocation= and

    G shear modulus, constant 0.3 - 1, b magnitude of Burgers vector

    = bG.int

    r

    1

    2

    bG

    r

    1=

  • 5/24/2018 Advanced High Temperature Alloys

    60/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys60

    Creep Experiment

    behavior of pure metals:

    primary secondary tertiary:

    Creep Experimental Setup

  • 5/24/2018 Advanced High Temperature Alloys

    61/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys61

    Creep Experimental Setup

    up to 1400C

    Constanttemperature

    and stress or

    load

    Creep Experimental Setup for

    http://c/Users/Uwe%20Glatzel/Documents/W/Vorlesungen/1200%C3%AEmpg
  • 5/24/2018 Advanced High Temperature Alloys

    62/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys62

    Electrical Conductivity Material

    up to Melting Temperature

    Pyrometer from left, optical strain

    measurement from right, both contact-free.

  • 5/24/2018 Advanced High Temperature Alloys

    63/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys63

    Interrupted creep tests

    [001] orientation, 1123K, 650MPa

    time [h]

    0 10 20 30 40 50 60 70

    strain[%]

    0

    1

    2

    3

    4

    5

    6

    7

    single crystal (SX) nickel base superalloy (habilitation thesis Glatzel)

    [001] orientation, 1123K, 650MPa

    time [h]

    0 10 20 30 40 50 60 70

    strain

    rate

    [1/s]

    0

    2x10-6

    4x10-6

    6x10-6

    8x10-6

    1123K, 650 MPa

    strain [%]0 1 2 3 4 5 6

    strainr

    ate

    [1/s]

    10-7

    10-6

    10-5

    logarithm of strain rate versus strain

    (most valuable information for

    materials scientist)

  • 5/24/2018 Advanced High Temperature Alloys

    64/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys64

    Different Creep Stages

    primary creep: strain rate d/dt decreases

    material hardens

    secondary creep stage: strain rate constant

    hardening and softening are in equilibriumdislocation multiplication and annihilation in

    equilibriumdisl. density = const.

    tertiary creep: necking (creep pores) developlocal stress and strain rate increases

    drastically.

    World Record

  • 5/24/2018 Advanced High Temperature Alloys

    65/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    World Record

    Japan, Germany

    65

    http://www.nims.go.jp/eng/news/press/2011/02/p201102240.html

    NIMS: 14.853 days on 24. Feb. 2012,

    probably still running (started in 06/1969!)

    Siemens: 14,852 days terminated in 2000

    Modelling of Primary and

  • 5/24/2018 Advanced High Temperature Alloys

    66/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Modelling of Primary and

    Secondary Creep Stage

    66

    density velocity

    vb =

  • 5/24/2018 Advanced High Temperature Alloys

    67/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys67

    Problem with Low Creep Rates

    Life time of stationary gas turbines > 20 years andmax.= 3%

    510-11s-1

    Reliable data in lab down to 110-9s-1:

    l= 1 mwith l0= 25 mm after 10 h

    3.5% strain per year!

    Within university labs we are two orders of magnitude too

    fast compared to real life of a stationary gas turbine!

    statesteady

  • 5/24/2018 Advanced High Temperature Alloys

    68/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys68

    Engineering Creep Curves

    raw data creep curves:

    time to failure:

    isochrone time to failure:

    time strain

    (e.g. 1%)

    isochrone strain

    l C

  • 5/24/2018 Advanced High Temperature Alloys

    69/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys69

    Natural Creep Law

    vbstatesteady =

    2

    external

    bG

    1

    external~v

    natural creep lawbG

    ~2

    3

    external

  • 5/24/2018 Advanced High Temperature Alloys

    70/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys70

    Norton Creep Law (Empirical)

    TR

    Q

    n

    externalstatesteady

    creep

    eA

    =with Norton creep exponent "n"

    and Qcreep Qself diffusion

    power law break

    down (plb)

    T = const.

    dislocation

    climb

    diffusional creep

    stress dependence

    of the stationary

    creep rate of the

    austenitic steel 800

    H at 900C and

    1000C:

    Temperature Dependence of

  • 5/24/2018 Advanced High Temperature Alloys

    71/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys71

    Temperature Dependence of

    Stationary Creep Rate

    = 28 MPA = const.

    fcc alloys:

    TR

    Qcn

    5,3

    SFs eE

    A

    =

    Austenitischer Stahl 800H

    QsdNi 244 kJ/mol

    QsdFe 290 kJ/mol

    i i f

  • 5/24/2018 Advanced High Temperature Alloys

    72/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys72

    Activation Energy for Creep

    slope = 1

  • 5/24/2018 Advanced High Temperature Alloys

    73/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys73

    Constant Load Constant Stress

    failure

    in case the gauge length

    deforms uniform withconstant volume

    ( )nn00

    n

    0

    0

    n

    0n

    0 1A

    )1(FAF +=

    +=

    ==

    ln = ln + n ln 0+ n ln (1+) = const. + n ln (1+) 0

    This method is applicable to

    determine the stress exponent "n"

    only, if the secondary creep state

    lasts to at least 10%

    Ashby Deformation

  • 5/24/2018 Advanced High Temperature Alloys

    74/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys74

    Ashby Deformation

    Mechanism Maps

    n = 3

    Ashby Deformation

  • 5/24/2018 Advanced High Temperature Alloys

    75/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys75

    Ashby Deformation

    Mechanism Maps

    Versetzungsklettern !dislocation climb !

    D f ti M h i

  • 5/24/2018 Advanced High Temperature Alloys

    76/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys76

    Deformation Mechanisms:

    Elastic Deformation: Spontaneous and reversible deformation. In the elastic region: = E(rule of

    thumb: e, max10-3, but definitely 0.4Tm) and lower stress levels dislocation climb plays the

    major role => time dependent constant strain rate (d/dt)ss~ n, with a Norton stress exponent in-between

    3 und 8.

    Diffusional Creep: In principle over the complete temperature regime (0 K - Tm). Relevance only at very

    low stress levels and T close to Tm: Coble-creep (grain boundary diffusion). For geological times a time

    dependent deformation can be determined. Transition to Nabarro-Herring creep (volume diffusion) is

    dependent on grain size and grain boundary thickness. The transition temperature from coble to Nabarro-

    Herring creep can be explained by the different activation energies of volume and grain boundary diffusion.

    Creep of Alloys

  • 5/24/2018 Advanced High Temperature Alloys

    77/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys77

    Creep of Alloys(assuming solid solution, no precipitates)

    a) interaction dislocation

    and impurity (low temp.)

    b) stationary dislocation

    pinned by impurities

    (Cottrell clouds)

    c) pulled off Cortrell clouds

    (Lders bands)

    d) gliding dislocation trails

    impurities behind (viscous glide)

    e) impurities faster than dislocation (very high temp., no hardening)

    f) annihilation due to dislocation climb

    solutionsolidi bG +=

    P i it t H d i

  • 5/24/2018 Advanced High Temperature Alloys

    78/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys78

    Precipitate Hardening

    eprecipitatsolutionsolidi bG ++=

    threshold stress concept (with n 3 - 4 and Qcreep= Qself diffusion):

    TR

    Qcn

    0ss e

    EA

    =

    mechanism temperature

    coherent and semi-

    coherent phase

    boundaries

    in-coherent phase

    boundaries

    cutting 0 K up to Ts yes no

    bypass by Orowan 0 K up to Ts yes yes

    climb over obstacles > 0.4Ts yes no

    O St

  • 5/24/2018 Advanced High Temperature Alloys

    79/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Orowan Stress

    79

    L

    bG

    Orowan

    r

    2r

    TT

    L

    Tsin

    Line tension leads to a back stress,

    the Orowan stress, due to obstacles

    (in most cases precipitates) with an

    average distance L between these

    precipitates.

    Hardening Mechanisms as

  • 5/24/2018 Advanced High Temperature Alloys

    80/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys80

    g

    Function of Precipitate Size

    dT0 initial precipitate size

    1and 2arbitrary external stress levels

    passing by:

    climbing:

    Cutting is relevant only for coherent

    precipitates

    Dependence of stationary creep rate on

    initial precipitate size for two different

    external stress levels

    Td~

    2

    Td1~

    = cutting

    Pinning of Dislocations by

  • 5/24/2018 Advanced High Temperature Alloys

    81/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys81

    g y

    Carbides in Austenitic Steel

    T = 1000C, = 25 MPa, carbides of the type TiC und M23C6

    V Hi h V l F ti

  • 5/24/2018 Advanced High Temperature Alloys

    82/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys82

    Very High Volume Fractions

    Volume fractions of 70% are only achievable with non-spherical precipitates.Spacing between precipitates is getting smaller Orowan stress

    Orowan Gb/L necessary. For small strains precipitates are not cut by

    dislocations. With G = 90 GPa, b = 0.25 nm, L 75 nm => Orowan 300 MPa

    nickel base superalloys

    ODS alloys:

    Orowanpart.

    3'

    d

    fbG

    Dispersion Hardening

  • 5/24/2018 Advanced High Temperature Alloys

    83/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys83

    Dispersion Hardening(oxide dispersion strengthened alloys (ODS-alloys))

    back-side pinning of dislocation by

    ODS-particle (Rssler + Arzt)

    precipitate strengthened

    dispersion strengthened

    yield

    stress

    temperature Tm

    temperature regime for

    dissolution of precipitates

    Summary:

  • 5/24/2018 Advanced High Temperature Alloys

    84/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Hardening Mechanisms

    84

    Internal back stress in steady state regime:

    Orowan stress in case of precipitates or particles: Orowan Gb/L

    Solid solution strengthening:

    In case of coherent precipitates:

    = bGi

    r

    rconst. solutionsolid

    EEa

    a misfitcoherency =

    Creep Damage

  • 5/24/2018 Advanced High Temperature Alloys

    85/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys85

    Creep Damage

    a) cracks at grain boundaries b) cavities (micropores) at grain boundaries

    creation of a creep pore in poly-crystalline material due to disloction glide:

    Creep Damage

  • 5/24/2018 Advanced High Temperature Alloys

    86/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys86

    Creep Damage

    nucleation, not detectable with OM

    micropore, difficult to detect

    pear necklace like chain of

    micropores (easy detectable)

    micro cracks

    fracture

    Extrapolation of Time-to-Fracture Data

  • 5/24/2018 Advanced High Temperature Alloys

    87/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys87

    p

    (Larson-Miller plot, Larson-Miller parameter)

    m

    ss

    f

    Kt

    =

    Monkmann-Grant relation with constant K and exponent m 1:

    ( )ssf lnmK)tln( =

    TR

    Q

    TR

    Q

    n

    0ss

    creepcreep

    eBeA == T1BB)ln( 21ss =

    TPC

    TmmKtf

    11)ln( 21 +=+= BB

    with material dependent constants C and P.

    Larsson-Miller plot: P = T[C + ln(tf)]10-3, with CNi-base= 20, T in K, tfin h

    Example: tf=100 h, T = 1273 K P = 31.3 (relation tfwith T at = const.)

    ~ 1952 @ GE

    Larson Miller Plot

  • 5/24/2018 Advanced High Temperature Alloys

    88/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys88

    Larson-Miller-Plot

    P = T[20 + ln(tf)]10-3(T in K, tfin h)

    Comparison of CMSX-6,

    LEK 94 and CMSX-4,

    patent Wllmer, Glatzel,

    Mack, Wortmann

    stationary gas turbine, about 20 years of service ~ 130.000 h

    Comparison LEK 94 with

  • 5/24/2018 Advanced High Temperature Alloys

    89/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys89

    CMSX-4 and CMSX-6

    Larsen-Miller-parameter

    P = T (20+log tf) 10

    -3

    25 26 27 28 29 30 31 32

    stress[M

    Pa]

    120

    230

    500CMSX-6 [Wortmann 88] 8.0 g/cm3

    CMSX-4 [Erickson 94] 8.7 g/cm3

    CMSX-4 [Frasier 90] 8.7 g/cm3

    LEK-2 8.5 g/cm3

    LEK-4 8.2 g/cm3

    LEK-5 8.2 g/cm3

    LEK-3 8.1 g/cm3

    LEK-6 8.3 g/cm3

    LEK-1C 8.4 g/cm3

    LEK-1B 8.3 g/cm3

    LEK-1A 8.2 g/cm3

    T = 10 K

    24K

    10 K

    29K

    Not correctedregarding density!

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    90/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys90

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Staticb) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys

    6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    Time Dependent Variation of Stress

  • 5/24/2018 Advanced High Temperature Alloys

    91/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys91

    and/or Temperature and/or ...

    Whler diagram for T < 0.4Tm. Z time fatigue limit, D endurance

    fatigue limit

    a) type I metal (bcc) b) type II metal (fcc) endurance limit at 2107

    Change in Whler Diagram with

  • 5/24/2018 Advanced High Temperature Alloys

    92/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys92

    Temperature and Holding Time

    10 CrMo9-10

    Thermal Fatigue

  • 5/24/2018 Advanced High Temperature Alloys

    93/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys93

    Thermal Fatigue

    Thermal breathing of turbine blade:

    a) heating phase: edges reach high temperatures faster than interior

    b) cooling phase: edges cool faster than interior

    c) repeated thermal cycles lead to thermal fatigue cracks at edges

    Thermal Strains and Stresses :

  • 5/24/2018 Advanced High Temperature Alloys

    94/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys94

    Thermal Strains and Stresses :

    thermal= thermal T, or: thermal= E thermal

    thermal= E thermal T

    Lower E-Modulus is Helpful:

  • 5/24/2018 Advanced High Temperature Alloys

    95/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys95

    Lower E-Modulus is Helpful:

    orientation of single crystals in direction reduces thermal stresses

    Anisotropy and Temperature Dependence of

  • 5/24/2018 Advanced High Temperature Alloys

    96/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    Elastic Constants in Ni-base Superalloys

    96

    Orientation dependence of

    Youngs modulusE of matrix

    phase. Distance from the center to

    the surface indicates the

    magnitude of the Youngs modulus

    in this direction.

    D. Siebrger, H. Knake, U. Glatzel, Mat. Sci. Eng. A298 (2001)

    TMF and many other Time

  • 5/24/2018 Advanced High Temperature Alloys

    97/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys97

    Dependent Test Techniques

    Can not be covered in this lecture!

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    98/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys98

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Staticb) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys

    6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    High Temperature Corrosion

  • 5/24/2018 Advanced High Temperature Alloys

    99/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys99

    High Temperature Corrosion

    oxidation: external and internal, passivation

    carburization (internal carbides)

    nitration: internal, seldom nitrite passivation

    sulfurization: external (sometimes

    passivation), seldom internal

    Worldwide 1 ton iron per minute corrodes to rust (low

    temperature aqueous corrosion).

    Ellingham-Richardson-Diagram

  • 5/24/2018 Advanced High Temperature Alloys

    100/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys100

    Ellingham Richardson Diagram

    right hand and lower axes

    O2partial pressure at T = 0.

    As an example pO2of10-15Pa = 10-20bar = 10-17mbar

    is shown as a dashed line.

    only the oxides below this line

    are thermodynamic stable.

    UHV

    HV

    air

    Time Dependent Oxidation

  • 5/24/2018 Advanced High Temperature Alloys

    101/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys101

    Time Dependent Oxidation

    Oxidation Mechanisms

  • 5/24/2018 Advanced High Temperature Alloys

    102/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys102

    Oxidation Mechanisms

    logarithmic (not shown)low temperature oxidation whicheventually comes to a stop or no measurable increase in oxide scale

    thickness (e.g. Al, Cr, Mg).

    parabolic mass change (m/A)

    2

    ~ t. Diffusion through oxidation layereither oxygen or metal. Most favorable oxidation behavior (Al

    passivation at high temperatures).

    linear mass change: oxide layer with crackscontinuous contact

    with metal (e.g. Ta, Nb).

    mass loss: volatile oxidescatastrophic oxidation (e.g. V, Mo, W,

    Cr, Pt). You can see it inside a broken light bulb.

    Pilling-Bedworth Ratio

  • 5/24/2018 Advanced High Temperature Alloys

    103/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys103

    Pilling Bedworth Ratio

    PB = (volume of oxide of one metal atom)/(volume of metal atom)

    ideal is 1.1 to 1.3

    Of course thermal expansion coefficients also play a major role for the stability of oxide scales.

    Oxide TiO MgO Al2O3 MgO2 Ti2O3 ZrO2 Ti3O5 NiO FeO TiO2 CoO

    PB 0.70 0.81 1.28 1.34 1.50 1.56 1.65 1.65 1.70 1.73 1.86

    Oxide Cr2O

    3 FeCr

    2O

    4 Fe

    3O

    4 Fe

    2O

    3 SiO

    2 Ta

    2O

    5 Nb

    2O

    5 W

    PB 2.05 2.10 2.11 2.15 2.15 2.50 2.68 3.40

    Alloying Effects:

  • 5/24/2018 Advanced High Temperature Alloys

    104/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys104

    Alloying Effects:

    different elements have

    different oxygen affinity

    concentration changes

    diffusion rates are different

    oxide layer contains othermetals

    Example Ni-Cr-Al

  • 5/24/2018 Advanced High Temperature Alloys

    105/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys105

    Example Ni Cr Al

    Ni Cr 10 Al 5oxide layer and

    internal

    oxidation occurs

    1000C

    Observations for the

    S ll R N5

  • 5/24/2018 Advanced High Temperature Alloys

    106/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys106

    Superalloy Rene N5

    Bensch et al., Acta Mat. 2010

    and Acta Mat. 2012

    layer number layer composition properties

    1 cover oxide layer NiO, CoO thick and porous monophase layer

    2 interlayer of oxides NiAl2O4, NiTa2O6, Cr2O3 thick and porous layer consisting of two fractions

    3 third oxide layer Al2O3 dense and thin monophase layer

    4 -free layer see Tab. 1 Al-content of 2.2 wt. %

    5 reduced layer composition in-between layer number 4 and 6 reduced Al content, morphology change

    6 two-phase centre region nominal composition of Ren N5 (Tab. 1) regular / structure, seeFig. 6 f)

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    107/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys107

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Static

    b) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys

    6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    High Temperature Alloys

  • 5/24/2018 Advanced High Temperature Alloys

    108/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys108

    High Temperature Alloys

    T > 500C, Application in:

    energy generation

    engines (cars, trains, airplanes, ships, ... )

    chemical industry

    metallurgy

    mechanical engineering

    Overview Metals

  • 5/24/2018 Advanced High Temperature Alloys

    109/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys109

    Overview Metals

    ele

    m.

    struc-

    ture

    Ttrans.

    Tm

    [C]

    [g/cm3]

    max. O-solubility

    [at.%]

    advantages/disadvantages

    Ti hdp

    krz

    882

    1855

    4.5

    4.5

    31.9

    8

    + low density

    + high melting point

    + abundant available

    + low th.(~ 10-5K-1)

    no alloy known with adequate strength for temperatures > 600C

    high oxygen and nitrogen solubility > 700C, increased brittleness

    linear oxidation > 800C

    low thermal conductivity

    ignition hazard

    V krz 1910 6.1 17 catastrophic oxidation; Tm(V2O5) = 658C

    Cr krz 1863 7.2 0.0053 very brittle at RT; conventionally not processable

    Mo krz 2623 10.2 0.03 + very high creep strength

    + lowth, high thermal conductivity, good thermal fatigue strength

    very brittle at RT

    catastrophic oxidation; Tm(MoO5) = 795Cno long lasting coating available

    W krz 3422 19.3 0 + highest melting point of metals (only C with even higher Tm)

    + very high creep strength

    + low th, high thermal conductivity, good thermal fatigue strength

    very brittle at RT

    catastrophic oxidation > 1000C durch hohe WO3-Abdampfrate

    no long lasting coating available

    very high density

    Overview Metals

  • 5/24/2018 Advanced High Temperature Alloys

    110/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys110

    Overview Metals

    elem. structure Ttrans.Tm

    [C]

    [g/cm3]

    max. O-solubility

    [at.%]

    advantages/disadvantages

    Fe

    krz

    kfz

    krz

    912

    1395

    1538

    7.9

    7.7

    7.4

    0.0008

    0.0098

    0.029

    + very good corrosion resistance by alloying with Cr or (Cr + Al)

    + -structure can be stabilized down to RT (by Ni)

    + very good processable and weldable

    + low cost (~ 1 /kg)

    strength at high temperatures (> 700C) limited

    Co hdp

    kfz

    422

    1495

    8.8

    8.7

    0

    0.048

    + very good corrosion resistance by alloying with Cr or (Cr + Al)

    + Co-alloys castable in air good weldability

    only moderate hardening available

    Ni-additions necessary to stabilize fcc structure, reduces strength

    Ni kfz 1455 8.9 0.05 + broad possibilities for alloying, high strength increase possible by

    alloying with Al, leading to '-phase (Ni3Al)

    + very good corrosion resistance by alloying with Cr or (Cr + Al)

    + processable

    relatively low melting pointth.high, low thermal conductivity

    Pt kfz 1772 21.5 0 + high corrosion and oxidation resistance

    + high melting point

    very high density

    very expensive (~ 33 /g)

    Evolution of materials

    d i i

  • 5/24/2018 Advanced High Temperature Alloys

    111/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys

    used in aero-engines

    111

    The earlier approach of technology transfer from military to civil istending to switch direction.

    www.azom.com

    Example of Intermetallic

    Ph (Ni Al S t )

  • 5/24/2018 Advanced High Temperature Alloys

    112/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys112

    Phases (Ni-Al-System)

    Ni-Al Intermetallic Phases

  • 5/24/2018 Advanced High Temperature Alloys

    113/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys113

    phase structure Ttrans.

    Tm[C]

    [g/cm3]

    advantages/disadvantages

    Ni3Al L12 1383 7.5 + anomalous temperature dependence of strength

    + same structure base than Ni matrix (fcc)

    + stable for larger Al variations > 1 wt.% Al

    + ductile as single crystal

    high density

    brittle as polycrystal (can be hindered by boron doping (grainboundary strengthener)

    Al-content not sufficient to build stable Al2O3-layerreduced high

    temperature oxidation resistance

    NiAl B2 1638 5.85 + very good oxidation resistance, since 30 wt.% Al

    + high melting point

    + low density

    + ordered structure up to melting point+ high thermal conductivity

    + low coefficient of thermal expansion

    extremely brittle at temperatures below 500C (von Mises criterion

    not fulfilled)

    low strength at high temperatures

    NiAl, B2 Ordered

    I t t lli Ph

  • 5/24/2018 Advanced High Temperature Alloys

    114/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys114

    Intermetallic Phase

    At a first sight very interesting (seeadvantages) but despite many efforts and many

    100 Mio. US$ research money spent, up today

    no bulk usage of NiAl has been achieved.

    BUT: aluminum coatings leading to NiAl

    layers is heavily used.

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    115/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys115

    Content

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Static

    b) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys

    6. Lost Wax Investment Casting

    7. Depending on Time: Lectures on

    a) SX Ni-Base Superalloys b) LEK 94 c) Pt-Base Superalloys

    MTS-Factory in Bayreuth

  • 5/24/2018 Advanced High Temperature Alloys

    116/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys116

    y y

    ground-breaking ceremony: 20.02.2008, topping-out ceremony: 06.06.2008

    start of production: ~ 12/2008

    MTS-Factory, June 2008

  • 5/24/2018 Advanced High Temperature Alloys

    117/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys117

    y,

    MTS-Factory, June 2008

  • 5/24/2018 Advanced High Temperature Alloys

    118/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys118

    y,

    MTS-Factory, June 2008

  • 5/24/2018 Advanced High Temperature Alloys

    119/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys119

    y,

    Processing of a Turbine

    Blade

  • 5/24/2018 Advanced High Temperature Alloys

    120/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys120

    Blade

    FPI

    X-Ray

    Feinguss, Wachsausschmelzverfahren, lost wax investment casting, ...Turbine Casting

    Additionally: hollow geometries possible (core insertion)!

    Archaeological Evidence

    (Bibracte) ~ 50 B C

    http://../Video/CT%20an%20Turbinenschaufeln,%20Hausherr/Turbine_Gross_Seitlich.avihttp://../Video/CT%20an%20Turbinenschaufeln,%20Hausherr/Turbine_Gross_Durchlauf.avihttp://../Videos%20f%EC%B2%A0Vorlesung/K%EC%A8%ACkan%E4%AC%A5%20in%20einer%20Turbinenschaufel.wmv
  • 5/24/2018 Advanced High Temperature Alloys

    121/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys121

    (Bibracte) ~ 50 B.C.

    cloth clip

    ceramic mould filled with waxTurbine Casting

    Single Crystal Casting

    Metals and Alloys Bayreuth

  • 5/24/2018 Advanced High Temperature Alloys

    122/123

    University Bayreuth, Advanced High Temperature Alloys Uwe Glatzel, Metals and Alloys122

    Metals and Alloys, Bayreuth

    < 20 s

    0,8...400

    mm/min

    Content

  • 5/24/2018 Advanced High Temperature Alloys

    123/123

    1. Introduction, Basics2. Stability of Microstructure

    3. Mechanical Properties

    a) Static

    b) Cyclic (Fatigue)

    4. High Temperature Corrosion

    5. High Temperature Alloys

    6. Lost Wax Investment Casting

    7 Depending on Time: Lectures on