advanced experimental techniques ultracold atoms and...

41
Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop [email protected] VU, June 2014 1

Upload: others

Post on 29-Dec-2019

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Advanced Experimental Techniques

Ultracold atoms and molecules Steven Knoop

[email protected]

VU, June 2014

1

Page 2: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Ultracold atoms

atom trap: magnetic trap or

optical dipole trap

BEC

Bose-Einstein condensation

laser cooling

evaporative cooling

Temperature: nK – mK Atom number: up to 108

Density: up to 1014 cm-3 (air 1019 cm-3) 2

Page 3: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

LevT lab, Innsbruck 3

Page 4: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Overview of lectures

• Lecture 1:

– Laser cooling of neutral atoms

– Trapping of neutral atoms

• Lecture 2:

– Evaporative cooling

– Bose-Einstein condensation (BEC)

• Lecture 3:

– (Ultra)cold molecules

– Laser cooling of molecules

4 + labtour

Page 5: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

http://arxiv.org/abs/1212.4108

5

Page 6: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Lecture 1

Laser cooling of neutral atoms

Trapping of neutral atoms

6

Page 7: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Atomic level structure Group I, alkali-metal atoms

ground state: (closed shells)+ns first excited state: (closed shells)+np

n2S1/2

n2P1/2

n2P3/2

D2 D1

S=1/2 L=0

J=1/2 F=I-1/2, I+1/2

I

n2S+1LJ

S=1/2 L=1

J=1/2, 3/2 F=|I-3/2|, ..., I+3/2 F=I-1/2, I+1/2 I

fine-splitting hyperfine-splitting

7

Page 8: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

fine-structure hyperfine-structure

Zeeman effect:

Paschen-Bach

BmgE BFF m

MHz/G 4.1hBm

87Rb

Zeeman

D2

8

Page 9: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Light-atom interaction

g

e

1

3sat3

hcI

E 2

c

Inz

I

d

d

2

3 2

m -1 0 1

+ -

Frequency, wavelength, linewidth and lifetime

polarization

Saturation intensity Optical cross section

Beer’s law 9

Page 10: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Laser cooling and trapping

magneto-optical trap (MOT)

Zeeman slower

atomic beam source

Chu Cohen-Tannoudji Phillips

Nobelprize 1997

Raab et al, PRL 1987 Phillips et al, PRL 1982

Doppler effect

g

e

Zeeman effect

g

e

B

10

Page 11: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Radiation pressure atomic beam

source

11

Page 12: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Radiation pressure atomic beam

source

rate) g(scatterinmomentum)(photon scatt F

3sat3

hcI

2scattscatt kkRF

2

maxmax

M

k

M

Fa

0

12

2412 22

sat

satscatt

II

IIR

1

Page 13: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Zeeman slower az2vv 22

0

Zeeman slower

atomic beam source

max

2

00

2

v

aL

2/1

0

0 1vv

L

zz

v)(B

0 kzB

m

bias

21

0

0 1 BL

zBzB

/

B

hB

m0

0

v

0bias m BB

Zeeman effect

g

e

B

13

Page 14: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Zeeman slower

14

He* lab, Amsterdam

Page 15: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Optical molasses

Doppler effect

g

e

vv2vv scatt0scatt0scattmolasses

-k

FkFkFF

22sat

2scatt

21

242

I

Ik

Fk

00

friction force-> molasses

15 red-detuned

Page 16: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Doppler cooling limit

2

21

4

2

TkB

2

DBTk2

spontspontabsabs FFFFF

Doppler temperature

16

Example: Na MHz 102 K 240 mDT

randow walk

Page 17: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Magneto-optical trap

17

Page 18: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Magneto-optical trap

zk

zF

kF

βzωkFβzωkωFF

v2v2

vv

0

scattscatt

0scatt0scattMOT

z

BB

d

d

m

friction force-> molasses

restoring force -> trap 18

Page 19: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Loading schemes

19

• background gas • vapor cell (Monroe et al PRL 1990) • very simple • “high” background pressure

(limited lifetime and atom number)

• slow beam

• Zeeman slower • 2D-MOT • another MOT Zeeman slower

MOT

Page 20: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Fluoresence imaging

22

sat

satscatt

412

II

IINR

NaLi lab, Heidelberg

20

NL

dt

N

d

3D-MOT loading from 2D-MOT

Page 21: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Camera Atom Cloud

Absorption imaging

Inz

I

d

d

2

3 2

zzyxnyxn d),,(),(

),(log

1),( 0

yxI

Iyxn

),(exp),( 0 yxnIyxI

21 light without atoms

I0

light with atoms

I(x,y)

Beer’s law

n(x,y)

Page 22: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Temperature

22

22

0)( tm

Tkt B

time-of-flight

Absorption imaging for variable expansion time

n(x,y)

Page 23: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

MOT‘s

NaLi lab, Heidelberg

MOT

23

first: sodium, Na (1987) latest: holmium, Ho (2014)

Page 24: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Laser cooling of alkali-metal elements

example: rubidium (87Rb)

• cycling transistion • F=2 -> F’=3

• need repumper • F=1 -> F’=2

24

Page 25: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Rb vapour cell

photodetector

/2 /4

Wedge

Locking the laser on atomic transition

Saturated absorption spectroscopy

85Rb

87Rb

25

Page 26: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Lasers

optical dipole trap

laser cooling Near-resonant laser light, wavelength atom specific

• Dye laser (visible, tunable) • Ti:Sapphire (NIR, tunable) • Diode laser (visible-NIR)

Far off-resonant laser light (IR, NIR, FIR) • Nd:YAG (1064nm) • Ytterbium fiber laser (1064nm) • Erbium Fiber Lasers (1550nm) • CO2 laser (10.6mm) 26

Page 27: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Light frequency and power control: AOM

27

Acousto-Optical Modulator

RFif nvvv

• tunable frequency • tunable output power • fast switch on/off (<ms)

RF Bragg diffraction

Page 28: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

• Limitation of laser cooling

– temperature

• (sub)-Doppler

• (sub)-recoil

– density

• light-assisted collisions

• reabsorption

• Magnetic trap and/or optical dipole trap – loaded from MOT (+cMOT+optical molasses+optical pumping)

– evaporative cooling 28

Trapping of neutral atoms

NaLi lab, Heidelberg

Page 29: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Vacuum requirements

29

Collisions with “hot” background atoms and molecules lead to trap loss

tNtN exp)( 0i

i

in v1

loss

cross section

πm

TkB8v H2@300K: v=1.8*103 m/s

velocity

density

~ 10-14 cm2, very crude guess (R1+R2)2

Tk

Pn

B

1 mbar = 100 Pa = 0.75 Torr

s 10for mbar 102 9 P

We need Ultra-High Vacuum (UHV) conditions!

-37 cm 105 n

Page 30: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Magnetic trapping

)()(mag rBμr U

30

BMgU FBF mmag

z

B

y

B

x

B zyx

d

d

2

1

d

d

d

d

222 4zyx B Quadrupole magnetic trap

Page 31: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Quadrupole magnetic trap

31

QMT

Only low-field seeking states are trappable!

(asymmetry due to gravity)

Page 32: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Optical pumping

32

spin

-po

lari

zin

g

mF -2 -1 0 1 2

F=2

F=1

F’=2

dark state

+

Page 33: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

QMT limitation: Majorana loss

33

Solutions: • harmonic potential with magnetic field offset -> Ioffe-Pritchard type magnetic trap • plugged QMT (with blue detuned laserbeam) • hybrid QMT + optical dipole trap

nonadiabatic spin flips to untrapped states at the magnetic field zero at the center of the QMT

tMeNtN

0)(

tTtT M 2

0)(

2

2

Tkm B

M

m

loss:

heating:

2

2

9

8

B

Mkm

m

Page 34: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

34

Optical dipole trap

)(2

)Re()()(

0

rrEdr Ic

Udip

)()Im(

)(0

scatt rr Ic

Chu et al, PRL 1986

Page 35: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

35

Optical dipole trap: 2-level system

0

D<0 red-detuned

D>0 blue-detuned

Page 36: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

36

Optical dipole trap: Rb

0,1

0,2

D2-line 780nm; D1-line 795nm

Typical wavelengths ODT Rb: 1064 nm, 1550 nm

5W 50mm

Page 37: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

37

Optical dipole trap: exp. realization

z

r

waist Rayleigh length

Rb 1557nm

5W 50mm

Crossed dipole trap

2

0

0w

PU

iw

fw

0

Page 38: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

• Advantages – All Zeeman states (lowest spin-state)

– Mixture of Zeeman states (spinor BEC)

– Add homogeneous magnetic field (Feshbach resonances)

• Disadvantages – Shallow (<1 mK)

– Small (<1 mm)

38

Optical dipole trap

MOT -> Magnetic trap -> Optical dipole trap

Page 39: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Plugged QMT

39

Optical-plug beam prevent atoms from the center of the QMT

Blue-detuned (shorter wavelength than

optical transition)

Page 40: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Hybrid QMT+optical dipole trap

40

Add single optical dipole beam to QMT, misaligned from QMT center

Page 41: Advanced Experimental Techniques Ultracold atoms and moleculesskp270/lectures/lecture_AET_2014_1.pdf · Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop

Levitated optical dipole trap

41

Rb 1557nm

50mm 1W

0.5W

0.2W

Ugrav=mgz add quadrupole and bias field

to compensate gravity

dz

dBmg m

magnetic field gradient needed:

Example 87Rb (F=1, mF=1): m=mB/2

G/cm 5.302

B

Rb gm

dz

dB

m