advanced communication solutions ip solutions: ip-dvb encapsulation, multimedia router/receivers...

47
ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director, Sales Engineering Comtech EF Data

Post on 18-Dec-2015

234 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers &

Communication Systems for SNGs

Steve GoodDirector, Sales Engineering

Comtech EF Data

Page 2: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

2

SSPI Brazil Broadcast DayAgenda

• Efficiencies in Satellite Communications• IP-DVB Encapsulation• Multimedia Router/Receivers• Communication Systems for SNGs

Page 3: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

3

Comtech EF Data

• A subsidiary of Comtech Telecommunications (NASDAQ: CMTL)• CMTL FY-2006 Revenues: US$ 391.5 million• Comtech EF Data (CEFD) Headquartered in Tempe, Arizona, USA• All products are designed and manufactured in our ISO-9001

certified facility– Three adjacent buildings with 125,000+ square feet

• Our Mission– To be a worldwide supplier of high quality, high value satellite

communications equipment for commercial and government markets

Page 4: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

Efficiencies in Satellite Communications

Page 5: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

5

Satellite Communication Economics“Total Cost of Ownership”

• Costs typically associated with satellite communications– Operating expenses

Satellite space segment Recurring license fees and taxes Support and maintenance

– Capital (Fixed) expenses Ground equipment, codec,

routers, switching equipment, modems, converters, RF, HPA, antennas

Site preparation, civil works, one time license fees

Operating Expenses

Capital Expenses

Network Operations + Depreciation

Total Cost of Ownership

Operations & Maintenance

Transmission OPEX

Power

Spares/SupportTraining

SiteRental

NetworkEquipment

SiteEquipment

CivilWorks

NRO

TransmissionEquipment

Page 6: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

6

OPEX (Space Segment)

• Bandwidth and Power Efficient Satellite Solutions to reduce OPEX

1. Reducing power through better forward error correction (Turbo, LDPC codes)

2. Increasing data rate through higher order modulation (8PSK, 8-QAM, 16-QAM, 16APSK, 32APSK, etc.)

3. Efficient IP-enabled modems (QoS, IP Header & Payload Compression)

4. dynamic SCPC (dSCPC) and Single Hop Mesh links

Enables simultaneous

optimization of satellite

transponder power and bandwidth

Page 7: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

7

Spectral Efficiency vs. Eb/No

Page 8: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

8

Allocated vs. Power Equivalent Bandwidth (PEB)

Relative Bandwidth (%) – for same data rate

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

16QAM 7/816QAM 7/8

16QAM 3/416QAM 3/4

8PSK 5/68PSK 5/6

8PSK 2/38PSK 2/3

QPSK 7/8QPSK 7/8

QPSK 3/4QPSK 3/4

QPSK 1/2QPSK 1/2

QPSK 1/2 = 100%

Page 9: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

9

Allocated vs. Power Equivalent Bandwidth (PEB)

• Allocated BW– Portion of transponder that

actually used– Function of modulation and

FEC– Decreases with higher

order mods and FECs– “Bandwidth Limited” links

have greater Allocated than PEB

• PEB– Fraction of transponder

required to close link– Function of hub antenna,

remote antenna and satellite specifics along with required Eb/No

– Increases with higher order mods and FECs

– “Power Limited” links have greater PEB than Allocated

Page 10: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

10

Modulation and FEC EfficienciesExample

Modulation FEC Type

FEC Rate

Allocated

(MHz)

PEB

(MHz)

Greater

(MHz)

Cost per Month

QPSK Vit RS 1/2 2.93 1.33 2.93 $11,700

8QAM LDPC 2/3 1.33 1.41 1.41 $5,600

16QAM TPC 7/8 0.76 3.78 3.78 $15,100

Let’s look at an example of a 2.048kbps link in C-Band from a 16M to a 3.7M antenna with a cost of $4,000 per

MHz per month

BW Limited

PEB Limited

BW/PEBBalanced

Page 11: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

IP-DVB Encapsulation

Page 12: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

12

Types of Encapsulation

• SCPC Carrier– HDLC

• MCPC / “TDM” / TDMA Carrier– HDLC

• DVB-S2– Multiprotocol Encapsulation (MPE)– Generic Stream Encapsulation (GSE)

Removes MPEG-2 Layer Utilizes smaller header than MPE or ULE

– Ultra Lite Encapsulation (ULE) Maintains MPEG-2 Layer Can compress IP header from 20 bytes to 4 bytes and MPE

header from 12 bytes to 4 bytes

Page 13: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

13

Encapsulating IP Traffic into a DVB-S2 Stream

• The original DVB-S standard was designed around video with “the world of computers” not prioritized (listed last) in the DVB Project’s Goals for DVB-S

• DVB-S2 has been designed from the ground up with IP in mind.• The sharing of a single saturated carrier allows many

economies and joint services to be offered• New technologies not only increase the efficiency of IP to

MPEG-2 TS conversion but also allow intelligent PID filtering and conversion between video and data standards– Can receive IP, convert to MPEG-2 TS– Can receive MPEG-2 TS, convert to IP– Can select both the channels to be watched and the means

how to watch them (video monitor, PC, etc.)

Page 14: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

14

The IP to MPE to MPEG-2 TS Encapsulation Process

Original EthernetFrame

Ethernet HeaderDiscarded

MPE Process

MPEG-2Process

Page 15: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

15

MPE/MPEG-2 Encapsulation Efficiencies

• Function of packet size and whether Section Packing is utilized or not

• With Section Packing and large (1500 byte packets), efficiencies of 96.6% can be achieved– Section Packing allows a single MPEG-2 frame to include two

different MPE packets– Without Section Packing, portion of MPEG-2 frame goes unused

• ULE and GSE are alternative methods of IP encapsulation that have had differing levels of acceptance in the market

• By using section packing with moderately sized packets leads to indiscriminate differences in efficiencies between MPE/MPEG-2 and ULE/GSE

Page 16: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

16

MENCAP 50 IP Encapsulator (CME-5000)

• Ethernet Input with mirrored ASI Output• 73 Mbps performance• Up to 10,000 simultaneous routes• Unicast & Multicast Traffic• 1:1 Redundancy within 1RU• Boot time under 15 seconds – from

powering on to passing traffic• Based on an embedded eCos platform

that is tuned for high performance packet processing applications

• Configuration changes can be made without the need to stop and restart the unit

Page 17: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

Multimedia Router/Receivers

Page 18: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

18

Comtech EF DataDVB-S2 Router/Receivers

• CME-5200– ASI Input, Ethernet Output– Add MPE data service to existing IRD-equipped remote– Easily add IPTV to a network that has an existing IRD with

ASI Output– Create IPTV service from MPEG-TS

• CME-5970– L-Band Input, Ethernet (10/100 Base T) output– Supports DVB-S (2-45 Msps)– DVB-S2 (5-30 Msps)

Page 19: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

19

Add MPE Service to IRD

IRD

IRD

Video Channel 1

ASI Loop

Video Channel 2

ASI LoopIP Data

LBand

Page 20: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

20

Create IPTV Service from Video

IRD

IRD

Video Channel 1

ASI Loop

Video Channel 2

ASI LoopMPEG-2 TS on IP

LBand

Page 21: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

21

DVB-S2 Router/Receiver(CME-5990)

• L-Band Input, Ethernet out• ASI Input / Output• Multiplex streams from satellite and local ASI

to ASI, Ethernet, or both interfaces• Filter streams from satellite and local ASI to

ASI, Ethernet, or both interfaces• Compatible with DVB-S• 4 in 1: Satellite Receiver, Combiner, Filter,

Video to IP

Page 22: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

22

Media Router S2-ASI - IPTV(CME-5990)

• Create IPTV Service from existing video feed from satellite interface and/or ASI Interface

• Map incoming MPEG-TS program to Multicast Address

• The packets received in the MPEG-TS from either Satellite or ASI will be mapped to the defined multicast address

Page 23: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

23

Media Router S2-ASI

Media Router S2-ASI

ASI

LB

and

ASI

Ethe

rne

t

LAN / PC

Satellite

Video Backhaul or Local Feed

Video Backhaul or Local Feed

Output MPE & MPEG-TS to Ethernet, ASI

or both

Filter or Combine

Satellite & ASI Inputs

Page 24: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

24

Comtech EF Data’s Array of DVB-S2 Products

• Product line includes DVB-S2 Modems, IP Encapsulators & Receivers – Support for DVB standards including DVB-S2– Delivery of IPTV services– Offers range of interfaces, redundancy options, and IP-based

management– Spans satellite, cable, wireless and cellular networks– Supports video and IP-based content contribution and distribution

IP Encapsulators DVB-S2 ReceiversModulatiors & Demodulators

Page 25: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

Communications Systems for SNGs

Page 26: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

26

Satellite Access Topologies

• Point-to-Point– Two points single satellite hop

• Star– Single central point multiple remote sites– Remote-to-remote double-hop connection

• Mesh– Remote-to-remote single satellite hop– Full Mesh Any remote to any other remote

• Hybrid Star/Mesh– Multi hub-and-spoke configuration– Certain remotes communicate with certain other remotes

Hub Gateway Remotes Non-Gateway Remotes

Page 27: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

27

Traditional Satellite Delivery Systems

Advantage Minus

Dedicated bandwidth for each remote inbound.

Each remote requires its own space segment.

Provides superior Quality of Service for mission critical applications.

Expensive OPEX if each remote bandwidth is not fully utilized.

Low Latency and Low Jitter SCPC modems typically more expensive than VSAT modems.

Best transmission method for real-time applications, voice, data, video, broadcast, etc.

Fixed data rates. DAMA requires multiple modems for multiple applications.

Advantage Minus

Sharing of satellite bandwidth. High Latency and Increased Jitter

Lower overall OPEX compared to dedicated pipes.

Demanding remotes can burden the system.

Good for low data rate applications.

Expensive hub equipment.

Low cost remotes. Fragmentation of packets. Less effective for voice and video.

All remotes must be designed around worst case link.

Single Channel Per Carrier Time Division Multiple Access

Page 28: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

28

Satellite Access Technologies (TDMA .. also RCS)

• Time Division Multiple Access allows multiple remotes to access the same medium in an organized fashion

• Media access control is required– Reference bursts

Timing references for all stations to allow proper burst interleaving within TDMA frame

– Guard time Transmit timing accuracy and range rate variation of satellite

• Traffic burst– One remote at a time– Detailed traffic plan is calculated and disseminated– One or many slots per burst– One remote per slot

Page 29: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

29

Satellite Access Technologies (TDMA .. RCS)

• Utilizes a framing technique– Frames can be viewed as portions or “chunks” of TDMA carrier

– For a network with VoIP, frame lengths are typically set to be 125 msec long to match the characteristics of human voice

• Each frame is divided into a number of slots– Number of slots per frame determined by selected FEC technique

– Smaller FEC selection results in small slots Larger number of slots per frame Larger portion of TDMA overhead vs. traffic

– Larger FEC selection results in large slots Smaller number of slots per frame Smaller portion of TDMA overhead vs. traffic

– No sharing of slots if IP data does not completely fill the slot, this bandwidth

Page 30: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

30

Satellite Access Technologies (TDMA .. RCS)

• Two different data rates are important when sizing a TDMA network… IP Rate and Information Rate

• IP Rate is the actual IP throughput including IP headers and data at Layer 3 of the OSI model– Represents actual LAN traffic on both remote and hub LANs

• Information Rate is the actual Layer 2 information, including TDMA framing overhead, sent over the satellite– Link budgets must account for this number and not IP Rate– Different TDMA platforms have different IP Rate /

Information Rate efficiencies Depends on TDMA satellite access method (aloha, slotted

aloha, deterministic, selective, etc.)

Page 31: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

31

Satellite Access Technologies (SCPC)

• Single Channel per Carrier provides the ability for one remote to access the same medium at a time in an un-contended fashion– No sharing of bandwidth between remotes within the

medium itself– No concept of a timeframe as packets are tightly packed

without concern of contention

• No media access control is required– Associated overhead eliminated– All “bursts” are traffic, one after another not overhead

• Earth station has a set amount bandwidth available to it at all times

Page 32: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

32

Satellite Access Technologies (dynamic SCPC)

• Dynamically switched SCPC links allocated to remotes depending upon– SIP, H.323 or TOS byte switching– QoS rules based on address, port and/or protocol– Traffic load– Pre-determined scheduling

• Single Hop on Demand (SHOD)– Single hop links from remote-to-remote– Eliminates double-hopping– Provides single carrier operation for simultaneous connections with

both hub and remote from a remote site

• Remote that is allocated SCPC carrier has the entire bandwidth available to it– When SCPC carrier not needed, de-allocated

• Master controller manages allocation of SCPC carriers

Page 33: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

33

Dynamic SCPC (dSCPC)

• SCPC links are best you can get for providing “always-on” pipes.• SCPC links are typically fixed at a specific data rate, requiring manual

intervention to re-size when additional applications need transport.

• Problem – why pay for “always-on” pipes when you don’t need them 24/7?

• Problem – how can you automate the bandwidth requirements of the satellite link based on the numerous daily changes in applications running over the link, and keep hardware and operational costs low?

• Solution – dSCPC provides the automated mechanism to:– switch up SCPC links based on a variety of conditions:

Application (H.323, SIP, ToS, QoS), Load, Schedule, VESP– alter the SCPC bandwidth to handle each application:

Carrier size is dynamically increased or decreased depending on type of traffic over the link

– tear down the link when the application(s) are completed Returns the remote to “home state”

Page 34: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

34

• Share pools of bandwidth with other remotes, saving space segment cost

• Switch inbounds to SCPC only when needed• Complete SCPC satellite network management for Vipersat

components• High Bandwidth solutions• Single Hop “mesh” connectivity for remote-to-remote applications• Operates over Multiple Transponders and Satellites

dSCPC Operation via Vipersat

STDMAInbound

TDMBroadcast SCPC Pools

Page 35: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

35

dSCPC Upstream Switching

• Applications Switching / SHOD• Protocol detection occurs at the remote• Capable of detecting the following

protocols• Video - H.323, SIP, TOS• VoIP - H.323, SIP, TOS

• QoS Switching• User selectable QoS rules allow

switching based on:• Source and/or Destination IP

Addresses• Source and/or Destination Ports• Protocol Type (RTP, HTTP. FTP, UDP,

TCP, etc.)

• Load Switching• Buffer status of the remote is monitored• Overloaded remotes can switch to

SCPC• Advanced Site Switching

• Allows for switching remotes from QPSK 3/4 STDMA channel into a single alternate Modulation/FEC when going to SCPC

• Scheduled Switching• Circuits can be switched to SCPC by

using the Vipersat Circuit Scheduler (VCS)

• Manual Switching• Circuits can be manually switched to

SCPC by VMS operator

• VESP• Vipersat External Switching Protocol• API that can be implemented in third

party vendor equipment allowing requests for bandwidth by VMS

• Policy Priority Switching• Type 254 policy is uninterruptible by

other application, load, ToS, QoS or VESP switch requests. Manual and VCS can still interrupt.

Page 36: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

36

dSCPC Technology

• dSCPC allows for dynamic bandwidth allocation based on several “triggers”.

• Pools of bandwidth are shared between remotes.

• In the example to the right depicting a ten remote network:

– Top picture is dedicated SCPC links with TDM outbound. 8.1 MHz satellite bandwidth required for all remotes to have 512 kbps return.

– Bottom picture is dSCPC links with same TDM outbound. 5.94 MHz satellite bandwidth required for all remotes to have 64 kbps CIR with the ability to have 40% oversubscription. These remotes can switch up to 512 Kbps.

• Savings of 2.14 MHz. At $3,000/MHz/mo:– $6,417 per month savings– $77,004 per year savings

Page 37: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

37

Advanced Upstream Site Switch

• Allows remotes to switch into the bandwidth pool in a mod/FEC combination other than that of its home state.

• For example, remotes can switch out of home state of QPSK, TPC ¾ to a higher order modulation, i.e. 8QAM, 8PSK, 16QAM

• Yields greater bandwidth efficiencies.

• In the example to the right, dSCPC saves 2.1 MHz spectrum vs. TDM/SCPC links

– Saves $77,004 annually

• Utilizing Adv. Upstream Site Switching– Switch from QPSK to 8QAM in this example– Saves an additional 476 KHz bandwidth ($17,136/yr)– $94,140/year saved when combining both examples

Page 38: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

38

IP Header Compression

Supported Ethernet Headers

Ethernet 2.0

Ethernet 2.0 + VLAN-tag

Ethernet 2.0 + MPLS

802.3-raw

802.3-raw + VLAN-tag

802.3 + 802.2

802.3 + 802.2 + VLAN-tag

802.3 + 802.2 + SNAP

802.3 + 802.2 + SNAP + VLAN-tag

802.3 + 802.2 + SNAP + MPLS

Supported Layer 3&4 Headers

IP

TCP

UDP

RTP (Codec Independent)

• Optional feature that conserves bandwidth over satellite links

• No reverse feedback channel needed• Fixed refresh rate algorithm

– Full packets sent periodically– Adjusted based upon link capacity and quality

• Supports point-to-point or point-to-multipoint– Unlike traditional methods that only support

point-to-point

• Configurable on a per route basis• easyConnect vs. Router Mode

– Ethernet headers are compressed in easyConnect Mode

– Ethernet headers are not sent over the satellite link in Router Mode

Page 39: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

39

IP Header Compression

Supported Ethernet Headers

Ethernet 2.0

Ethernet 2.0 + VLAN-tag

Ethernet 2.0 + MPLS

802.3-raw

802.3-raw + VLAN-tag

802.3 + 802.2

802.3 + 802.2 + VLAN-tag

802.3 + 802.2 + SNAP

802.3 + 802.2 + SNAP + VLAN-tag

802.3 + 802.2 + SNAP + MPLS

Supported Layer 3&4 Headers

IP

TCP

UDP

RTP (Codec Independent)

• No unified algorithm exists today for compressing IP/UDP/RTP streams

– IPHC (RFC-1144)– CRTP (RFC-2508)– CIPX (RFC-1553)

… are needed to fulfill this need

• Traditional compression techniques must operate under link layer headers such as Ethernet or PPP headers

• No traditional method compresses layer 2 header

…these are needed since they are part of the compression algorithm itself

• ETH-2/IP/TCP/UDP stream packets compressed into single byte over satellite link

Page 40: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

40

IP Header Compression

• Reduce VoIP bandwidth by 60%– G.729 (8Kbps) codec compressed from 32 Kbps to 10.8Kbps

• Configurable on a per route basis

• Reduce Web/HTTP traffic by 10%

IP20 Bytes

UDP8 Bytes

RTP12 Bytes

CH2-4 bytes

Payload(Variable Size)

Payload(Variable Size)

Compression

Page 41: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

41

IP Payload Compression

• Advanced Lossless Data Compressing (ALDC) feature compresses payload (datagram), condensing the size of data frames– Reduces bandwidth required to transmit across satellite link – Provides typical traffic optimization in excess of 40%

Function of data context and average IP packet size

• Uses Lempel Ziv Stac compression technique with up to 2000 simultaneous sessions and 512 byte session history (vs. 32 session standard from HiFn)

• Configurable on a per route basis or network-wide• Statistics available that report the level of compression being achieved• When used in conjunction with header compression:

– Maximizes link efficiency– Reduces operating expenditures

Page 42: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

42

IP Payload Compression

Traffic Without Payload Compression

With Payload Compression

File Transfer, Web, etc.

2 Mbps 2Mbps * 60% = 1.2 Mbps

Savings = 800 kbps

• Configurable on a per-route basis

• Provides traffic optimization

• Bandwidth Reduction of up to 40%

2Mbps 2Mbps1.2Mbps

Page 43: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

43

Quality of Service (QoS)

• Flow-Based Rules– Up to 32 different rules possible– Defined by Protocol, Surce/Destination IP Address, Source/Destination Port

• Max/Priority– Assign maximum bandwidth that any traffic flow can utilize– Establish up to 8 levels of prioritization

• Min/Max– Set the minimum and maximum bandwidth for user-defined classes of traffic – Ensures that a certain level of bandwidth is always applied

• DiffServ– Provide higher priority to some applications over others– Industry-standard method of adding network-wide QoS– Enables seamless co-existence in networks that already have DiffServ deployed

Page 44: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

44

Vipersat via DVB-S2 Overlay

Page 45: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

45

Satellite News Gathering

Page 46: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

46

SSPI Brazil Broadcast DayAgenda

• Efficiencies in Satellite Communications• IP-DVB Encapsulation• Multimedia Router/Receivers• Communication Systems for SNGs

Page 47: ADVANCED COMMUNICATION SOLUTIONS IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers & Communication Systems for SNGs Steve Good Director,

ADVANCED COMMUNICATION SOLUTIONS

IP Solutions: IP-DVB Encapsulation, Multimedia Router/Receivers &

Communication Systems for SNGs

Steve GoodDirector, Sales Engineering

Comtech EF Data