adjusting adm/bssn equationsconstructing asymptotically constrained systems · 2006. 5. 17. ·...

54
Constructing Asymptotically Constrained Systems by adjusting ADM/BSSN equations Hisa-aki Shinkai Computational Sci. Div., RIKEN (The Institute of Physical and Chemical Research), Japan [email protected] work with Gen Yoneda Math. Sci. Dept., Waseda Univ., Japan Who is HS? PhD @ Waseda Univ. (supervised by Keiichi Maeda) PostDoc @ Washington Univ. St. Louis Visiting Assoc @ PennState Univ. (JSPS researcher in abroad) PostDoc @ RIKEN Refs: Ashtekar variables PRL 82 (1999) 263, PRD 60 (1999) 101502, IJMPD 9 (2000) 13, CQG 17 (2000) 4799, CQG 18 (2001) 441 ADM variables PRD 63 (2001) 120419, CQG 19 (2002) 1027 BSSN variables gr-qc/0204002 (PRD in print) general gr-qc/0209106 and gr-qc/0209111 (review) @ Caltech, October 10, 2002

Upload: others

Post on 30-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Constru

    cting

    Asy

    mpto

    tically

    Constra

    ined

    Syste

    ms

    by

    adju

    sting

    AD

    M/B

    SSN

    equatio

    ns

    Hisa

    -akiShin

    kai

    Com

    putationalSci.

    Div.,

    RIK

    EN

    (The

    Instituteof

    Physical

    andChem

    icalResearch),

    Japan

    hshinkai@postm

    an.riken.go.jp

    work

    with

    Gen

    Yoneda

    Math.

    Sci.

    Dept.,

    Waseda

    Univ.,

    Japan

    Who

    isH

    S?

    PhD

    @W

    asedaU

    niv.(sup

    ervisedby

    Keiichi

    Maeda)

    PostD

    oc@

    Washington

    Univ.

    St.

    Louis

    Visiting

    Assoc

    @PennS

    tateU

    niv.(JS

    PS

    researcherin

    abroad)

    PostD

    oc@

    RIK

    EN

    Refs:

    Ashtekar

    variablesPRL

    82

    (1999)263,

    PRD

    60

    (1999)101502,

    IJMPD

    9(2000)

    13,

    CQ

    G17

    (2000)4799,

    CQ

    G18

    (2001)441

    AD

    Mvariables

    PRD

    63

    (2001)120419,

    CQ

    G19

    (2002)1027

    BSSN

    variablesgr-qc/0204002

    (PRD

    inprint)

    generalgr-qc/0209106

    andgr-qc/0209111

    (review)

    @Caltech,

    Octob

    er10,

    2002

  • Outlin

    e

    •T

    hre

    eappro

    ach

    es:

    AD

    M/B

    SSN

    ,hyperb

    olic

    form

    ula

    tion,attra

    ctor

    syste

    ms

    •P

    roposa

    ls:

    Aunifi

    ed

    treatm

    ent

    as

    Adju

    sted

    Syste

    ms

    Analy

    ticSupport:

    Constra

    int

    Pro

    pagatio

    neqs.

    Som

    epre

    dictio

    ns

    and

    Num

    erica

    lexperim

    ents

    Pla

    nofth

    eta

    lk

    1.In

    troductio

    n

    2.T

    hre

    eappro

    ach

    es

    (1)

    Arn

    ow

    itt-Dese

    r-Misn

    er

    /B

    aum

    garte

    -Shapiro

    -Shib

    ata

    -Nakam

    ura

    (2)

    Hyperb

    olic

    form

    ula

    tions

    (3)

    Attra

    ctor

    syste

    ms

    –“A

    dju

    sted

    Syste

    ms”

    3.A

    dju

    sted

    AD

    Msy

    stem

    s

    Fla

    tback

    gro

    und

    Sch

    warzsch

    ildback

    gro

    und

    4.A

    dju

    sted

    BSSN

    syste

    ms

    Fla

    tback

    gro

    und

    5.Sum

    mary

  • 1N

    um

    erica

    lR

    ela

    tivity

    and

    “Form

    ula

    tion”

    Pro

    ble

    m

    Num

    ericalRelativity

    –N

    ecessaryfor

    unveilingthe

    natureof

    stronggravity

    –G

    ravitationalWave

    fromcolliding

    Black

    Holes,

    Neutron

    Stars,

    Sup

    ernovae,...

    –Relativistic

    Phenom

    enalike

    Cosm

    ology,Active

    Galactic

    Nuclei,

    ...

    –M

    athematical

    feedbacksto

    Singularity,

    Exact

    Solutions,

    Chaotic

    behaviors,

    ...

    –Lab

    oratoryof

    Gravitational

    theories,H

    igherdim

    ensionalm

    odels,...

    Neutron Stars / Neutron Stars / Black HolesBlack Holes

    Gravitational WavesGravitational Waves

    LIGO/VIRGO/GEO/TAMA, ...LIGO/VIRGO/GEO/TAMA, ...

  • Best

    formulation

    ofthe

    Einstein

    eqs.for

    long-termstable

    &accurate

    simulation?

    Many

    (toom

    any)trials

    anderrors,

    notyet

    adefinit

    recipe.

    time

    time

    errorerrorB

    low up

    Blow

    up

    t=0

    Co

    nstra

    ine

    d S

    urfa

    ce(sa

    tisfies

    E

    inste

    in's

    con

    strain

    ts)

  • Best

    formulation

    ofthe

    Einstein

    eqs.for

    long-termstable

    &accurate

    simulation?

    Many

    (toom

    any)trials

    anderrors,

    notyet

    adefinit

    recipe.

    time

    time

    errorerrorB

    low up

    Blow

    upB

    low up

    Blow

    up

    AD

    MA

    DM

    BSSN

    BSSN

    Mathem

    aticallyequivalent

    formulations,

    butdiff

    erin

    itsstability!

    strategy0:

    Arnow

    itt-Deser-M

    isnerform

    ulation

    strategy1:

    Shibata-N

    akamura’s

    (Baum

    garte-Shapiro’s)

    modifications

    tothe

    standardAD

    M

    strategy2:

    Apply

    aform

    ulationw

    hichreveals

    ahyp

    erbolicity

    explicitly

    strategy3:

    Form

    ulatea

    systemw

    hichis

    “asymptotically

    constrained”against

    aviolation

    ofconstraints

    By

    addingconstraints

    inRH

    S,we

    cankill

    error-growing

    modes

    ⇒H

    owcan

    we

    understandthe

    featuressystem

    atically?

  • strategy0

    The

    standardapproach

    ::Arnow

    itt-Deser-M

    isner(A

    DM

    )form

    ulation(1962)

    3+1

    decomposition

    ofthe

    spacetime.

    Evolve

    12variables

    (γij ,K

    ij )

    with

    achoice

    ofgauge

    condition.coord

    inate constant linesurface norm

    al linesurface norm

    al lineN

    i

    lapse function, N

    shift vector, Nshift vector, N

    i

    t = constant hypersurface

    t = constant hypersurface

    Maxw

    elleqs.

    AD

    MEinstein

    eq.

    constraintsdiv

    E=

    4πρ

    divB

    =0

    (3)R+

    (trK)2−

    Kij K

    ij=

    2κρ

    H+

    Dj K

    ji −D

    i trK=

    κJ

    i

    evolutioneqs.

    1c∂

    t E=

    rotB

    −4πc

    j

    1c∂

    t B=−

    rotE

    ∂t γ

    ij=−

    2NK

    ij+

    Dj N

    i +D

    i Nj ,

    ∂t K

    ij=

    N(

    (3)Rij

    +trK

    Kij )−

    2NK

    il Klj −

    Di D

    j N

    +(D

    j Nm

    )Km

    i +(D

    i Nm

    )Km

    j+

    NmD

    mK

    ij −N

    γij Λ

    −κα{S

    ij+

    12 γij (ρ

    H−

    trS)}

  • strategy1

    Shibata-N

    akamura’s

    (Baum

    garte-Shapiro’s)

    modifications

    tothe

    standardAD

    M

    –define

    newvariables

    (φ,γ̃

    ij ,K,Ã

    ij ,Γ̃i),

    insteadof

    theAD

    M’s

    (γij ,K

    ij )w

    here

    γ̃ij ≡

    e −4φγ

    ij ,Ã

    ij ≡e −

    4φ(Kij −

    (1/3)γij K

    ),Γ̃

    i≡Γ̃

    ijk γ̃jk,

    usem

    omentum

    constraintin

    Γi-eq.,

    andim

    pose

    detγ̃

    ij=

    1during

    theevolutions.

    –T

    heset

    ofevolution

    equationsbecom

    e

    (∂t −

    Lβ )φ

    =−

    (1/6)αK

    ,

    (∂t −

    Lβ )γ̃

    ij=

    −2α

    Ãij ,

    (∂t −

    Lβ )K

    =αÃ

    ij Ãij

    +(1/3)α

    K2−

    γij(∇

    i ∇j α

    ),

    (∂t −

    Lβ )Ã

    ij=

    −e −

    4φ(∇i ∇

    j α)T

    F+

    e −4φα

    R(3)ij

    −e −

    4φα(1/3)γ

    ij R(3)

    (KÃ

    ij −2Ã

    ik Ãkj )

    ∂t Γ̃

    i=

    −2(∂

    j α)Ã

    ij−(4/3)α

    (∂j K

    )γ̃ij

    +12α

    Ãji(∂

    j φ)−

    2αÃ

    kj(∂

    j γ̃ik)−

    2αΓ̃

    klj Ã

    jk γ̃

    il

    −∂

    j (βk∂

    k γ̃ij−

    γ̃kj(∂

    k βi)−

    γ̃ki(∂

    k βj)

    +(2/3)γ̃

    ij(∂k β

    k) )

    Rij

    =∂

    k Γkij −

    ∂i Γ

    kkj+

    Γmij Γ

    kmk −

    Γmkj Γ

    kmi=

    :R̃

    ij+

    Rφij

    Rφij

    =−

    2D̃i D̃

    j φ−

    2g̃ij D̃

    lD̃l φ

    +4(D̃

    i φ)(D̃

    j φ)−

    4g̃ij (D̃

    lφ)(D̃

    l φ)

    R̃ij

    =−

    (1/2)g̃lm

    ∂lm

    g̃ij

    +g̃

    k(i ∂

    j) Γ̃k

    +Γ̃

    kΓ̃(ij)k

    +2g̃

    lmΓ̃

    kl(i Γ̃j)k

    m+

    g̃lm

    Γ̃kim

    Γ̃klj

    –N

    oexplicit

    explanationsw

    hythis

    formulation

    works

    better.

    AEIgroup

    (2000):the

    replacement

    bym

    omentum

    constraintis

    essential.

  • strategy2

    Apply

    aform

    ulationw

    hichreveals

    ahyp

    erbolicity

    explicitly.

    For

    afirst

    orderpartial

    differential

    equationson

    avector

    u,

    ∂t

    u1

    u2...

    =

    A

    x

    u1

    u2...

    ︷︷︸

    characteristicpart

    +B

    u1

    u2...

    ︷︷︸

    lower

    orderpart

    ifthe

    eigenvaluesof

    Aare

    weakly

    hyperb

    olicall

    real.

    stronglyhyp

    erbolic

    allreal

    and∃

    acom

    pleteset

    ofeigenvalues.

    symm

    etrichyp

    erbolic

    ifA

    isreal

    andsym

    metric

    (Herm

    itian).

    Symm

    etric hyp.Sym

    metric hyp.

    Strongly hyp.Strongly hyp.

    Weakly hyp.

    Weakly hyp.

    Exp

    ectations

    –W

    ellposed

    behaviour

    symm

    etrichyp

    erbolic

    system=⇒

    WELL-P

    OSED

    ,||u

    (t)||≤eκt||u

    (0)||

    –Better

    boundary

    treatments⇐

    =∃

    characteristicfield.

    –know

    nnum

    ericaltechniques

    inN

    ewtonian

    hydrodynamics.

  • formulations

    numerical

    applications(0)

    The

    standardA

    DM

    formulation

    AD

    M1962

    Arnow

    itt-Deser-M

    isner[12,

    78]⇒

    many

    (1)T

    heB

    SSNform

    ulationB

    SSN1987

    Nakam

    uraet

    al[62,

    63,72]

    ⇒1987

    Nakam

    uraet

    al[62,

    63]⇒

    1995Shibata-N

    akamura

    [72]⇒

    2002Shibata-U

    ryu[73]

    etc1999

    Baum

    garte-Shapiro[15]

    ⇒1999

    Baum

    garte-Shapiro[15]

    ⇒2000

    Alcubierre

    etal

    [5,7]

    ⇒2001

    Alcubierre

    etal

    [6]etc

    1999A

    lcubierreet

    al[8]

    1999Frittelli-R

    eula[41]

    2002Laguna-Shoem

    aker[54]

    ⇒2002

    Laguna-Shoem

    aker[54]

    (2)T

    hehyperbolic

    formulations

    BM

    1989B

    ona-Massó

    [17,18,

    19]⇒

    1995B

    onaet

    al[19,

    20,21]

    ⇒1997

    Alcubierre,

    Massó

    [2,4]

    1997B

    onaet

    al[20]

    ⇒2002

    Bardeen-B

    uchman

    [16]1999

    Arbona

    etal

    [11]C

    B-Y

    1995C

    hoquet-Bruhat

    andY

    ork[31]

    ⇒1997

    Scheelet

    al[69]

    1995A

    brahams

    etal

    [1]⇒

    1998Scheel

    etal

    [70]1999

    Anderson-Y

    ork[10]

    ⇒2002

    Bardeen-B

    uchman

    [16]FR

    1996Frittelli-R

    eula[40]

    ⇒2000

    Hern

    [43]1996

    Stewart

    [79]K

    ST2001

    Kidder-Scheel-T

    eukolsky[51]

    ⇒2001

    Kidder-Scheel-T

    eukolsky[51]

    ⇒2002

    Calabrese

    etal

    [26]⇒

    2002Lindblom

    -Scheel[57]

    2002Sarbach-T

    iglio[68]

    CFE

    1981Friedrich[35]

    ⇒1998

    Frauendiener[34]

    ⇒1999

    Hübner

    [45]tetrad

    1995vanP

    utten-Eardley[84]

    ⇒1997

    vanPutten

    [85]A

    shtekar1986

    Ashtekar

    [13]⇒

    2000Shinkai-Y

    oneda[75]

    1997Iriondo

    etal

    [47]1999

    Yoneda-Shinkai

    [90,91]

    ⇒2000

    Shinkai-Yoneda

    [75,92]

    (3)A

    symptotically

    constrainedform

    ulationsλ-system

    toFR

    1999B

    rodbecket

    al[23]

    ⇒2001

    Siebel-Hübner

    [77]to

    Ashtekar

    1999Shinkai-Y

    oneda[74]

    ⇒2001

    Yoneda-Shinkai

    [92]adjusted

    toA

    DM

    1987D

    etweiler

    [32]⇒

    2001Y

    oneda-Shinkai[93]

    toA

    DM

    2001Shinkai-Y

    oneda[93,

    76]⇒

    2002M

    exicoN

    RW

    orkshop[58]

    toB

    SSN2002

    Yoneda-Shinkai

    [94]⇒

    2002M

    exicoN

    RW

    orkshop[58]

    ⇒2002

    Yo-B

    aumgarte-Shapiro

    [88]

  • 80s90s

    2000s

    ADM

    Shibata-Nakamura95

    Baumgarte-Shapiro99

    Nakamura-Oohara87

    Bona-Masso92

    Anderson-York99

    ChoquetBruhat-York95-97Frittelli-Reula

    96

    62

    Ashtekar86

    Yoneda-Shinkai99

    Kidder-Scheel -Teukolsky

    01

    lambda-system99

    Alcubierre97

    Iriondo-Leguizamon-Reula

    97

  • 80s90s

    2000s

    ADM

    Shibata-Nakamura95

    Baumgarte-Shapiro99

    Nakamura-Oohara87

    Bona-Masso92

    Anderson-York99

    ChoquetBruhat-York95-97Frittelli-Reula

    96

    62

    Ashtekar86

    Yoneda-Shinkai99

    Kidder-Scheel -Teukolsky

    01

    NCSA AEI

    G-code H-code

    BSSN-code

    Cornell-Illinois

    UWash

    Hern

    Caltech

    PennState

    lambda-system99

    Shinkai-Yoneda

    Alcubierre97

    Nakamura-OoharaShibata

    Iriondo-Leguizamon-Reula

    97

    LSU

  • 80s90s

    2000s

    ADM

    Shibata-Nakamura95

    Baumgarte-Shapiro99

    Nakamura-Oohara87

    Bona-Masso92

    Anderson-York99

    ChoquetBruhat-York95-97Frittelli-Reula

    96

    62

    Ashtekar86

    Yoneda-Shinkai99

    Kidder-Scheel -Teukolsky

    01

    NCSA AEI

    G-code H-code

    BSSN-code

    Cornell-Illinois

    UWash

    Hern

    Caltech

    PennState

    lambda-system99

    adjusted-system01

    Shinkai-Yoneda

    Alcubierre97

    Nakamura-OoharaShibata

    Iriondo-Leguizamon-Reula

    97

    LSU

    Illinois

  • strategy2

    Apply

    aform

    ulationw

    hichreveals

    ahyp

    erbolicity

    explicitly.(cont.)

    symm

    etrichyp

    erbolic⊂

    stronglyhyp

    erbolic⊂

    weakly

    hyperb

    olicsystem

    s,

    •Are

    theyactually

    helpful?—

    ifso,

    which

    levelof

    hyperb

    olicityis

    necessary?

    •U

    nderw

    hatconditions/situations

    theadvantages

    will

    be

    observed?

    Unfortunately,

    we

    donot

    haveconclusive

    answers

    tothem

    yet.

    •Several

    numerical

    experim

    entsindicate

    thatthe

    directionis

    NO

    Ta

    fullof

    success .

    –Earlier

    numerical

    comparisons

    reported

    theadvantages

    ofhyp

    erbolic

    formulations,

    but

    theywere

    againstto

    thestandard

    AD

    Mform

    ulation.[C

    ornell-Illinois,N

    CSA,...]

    –N

    umerical

    evolutionsare

    always

    term

    inate

    dw

    ithblo

    w-u

    ps.

    –If

    thegauge

    functionsare

    evolvedw

    ithhyp

    erbolic

    equations,then

    theirfinite

    propagation

    speeds

    may

    causea

    pathologicalsh

    ock

    form

    atio

    ns

    [Alcubierre].

    –N

    odrastic

    numerical

    differences

    betw

    een

    threehyp

    erbolic

    levels[H

    SYoneda,

    Hern].

    –Prop

    osedsym

    metric

    hyperb

    olicsystem

    swere

    notalw

    aysthe

    best

    onefor

    numerics.

    Of

    course,these

    statements

    onlycasted

    ona

    particularform

    ulation,therefore

    we

    haveto

    be

    carefulnot

    toover-announce

    theresults.

  • strategy2

    Apply

    aform

    ulationw

    hichreveals

    ahyp

    erbolicity

    explicitly.(cont.)

    •Rem

    arksto

    hyperb

    olicform

    ulations

    (a)Rigorous

    mathem

    aticalproofs

    ofwell-p

    osednessof

    PD

    Eare

    mostly

    fora

    simple

    sym-

    metric

    orstrongly

    hyperb

    olicsystem

    s.Ifthe

    matrix

    components

    orcoeffi

    cientsdep

    end

    dynamical

    variables(like

    inany

    versionsof

    hyperb

    olizedEinstein

    equations),alm

    ost

    nothingwas

    provedin

    itsgeneral

    situations.

    (b)T

    hestatem

    entof

    “stability”in

    thediscussion

    ofwell-p

    osednessm

    eansthe

    bounded

    growth

    ofthe

    norm,and

    doesnot

    mean

    adecay

    ofthe

    normin

    time

    evolution.

    (c)T

    hediscussion

    ofhyp

    erbolicity

    onlyuses

    thecharacteristic

    partof

    theevolution

    equations,and

    ignorethe

    rest.

    cf.Recent

    discussions

    •K

    ST

    formulation

    with

    “kinematic”

    parameters

    which

    enablesus

    toreduce

    non-principalpart.

    •links

    toIB

    VP

    approach.

    •relations

    betw

    eenconvergence

    behavior

    andlevels

    ofhyp

    erbolicity.

  • strategy3

    Form

    ulatea

    systemw

    hichis

    “asymptotically

    constrained”against

    aviolation

    ofconstraints

    “A

    sym

    pto

    tically

    Constra

    ined

    Syste

    m”–

    Constraint

    Surface

    asan

    Attractor

    t=0

    Co

    nstra

    ine

    d S

    urfa

    ce(sa

    tisfies

    E

    inste

    in's

    con

    strain

    ts)

    time

    time

    errorerror

    Blow

    upB

    low up

    Stabilize?Stabilize? ?

    method

    1:λ-system

    (Brodb

    ecket

    al,2000)

    –Add

    aritificialforceto

    reducethe

    violationof

    con-

    straints

    –To

    be

    guaranteedif

    we

    applythe

    ideato

    asym

    -

    metric

    hyperb

    olicsystem

    .

    method

    2:Adjusted

    system(Y

    onedaH

    S,2000,

    2001)

    –W

    ecan

    controltheviolation

    ofconstraints

    byad-

    justingconstraints

    toEoM

    .

    –Eigenvalue

    analysisof

    constraintpropagation

    equationsm

    ayprodict

    theviolation

    oferror.

    –T

    hisidea

    isapplicable

    evenif

    thesystem

    isnot

    symm

    etrichyp

    erbolic.⇒

    forthe

    AD

    M/B

    SSN

    formulation,

    too!!

  • Ideaof

    λ-system

    Brodb

    eck,Frittelli,

    Hübner

    andReula,

    JMP40(99)909

    We

    expect

    asystem

    thatis

    robustfor

    controllingthe

    violationof

    constraints

    Recip

    e1.

    Prepare

    asym

    metric

    hyperb

    olicevolution

    system∂

    t u=

    J∂

    i u+

    K

    2.Introduce

    λas

    anindicator

    ofviolation

    ofconstraint

    which

    obeys

    dissipativeeqs.

    ofm

    otion∂

    t λ=

    αC−

    βλ

    (α�=

    0,β>

    0)

    3.Take

    aset

    of(u

    ,λ)

    asdynam

    icalvariables

    ∂t

    A

    0

    F0

    i uλ

    4.M

    odifyevolution

    eqsso

    asto

    forma

    symm

    etrichyp

    erbolic

    system∂

    t uλ

    =

    A

    F0

    i uλ

    Rem

    arks

    •BFH

    Rused

    asym

    .hyp.

    formulation

    byFrittelli-R

    eula[P

    RL76(96)4667]

    •T

    heversion

    forthe

    Ashtekar

    formulation

    byH

    S-Y

    oneda[P

    RD

    60(99)101502]

    forcontrolling

    theconstraints

    orreality

    conditionsor

    both.

    •Succeeded

    inevolution

    ofG

    Win

    planarspacetim

    eusing

    Ashtekar

    vars.[C

    QG

    18(2001)441]

    •D

    othe

    recoveredsolutions

    representtrue

    evolution?by

    Sieb

    el-Hübner

    [PRD

    64(2001)024021]

  • Ideaof

    “Adjusted

    system”

    andO

    urConjecture

    CQ

    G18

    (2001)441,

    PRD

    63(2001)

    120419,CQ

    G19

    (2002)1027

    General

    Procedure

    1.prepare

    aset

    ofevolution

    eqs.∂

    t ua

    =f(u

    a,∂b u

    a,···)

    2.add

    constraintsin

    RH

    S∂

    t ua

    =f(u

    a,∂b u

    a,···)+

    F(C

    a,∂b C

    a,···)︸

    ︷︷︸

    3.choose

    appropriateF

    (Ca,∂

    b Ca,···)

    tom

    akethe

    systemstable

    evolution

    How

    tosp

    ecifyF

    (Ca,∂

    b Ca,···)

    ?

    4.prepare

    constraintpropagation

    eqs.∂

    t Ca

    =g(C

    a,∂b C

    a,···)

    5.and

    itsadjusted

    version∂

    t Ca

    =g(C

    a,∂b C

    a,···)+

    G(C

    a,∂b C

    a,···)︸

    ︷︷︸

    6.Fourier

    transformand

    evaluateeigenvalues

    ∂t Ĉ

    k=

    A(Ĉ

    a)︸

    ︷︷︸Ĉ

    k

    Conje

    cture

    :Evaluate

    eigenvaluesof

    (Fourier-transform

    ed)constraint

    propagationeqs.

    Iftheir

    (1)real

    partis

    non-positive,

    or(2)

    imaginary

    partis

    non-zero,then

    thesystem

    ism

    orestable.

  • The

    Adju

    sted

    syste

    m(e

    ssentia

    ls):

    Purp

    ose:Control

    theviolation

    ofconstraints

    byreform

    ulatingthe

    systemso

    asto

    havea

    constrainedsurface

    anattractor.

    Procedure:

    Add

    aparticular

    combination

    ofconstraints

    tothe

    evolutionequations,and

    adjust

    itsm

    ultipliers.

    Theoretical

    support:

    Eigenvalue

    analysisof

    theconstraint

    propagationequations.

    Advantages:

    Available

    evenif

    thebase

    systemis

    nota

    symm

    etrichyp

    erbolic.

    Advantages:

    Keep

    thenum

    ber

    ofthe

    variablesam

    ew

    iththe

    originalsystem

    .

    Conje

    cture

    on

    Constra

    int

    Am

    plifi

    catio

    nFacto

    rs(C

    AFs):

    (A)

    IfCAF

    hasa

    negativereal-part

    (theconstraints

    areforced

    tobe

    diminished),

    thenwe

    seem

    ore

    stableevolution

    thana

    systemw

    hichhas

    positive

    CAF.

    (B)

    IfCAF

    hasa

    non-zeroim

    aginary-part(the

    constraintsare

    propagatingaw

    ay),then

    we

    seem

    ore

    stableevolution

    thana

    systemw

    hichhas

    zeroCAF.

  • Exam

    ple

    :th

    eM

    axw

    ell

    equatio

    ns

    Yoneda

    HS,CQ

    G18

    (2001)441

    Maxw

    ellevolution

    equations.

    ∂t E

    i=

    c�i jk∂

    j Bk

    +P

    i CE

    +Q

    i CB,

    ∂t B

    i=

    −c�

    i jk∂j E

    k+

    Ri C

    E+

    Si C

    B,

    CE

    =∂

    i Ei≈

    0,C

    B=

    ∂i B

    i≈0,

    sym.

    hyp⇔

    Pi=

    Qi=

    Ri=

    Si=

    0,

    stronglyhyp

    ⇔(P

    i −S

    i )2+

    4Ri Q

    i>

    0,

    weakly

    hyp⇔

    (Pi −

    Si )

    2+

    4Ri Q

    i ≥0

    Constraint

    propagationequations

    ∂t C

    E=

    (∂i P

    i)CE

    +P

    i(∂i C

    E)+

    (∂i Q

    i)CB

    +Q

    i(∂i C

    B),

    ∂t C

    B=

    (∂i R

    i)CE

    +R

    i(∂i C

    E)+

    (∂i S

    i)CB

    +S

    i(∂i C

    B),

    sym.

    hyp⇔

    Qi=

    Ri ,

    stronglyhyp

    ⇔(P

    i −S

    i )2+

    4Ri Q

    i>

    0,

    weakly

    hyp⇔

    (Pi −

    Si )

    2+

    4Ri Q

    i ≥0

    CAFs?

    ∂t

    ĈE

    ĈB

    =

    i Pi+

    Pik

    i∂

    i Qi+

    Qik

    i

    ∂i R

    i+R

    iki

    ∂i S

    i+S

    iki

    l Ĉ

    E

    ĈB

    P

    iki

    Qik

    i

    Rik

    iS

    iki

    E

    ĈB

    =

    :T

    E

    ĈB

    ⇒CAFs

    =(P

    iki +

    Sik

    i ±√(P

    iki +

    Sik

    i )2+

    4(Qik

    i Rjk

    j −P

    iki S

    jkj ))/2

    Therefore

    CAFs

    becom

    enegative-real

    when

    Pik

    i +S

    iki<

    0,and

    Qik

    i Rjk

    j −P

    iki S

    jkj<

    0

  • Exam

    ple

    :th

    eA

    shte

    kar

    equatio

    ns

    HS

    Yoneda,

    CQ

    G17

    (2000)4799

    Adjusted

    dynamical

    equations:

    ∂t Ẽ

    ia=

    −iD

    j (�cba N∼

    Ẽjc Ẽ

    ib )+

    2Dj (N

    [jẼi]a )

    +iA

    b0 �c

    abẼ

    ic +X

    ia CH

    +Y

    ijaC

    Mj+

    Piba C

    Gb

    ︸︷︷

    ︸adju

    st

    ∂t A

    ai=

    −i�

    abc N∼

    Ẽjb F

    cij+

    NjF

    aji +D

    i Aa0

    +ΛN∼

    Ẽai+

    Qai C

    H+

    Raj

    i CM

    j+

    Zab

    i CG

    b︸

    ︷︷︸

    adju

    st

    Adjusted

    andlinearized:

    X=

    Y=

    Z=

    0,P

    iab

    1 (iNiδ

    ab ),Q

    ai=

    κ2 (e −

    2N∼Ẽ

    ai ),R

    aji=

    κ3 (−

    ie −2N∼

    �acd Ẽ

    di Ẽjc )

    Fourier

    transformand

    extract0th

    orderof

    thecharacteristic

    matrix:

    ∂t

    ĈH

    ĈM

    i

    ĈG

    a

    =

    0i(1

    +2κ

    3 )kj

    0

    i(1−2κ

    2 )ki

    κ3 �

    kji k

    k0

    02κ

    3 δja

    0

    ĈH

    ĈM

    j

    ĈG

    b

    Eigenvalues:

    (0,0,0,±κ

    3 √−kx

    2−ky

    2−kz

    2,±√(−

    1+

    2κ2 )(1

    +2κ

    3 )(kx

    2+

    ky

    2+

    kz

    2) )

    Inorder

    toobtain

    non-positive

    realeigenvalues:

    (−1

    +2κ

    2 )(1+

    2κ3 )

    <0

  • AC

    lassifi

    catio

    nofC

    onstra

    int

    Pro

    pagatio

    ns

    (C1)

    Asy

    mpto

    tically

    constra

    ined

    :

    Vio

    latio

    nofco

    nstra

    ints

    deca

    ys

    (converg

    es

    toze

    ro).

    (C2)

    Asy

    mpto

    tically

    bounded

    :

    Vio

    latio

    nofco

    nstra

    ints

    isbounded

    at

    ace

    rtain

    valu

    e.

    (C3)

    Div

    erg

    e:

    At

    least

    one

    constra

    int

    will

    div

    erg

    e.

    Note

    that

    (C1)⊂

    (C2).

    (C1)

    Decay

    (C2) B

    ounded

    (C3)

    Dive

    rge

    time

    time

    errorerror

    Diverge

    Diverge

    Constrained

    , C

    onstrained,

    or Decay

    or Decay

  • AC

    lassifi

    catio

    nofC

    onstra

    int

    Pro

    pagatio

    ns

    (cont.)

    gr-q

    c/0209106

    (C1)A

    sym

    pto

    tically

    constra

    ined

    :V

    iola

    tion

    ofco

    nstra

    ints

    deca

    ys

    (converg

    es

    toze

    ro).

    ⇔A

    llth

    ere

    alparts

    ofC

    AFs

    are

    negativ

    e.

    (C2)A

    sym

    pto

    tically

    bounded

    :V

    iola

    tion

    ofco

    nstra

    ints

    isbounded

    at

    ace

    rtain

    valu

    e.

    ⇔(a)A

    llth

    ere

    alparts

    ofC

    AFs

    are

    not

    positiv

    e,and

    (b1)th

    eC

    Pm

    atrix

    Mαβ

    isdia

    gonaliza

    ble

    ,or

    (b2)th

    ere

    alpart

    ofth

    edegenera

    ted

    CA

    Fs

    isnot

    zero

    .

    (C3)D

    iverg

    e:

    At

    least

    one

    constra

    int

    will

    div

    erg

    e.

  • The

    nece

    ssary

    and

    suffi

    cient

    conditio

    ns

    for

    (C1)

    and

    (C2)?

    Pre

    para

    tion

    With

    out

    loss

    ofgenera

    lity,th

    eC

    Pm

    atrix

    Mca

    nbe

    assu

    med

    tobe

    atria

    ngula

    rm

    atrix

    .Suppose

    we

    have

    an

    expre

    ssion,

    ∂t

    Cn...

    C1

    =

    λn

    ∗∗

    0...

    ∗0

    1

    Cn...

    C1

    ,

    (1)

    where

    λs

    are

    the

    eig

    envalu

    es

    of

    M,

    and

    the

    indice

    sare

    form

    ally

    labele

    din

    this

    ord

    er.

    Pro

    positio

    n1

    The

    solu

    tion

    of(1

    )ca

    nbe

    expre

    ssed

    form

    ally

    as

    Cj (t)

    =j∑i=1

    exp(λ

    i t)n

    i −1

    ∑k=0 (a

    (i)k

    tk)

    ,(2)

    where

    λiis

    the

    i-theig

    envalu

    eof

    M,and

    niis

    the

    multip

    licityof

    λiup

    toi≤

    j.

  • Pro

    positio

    n1

    The

    solu

    tion

    of(1

    )ca

    nbe

    expre

    ssed

    form

    ally

    as

    Cj (t)

    =j∑i=1

    exp(λ

    i t)n

    i −1

    ∑k=0 (a

    (i)k

    tk)

    ,(2)

    where

    λiis

    the

    i-theig

    envalu

    eof

    M,and

    niis

    the

    multip

    licityof

    λiup

    toi≤

    j.

    For

    exam

    ple

    1<

    λ2

    3=

    λ4<

    λ5

    6<

    ···,C

    1=

    exp(λ

    1 t)(@)

    C2

    =exp

    (λ1 t)(@

    )+

    exp(λ

    2 t)(@)

    C3

    =exp

    (λ1 t)(@

    )+

    exp(λ

    2 t)(@+

    @t)

    C4

    =exp

    (λ1 t)(@

    )+

    exp(λ

    2 t)(@+

    @t+

    @t2)

    C5

    =exp

    (λ1 t)(@

    )+

    exp(λ

    2 t)(@+

    @t+

    @t2)

    +exp

    (λ5 t)(@

    )

    C6

    =exp

    (λ1 t)(@

    )+

    exp(λ

    2 t)(@+

    @t+

    @t2)

    +exp

    (λ5 t)(@

    +@

    t)

    The

    hig

    hest

    pow

    er

    Nin

    all

    constra

    ints

    isbounded

    by

    N≤

    max

    1≤i≤

    n (multip

    licityof

    λi )−

    1.(3)

  • Asy

    mpto

    tically

    Constra

    ined

    CP

    –(C

    1)

    Theore

    m1

    Asy

    mpto

    tically

    constra

    ined

    evolu

    tion

    (vio

    latio

    nof

    constra

    ints

    converg

    es

    toze

    ro)

    ⇔A

    llth

    ere

    alparts

    ofC

    AFs

    are

    negativ

    e.

    pro

    ofof⇐

    )W

    euse

    the

    expre

    ssion

    (2).

    If�

    e(λi )

    <0

    for∀i,

    then

    Cw

    illco

    n-

    verg

    eto

    zero

    at

    t→∞

    no

    matte

    rw

    hat

    t−poly

    nom

    ialte

    rms

    are

    .

    pro

    ofof⇒

    )W

    esh

    ow

    the

    contra

    positiv

    e.

    Suppose

    there

    exists

    an

    eig

    envalu

    1su

    chas

    which

    real-p

    art

    isnon-n

    egativ

    e.

    By

    settin

    1at

    the

    low

    er-e

    nd

    ofth

    etria

    ngula

    rm

    atrix

    Min

    (1),

    then

    we

    get

    ∂t C

    1=

    λ1 C

    1w

    hich

    solu

    tion

    isC

    1=

    C1 (0)

    exp(λ

    1 t).C

    1does

    not

    converg

    eto

    zero

    .

  • Asy

    mpto

    tically

    Bounded

    CP

    –(C

    2)

    Theore

    m2

    Asy

    mpto

    tically

    bounded

    evolu

    tion

    (all

    the

    constra

    ints

    are

    bounded

    at

    ace

    rtain

    valu

    e)

    ⇔(a

    )A

    llth

    ere

    alparts

    ofC

    AFs

    are

    not

    positiv

    e,and

    (b1)th

    eC

    Pm

    atrix

    Mαβ

    isdia

    gonaliza

    ble

    ,or

    (b2)th

    ere

    alpart

    ofth

    edegenera

    ted

    CA

    Fs

    isnot

    zero

    .

    pro

    of

    of⇐

    for

    the

    case

    (a+

    b1):

    By

    adia

    gonaliza

    tion,w

    eobta

    in∂

    t Ci=

    λi C

    i ,w

    hich

    solu

    tion

    isC

    i=

    Ci (0)

    exp(λ

    i t).T

    his

    isbounded

    since

    �e(λ

    i )≤0.

    pro

    ofof⇐

    for

    the

    case

    (a+

    b2):

    We

    use

    the

    expre

    ssion

    (2).

    When

    λis

    degenera

    ted,

    the

    t-poly

    nom

    ials

    have

    non-ze

    ropow

    er.

    How

    -ever,

    the

    assu

    mptio

    n,�

    e(λ)<

    0,in

    dica

    tes

    exp(λ

    t)(t-poly

    nom

    ials)

    will

    converg

    eto

    zero

    .W

    hen

    λis

    not

    degenera

    ted,th

    ere

    isonly

    aco

    n-

    stant

    term

    rath

    er

    than

    t-poly

    nom

    ials.

    So

    that

    (2)

    rem

    ain

    sfinite

    for

    �e(λ

    )≤0.

  • pro

    ofof⇒

    )W

    esh

    ow

    the

    contra

    positiv

    e.

    (a)

    and

    {(b

    1)

    or

    (b2)

    }⇔

    (a)

    or{(a

    )and{(b

    1)

    and

    (b2)}}

    (a)⇒

    div

    erg

    e::

    trivia

    l.(a

    )and{(b

    1)

    and

    (b2)}

    ⇒div

    erg

    e::

    By

    triangu

    lating

    the

    matrix

    ,w

    ecan

    setth

    edegen

    eratedC

    AFs

    λw

    hich

    real-part

    iszero.

    Let

    us

    consid

    ern

    =3

    case,

    M=

    λ

    ia

    b0

    λc

    00

    λ

    ,

    a,b,c

    =con

    stant.

    Then

    we

    getfirst

    C1

    =C

    1 (0)ex

    p(λ

    t)w

    hich

    isa

    constan

    tor

    atrigon

    alfu

    nction

    ,an

    d

    ∂t C

    2=

    λC

    2+

    cC

    1=

    λC

    2+

    cC

    1 (0)ex

    p(λ

    t)

    ⇒C

    2=

    C2 (0)

    exp(λ

    t)+

    cC

    1 (0)ex

    p(λ

    t)t.

    Therefore

    C2

    will

    diverge

    when

    c�=0,

    and

    remain

    finite

    when

    c=

    0.Sin

    cew

    eare

    assum

    ing

    the

    matrix

    isnot

    diagon

    alizable,

    the

    min

    imal

    poly

    nom

    ialdoes

    not

    taketh

    eform

    asth

    epro

    duct

    of(M

    −λ

    i E)

    fordiff

    erent

    eigenvalu

    esλ

    i .W

    hen

    there

    exists

    λi �=

    λ,w

    esee

    that

    (M−

    λE

    )(M−

    λi E

    )=

    λ

    i −λ

    ab

    00

    c0

    00

    0

    ab

    0λ−

    λi

    c0

    0λ−

    λi

    =

    0

    0a

    c0

    0c(λ

    −λ

    i )0

    00

    ,

    which

    shou

    ldnot

    equal

    tozero

    matrix

    ,th

    atin

    dicates

    c�=0.

    Therefore

    C2

    will

    diverge.

    When

    λ=

    λi ,

    some

    of

    a,b,c

    isnon

    -zeroin

    order

    not

    tovan

    ish(M

    −λE

    ).T

    herefore

    relatedC

    iw

    illdiverge.

  • Aflow

    chart

    tocla

    ssifyth

    efa

    teofco

    nstra

    int

    pro

    pagatio

    n.

    Q1: Is th

    ere a CA

    F wh

    ich real p

    art is positive?

    NO / YES

    Q2: A

    re all the real p

    arts of CA

    Fs negative?

    Q3: Is th

    e constrain

    t prop

    agation m

    atrix diagon

    alizable?

    Q4: Is a real p

    art of the d

    egenerated

    CA

    Fs is zero?

    NO / YES

    NO / YES

    NO / YES

    Diverge

    Asym

    ptotically C

    onstrain

    ed

    Asym

    ptotically B

    ounded

    Diverge

    Asym

    ptotically Bounded

  • Constru

    cting

    Asy

    mpto

    tically

    Constra

    ined

    Syste

    ms

    Hisa

    akiShin

    kai

    1.In

    troductio

    n

    2.T

    hre

    eappro

    ach

    es

    (1)A

    rnow

    itt-Dese

    r-Misn

    er/

    Baum

    garte

    -Shapiro

    -Shib

    ata

    -Nakam

    ura

    (2)

    Hyperb

    olic

    form

    ula

    tions

    (3)

    Attra

    ctor

    syste

    ms

    –“A

    dju

    sted

    Syste

    ms”

    3.A

    dju

    sted

    AD

    Msy

    stem

    s

    4.A

    dju

    sted

    BSSN

    syste

    ms

    5.Sum

    mary

  • 3A

    dju

    sted

    AD

    Msy

    stem

    s

    We

    adjustthe

    standardAD

    Msystem

    usingconstraints

    as:

    ∂t γ

    ij=

    −2α

    Kij

    +∇

    i βj+∇

    j βi ,

    (1)

    +P

    ij H+

    Qkij M

    k+

    pkij (∇

    k H)+

    qklij (∇

    k Ml ),

    (2)

    ∂t K

    ij=

    αR

    (3)ij

    +αK

    Kij −

    2αK

    ik Kkj −

    ∇i ∇

    j α+

    (∇i β

    k)Kkj+

    (∇j β

    k)Kki +

    βk∇

    k Kij ,(3)

    +R

    ij H+

    Skij M

    k+

    rkij (∇

    k H)+

    sklij (∇

    k Ml ),

    (4)

    with

    constraintequations

    H:=

    R(3)

    +K

    2−K

    ij Kij,

    (5)

    Mi

    :=∇

    j Kji −

    ∇i K

    .(6)

    We

    canw

    ritethe

    adjustedconstraint

    propagationequations

    as

    ∂t H

    =(original

    terms)

    +H

    mn

    1[(2)]+

    Him

    n2

    ∂i [(2)]+

    Hijm

    n3

    ∂i ∂

    j [(2)]+H

    mn

    4[(4)],

    (7)

    ∂t M

    i=

    (originalterm

    s)+

    M1i m

    n[(2)]+M

    2i jm

    n∂j [(2)]+

    M3i m

    n[(4)]+M

    4i jm

    n∂j [(4)].

    (8)

  • Orig

    inalA

    DM

    The

    originalconstruction

    byAD

    Muses

    thepair

    of(h

    ij ,πij).

    L=

    √−

    gR

    =√

    hN

    [ (3)R−

    K2+

    Kij K

    ij],w

    hereK

    ij=

    12£

    n hij

    thenπ

    ij=

    ∂L∂ḣ

    ij

    =√

    h(K

    ij−K

    hij),

    The

    Ham

    iltoniandensity

    givesus

    constraintsand

    evolutioneqs.

    H=

    πijḣ

    ij −L

    =√

    h{N

    H(h

    ,π)−

    2Nj M

    j(h,π

    )+

    2Di (h

    −1/2N

    j πij) }

    ,

    ∂t h

    ij=

    δHδπij

    =2

    N√h

    (πij −

    12h

    ij π)+

    2D(i N

    j) ,

    ∂t π

    ij=

    −δHδh

    ij=

    −√

    hN

    ((3)R

    ij−12

    (3)Rh

    ij)+

    12

    N√hh

    ij(πm

    n πm

    n−12π

    2)−2

    N√h

    (πinπ

    nj−

    12ππ

    ij)

    + √h(D

    iDjN

    −h

    ijDmD

    mN

    )+√

    hD

    m(h

    −1/2N

    ij)−2π

    m(iD

    mN

    j)

    Sta

    ndard

    AD

    M(b

    yY

    ork

    )N

    Rists

    referAD

    Mas

    theone

    byYork

    with

    apair

    of(h

    ij ,Kij ).

    t hij

    =−

    2NK

    ij+

    Dj N

    i +D

    i Nj ,

    ∂t K

    ij=

    N(

    (3)Rij

    +K

    Kij )−

    2NK

    il Klj −

    Di D

    j N+

    (Dj N

    m)K

    mi +

    (Di N

    m)K

    mj+

    NmD

    mK

    ij

    Inthe

    processof

    converting,Hwas

    used,i.e.

    thestandard

    AD

    Mhas

    alreadyadjusted.

  • 3C

    onstra

    int

    pro

    pagatio

    nofA

    DM

    syste

    ms

    3.1

    Orig

    inalA

    DM

    vs

    Sta

    ndard

    AD

    M

    Try

    theadjustm

    entR

    ij=

    κ1 α

    γij

    andother

    multiplier

    zero,w

    hereκ

    1=

    0

    thestandard

    AD

    M

    −1/4

    theoriginal

    AD

    M

    •T

    heconstraint

    propagationeqs

    keepthe

    first-orderform

    (cfFrittelli,

    PRD

    55(97)5992):

    ∂t

    HMi

    βl

    −2α

    γjl

    −(1/2)α

    δli +

    Rli −

    δli R

    βlδ

    ji

    l HM

    j .

    (5)

    The

    eigenvaluesof

    thecharacteristic

    matrix:

    λl

    =(β

    l,βl,β

    l±√α

    2γll(1

    +4κ

    1 ))

    The

    hyperb

    olicityof

    (5):

    symm

    etrichyp

    erbolic

    when

    κ1

    =3/2

    stronglyhyp

    erbolic

    when

    α2γ

    ll(1+

    4κ1 )

    >0

    weakly

    hyperb

    olicw

    henα

    2γll(1

    +4κ

    1 )≥0

    •O

    nthe

    Minkow

    skiibackground

    metric,

    thelinear

    orderterm

    sof

    theFourier-transform

    ed

    constraintpropagation

    equationsgives

    theeigenvalues

    Λl=

    (0,0,±√−

    k2(1

    +4κ

    1 )).

    That

    is, (tw

    o0s,

    two

    pureim

    aginary)for

    thestandard

    AD

    MBET

    TER

    STABIL

    ITY

    (four0s)

    forthe

    originalAD

    M

  • 4C

    onstra

    int

    pro

    pagatio

    ns

    insp

    herica

    llysy

    mm

    etric

    space

    time

    4.1

    The

    pro

    cedure

    The

    discussionbecom

    esclear

    ifwe

    expandthe

    constraintC

    µ:=

    (H,M

    i )T

    usingvector

    harmonics.

    =∑l,m

    (Alm

    (t,r)alm

    (θ,ϕ)+

    Blm

    blm

    +C

    lmclm

    +D

    lmd

    lm

    ),

    (1)

    where

    we

    choosethe

    basisof

    thevector

    harmonics

    as

    alm

    =

    Ylm000

    ,b

    lm=

    0Ylm00

    ,c

    lm=

    r√l(l

    +1)

    00

    ∂θ Y

    lm

    ∂ϕ Y

    lm

    ,d

    lm=

    r√l(l

    +1)

    00

    −1

    sinθ ∂

    ϕ Ylm

    sinθ∂

    θ Ylm

    .

    The

    basisare

    normalized

    sothat

    theysatisfy

    〈Cµ ,C

    ν 〉=

    ∫2π

    0dϕ

    ∫π0

    C∗µ C

    ρη

    νρsin

    θdθ,

    where

    ηνρ

    isM

    inkowskii

    metric

    andthe

    asteriskdenotes

    thecom

    plexconjugate.

    Therefore

    Alm

    =〈a

    lm(ν) ,C

    ν 〉,∂

    t Alm

    =〈a

    lm(ν) ,∂

    t Cν 〉,

    etc.

    We

    alsoexpress

    theseevolution

    equationsusing

    theFourier

    expansionon

    theradial

    coordinate,

    Alm

    =∑k

    Âlm(k

    ) (t)eik

    retc.

    (2)

    So

    thatwe

    will

    be

    ableto

    obtainthe

    RH

    Sof

    theevolution

    equationsfor

    (Âlm(k

    ) (t),···,D̂lm(k

    ) (t))T

    ina

    homogeneous

    form.

  • Exam

    ple

    1:

    standard

    AD

    Mvs

    orig

    inalA

    DM

    (inSch

    warzsch

    ildco

    ord

    inate

    )

    -1

    -0.5 0

    0.5 1

    05

    10

    15

    20

    no adjustments (standard A

    DM

    )

    Real / Imaginary parts of Eigenvalues (AF)

    rsch

    (a)

    -0.5 0

    0.5

    05

    10

    15

    20

    original AD

    M (κ

    F = - 1

    /4)

    rsch

    (b)

    Real / Imaginary parts of Eigenvalues (AF)

    Figu

    re1:

    Am

    plifi

    cationfactors

    (AFs,

    eigenvalu

    esof

    hom

    ogenized

    constrain

    tprop

    agationeq

    uation

    s)are

    show

    nfor

    the

    standard

    Sch

    warzsch

    ildco

    ordin

    ate,w

    ith(a)

    no

    adju

    stmen

    ts,i.e.,

    standard

    AD

    M,

    (b)

    original

    AD

    M(κ

    F=

    −1/4).

    The

    solidlin

    esan

    dth

    edotted

    lines

    with

    circlesare

    realparts

    and

    imagin

    aryparts,

    respectively.

    They

    arefou

    rlin

    eseach

    ,but

    actually

    the

    two

    eigenvalu

    esare

    zerofor

    allcases.

    Plottin

    gran

    geis

    2<

    r≤

    20usin

    gSch

    warzsch

    ildrad

    ialco

    ordin

    ate.W

    eset

    k=

    1,l=

    2,an

    dm

    =2

    throu

    ghou

    tth

    earticle.

    ∂t γ

    ij=

    −2α

    Kij

    +∇

    i βj+∇

    j βi ,

    ∂t K

    ij=

    αR

    (3)ij

    +αK

    Kij −

    2αK

    ik Kkj −

    ∇i ∇

    j α+

    (∇i β

    k)Kkj+

    (∇j β

    k)Kki +

    βk∇

    k Kij

    Fαγ

    ij H,

  • Exam

    ple

    2:

    Detw

    eile

    r-type

    adju

    sted

    (inSch

    warzsch

    ildco

    ord

    .)

    -1

    -0.5 0

    0.5 1

    05

    10

    15

    20

    Detw

    eiler type, κL =

    + 1/2

    (b)

    Real / Imaginary parts of Eigenvalues (AF)

    rsch

    -1

    -0.5 0

    0.5 1

    05

    10

    15

    20

    Detw

    eiler type, κL =

    - 1/2

    Real / Imaginary parts of Eigenvalues (AF) (c)

    rsch

    Figu

    re2:

    Am

    plifi

    cationfactors

    ofth

    estan

    dard

    Sch

    warzsch

    ildco

    ordin

    ate,w

    ithD

    etweiler

    type

    adju

    stmen

    ts.M

    ultip

    liersused

    inth

    eplot

    are(b

    L=

    +1/2,

    and

    (c)κ

    L=

    −1/2.

    ∂t γ

    ij=

    (originalterm

    s)+

    Pij H

    ,

    ∂t K

    ij=

    (originalterm

    s)+

    Rij H

    +S

    kij M

    k+

    sklij (∇

    k Ml ),

    where

    Pij

    =−

    κL α

    3γij ,

    Rij

    L α3(K

    ij −(1/3)K

    γij ),

    Skij

    L α2[3(∂

    (i α)δ

    kj) −(∂

    l α)γ

    ij γkl],

    sklij

    L α3[δ

    k(i δlj) −

    (1/3)γij γ

    kl],

  • Exam

    ple

    3:

    standard

    AD

    M(in

    isotro

    pic/

    iEF

    coord

    .)

    -1

    -0.5 0

    0.5 1

    05

    10

    15

    20

    isotropic coordinate, no adjustments (standard A

    DM

    )

    (a)

    Real / Imaginary parts of Eigenvalues (AF)

    riso

    -1

    -0.5 0

    0.5 1

    1.5 2

    05

    10

    15

    20

    iEF

    coordinate, no adjustments (standard A

    DM

    )(b

    )

    Real / Imaginary parts of Eigenvalues (AF)

    rsch

    Figu

    re3:

    Com

    parison

    ofam

    plifi

    cationfactors

    betw

    eendiff

    erent

    coord

    inate

    expression

    sfor

    the

    standard

    AD

    Mform

    ulation

    (i.e.no

    adju

    stmen

    ts).Fig.

    (a)is

    forth

    eisotrop

    icco

    ordin

    ate(1),

    and

    the

    plottin

    gran

    geis

    1/2≤

    riso .

    Fig.

    (b)

    isfor

    the

    iEF

    coord

    inate

    (1)an

    dw

    eplot

    lines

    onth

    et=

    0slice

    foreach

    expression

    .T

    he

    solidfou

    rlin

    esan

    dth

    edotted

    four

    lines

    with

    circlesare

    realparts

    and

    imagin

    aryparts,

    respectively.

  • Exam

    ple

    4:

    Detw

    eile

    r-type

    adju

    sted

    (iniE

    F/P

    Gco

    ord

    .)

    -1

    -0.5 0

    0.5 1

    1.5 2

    05

    10

    15

    20

    iEF

    coordinate, Detw

    eiler type κL =

    +0

    .5(b

    )Real / Imaginary parts of Eigenvalues (AF)

    rsch

    -1

    -0.5 0

    0.5 1

    1.5 2

    05

    10

    15

    20

    PG

    coordinate, Detw

    eiler type κL =

    +0

    .5(c

    )

    Real / Imaginary parts of Eigenvalues (AF)

    rsch

    Figu

    re4:

    Sim

    ilarcom

    parison

    forD

    etweiler

    adju

    stmen

    ts.κ

    L=

    +1/2

    forall

    plots.

  • No.

    No.

    inadjustm

    ent1st?

    Sch/isocoords.

    iEF/P

    Gcoords.

    Table.??

    TR

    Sreal.

    imag.

    real.im

    ag.0

    0–

    noadjustm

    entsyes

    ––

    ––

    –P

    -12-P

    Pij

    −κ

    3γij

    nono

    makes

    2N

    eg.not

    apparentm

    akes2

    Neg.

    notapparent

    P-2

    3P

    ij−

    κLαγ

    ijno

    nom

    akes2

    Neg.

    notapparent

    makes

    2N

    eg.not

    apparentP

    -3-

    Pij

    Prr

    =−

    κor

    Prr

    =−

    κα

    nono

    slightlyenl.N

    eg.not

    apparentslightly

    enl.Neg.

    notapparent

    P-4

    -P

    ij−

    κγ

    ijno

    nom

    akes2

    Neg.

    notapparent

    makes

    2N

    eg.not

    apparentP

    -5-

    Pij

    −κγ

    rr

    nono

    red.Pos./enl.N

    eg.not

    apparentred.P

    os./enl.Neg.

    notapparent

    Q-1

    -Q

    kij

    καβ

    kγij

    nono

    N/A

    N/A

    κ∼

    1.35m

    in.vals.

    notapparent

    Q-2

    -Q

    kij

    Qrrr

    noyes

    red.abs

    vals.not

    apparentred.

    absvals.

    notapparent

    Q-3

    -Q

    kij

    Qrij

    =κγ

    ijor

    Qrij

    =καγ

    ijno

    yesred.

    absvals.

    notapparent

    enl.Neg.

    enl.vals.

    Q-4

    -Q

    kij

    Qrrr

    =κγ

    rr

    noyes

    red.abs

    vals.not

    apparentred.

    absvals.

    notapparent

    R-1

    1R

    ijκ

    Fαγ

    ijyes

    yesκ

    F=

    −1/4

    min.

    absvals.

    κF

    =−

    1/4m

    in.vals.

    R-2

    4R

    ijR

    rr

    =−

    κµα

    orR

    rr

    =−

    κµ

    yesno

    notapparent

    notapparent

    red.Pos./enl.N

    eg.enl.

    vals.R

    -3-

    Rij

    Rrr

    =−

    κγ

    rr

    yesno

    enl.vals.

    notapparent

    red.Pos./enl.N

    eg.enl.

    vals.S-1

    2-SS

    kij

    κLα

    2[3(∂(i α

    )δkj) −

    (∂l α

    )γij γ

    kl]

    yesno

    notapparent

    notapparent

    notapparent

    notapparent

    S-2-

    Skij

    καγ

    lk(∂l γ

    ij )yes

    nom

    akes2

    Neg.

    notapparent

    makes

    2N

    eg.not

    apparentp-1

    -p

    kij

    prij

    =−

    καγ

    ijno

    nored.

    Pos.

    red.vals.

    red.Pos.

    enl.vals.

    p-2-

    pkij

    prrr

    =κα

    nono

    red.Pos.

    red.vals.

    red.Pos/enl.N

    eg.enl.

    vals.p-3

    -p

    kij

    prrr

    =καγ

    rr

    nono

    makes

    2N

    eg.enl.

    vals.red.

    Pos.

    vals.red.

    vals.q-1

    -qklij

    qrrij

    =καγ

    ijno

    noκ

    =1/2

    min.

    vals.red.

    vals.not

    apparentenl.

    vals.q-2

    -qklij

    qrrrr

    =−

    καγ

    rr

    noyes

    red.abs

    vals.not

    apparentnot

    apparentnot

    apparentr-1

    -rkij

    rrij

    =καγ

    ijno

    yesnot

    apparentnot

    apparentnot

    apparentenl.

    vals.r-2

    -rkij

    rrrr

    =−

    κα

    noyes

    red.abs

    vals.enl.

    vals.red.

    absvals.

    enl.vals.

    r-3-

    rkij

    rrrr

    =−

    καγ

    rr

    noyes

    red.abs

    vals.enl.

    vals.red.

    absvals.

    enl.vals.

    s-12-s

    sklij

    κLα

    3[δk(i δ

    lj) −(1/3)γ

    ij γkl]

    nono

    makes

    4N

    eg.not

    apparentm

    akes4

    Neg.

    notapparent

    s-2-

    sklij

    srrij

    =−

    καγ

    ijno

    nom

    akes2

    Neg.

    red.vals.

    makes

    2N

    eg.red.

    vals.s-3

    -sklij

    srrrr

    =−

    καγ

    rr

    nono

    makes

    2N

    eg.red.

    vals.m

    akes2

    Neg.

    red.vals.

    Tab

    le1:

    List

    ofad

    justm

    ents

    we

    testedin

    the

    Sch

    warzsch

    ildsp

    acetime.

    The

    colum

    nof

    adju

    stmen

    tsare

    non

    zerom

    ultip

    liers.T

    he

    effects

    toam

    plifi

    cationfactors

    (when

    κ>

    0)are

    comm

    ented

    foreach

    coord

    inate

    system

    and

    forreal/im

    aginary

    parts

    ofA

    Fs,

    respectively.

    The

    ‘N/A

    ’m

    eans

    that

    there

    isno

    effect

    due

    toth

    eco

    ordin

    ateprop

    erties;‘n

    otap

    paren

    t’m

    eans

    the

    adju

    stmen

    tdoes

    not

    chan

    geth

    eA

    Fs

    effectively

    accordin

    gto

    our

    conjectu

    re;‘en

    l./red./m

    in.’

    mean

    sen

    large/reduce/m

    inim

    ize,an

    d‘P

    os./Neg.’

    mean

    spositive/n

    egative,resp

    ectively.T

    hese

    judgem

    ents

    arem

    ade

    atth

    er∼

    O(10M

    )region

    onth

    eirt=

    0slice.

  • 3.2

    .2N

    um

    erica

    ldem

    onstra

    tion

    -10.0

    -8.0

    -6.0

    -4.0

    -2.0

    0.0

    2.00.00.5

    1.01.5

    2.0

    Detw

    eiler's adju

    stmen

    ts on

    Min

    kow

    skii sp

    acetime

    L=

    -0.01L

    =0.0

    L=

    +0.01

    L=

    +0.02

    L=

    +0.03

    L=

    +0.35

    time

    Log1 0

    (L2 norm of constraints )

    L=

    0 (standard AD

    M)

    L=

    + 0.01

    L=

    + 0.03

    L=

    - 0.01

    L=

    + 0.035

    -10.0

    -8.0

    -6.0

    -4.0

    -2.0

    0.0

    2.00.00.5

    1.01.5

    2.0

    Sim

    plified

    Detw

    eiler's adju

    stmen

    ts on

    Min

    kow

    skii sp

    acetime

    L=

    -0.01L

    =0.0

    L=

    +0.01

    L=

    +0.02

    L=

    +0.04

    L=

    +0.06

    L=

    +0.08

    time

    Log1 0

    (L2 norm of constraints )

    L=

    + 0.08

    L=

    - 0.01

    L=

    0 (standard AD

    M)

    L=

    + 0.01

    L=

    + 0.06

    Figu

    re1:

    We

    confirm

    ednum

    erically,usin

    gM

    inkow

    skii

    pertu

    rbation

    ,th

    atD

    etweiler’s

    system

    presen

    tsbetter

    accuracy

    than

    the

    standard

    AD

    M,but

    only

    formsm

    allpositive

    L.

  • Com

    pariso

    ns

    ofA

    dju

    sted

    AD

    Msy

    stem

    s(lin

    ear

    wave)

    Mexico

    NR

    2002

    Work

    shop

    particip

    ants

    0

    0.002

    0.004

    0.006

    0.008

    0.01

    050

    100150

    200

    originalAD

    MstandardA

    DM

    Detw

    eiler_0.02D

    etweiler_0.04

    Sim

    plifiedDetw

    eiler_0.02S

    implifiedD

    etweiler_0.04

    L2 norm of Hamiltonian constraint

    time

    Stan

    dard

    AD

    M

    Orig

    inal A

    DM

    Ad

    justed

    AD

    M (S

    D)

    Ad

    justed

    AD

    M (D

    )

    Figu

    re1:

    Violation

    ofH

    amilton

    iancon

    straints

    versus

    time:

    Adju

    stedA

    DM

    system

    sap

    plied

    forTeu

    kolsky

    wave

    initial

    data

    evolution

    with

    harm

    onic

    slicing,

    and

    with

    perio

    dic

    bou

    ndary

    condition

    .C

    actus/C

    actusE

    instein

    /AD

    Mco

    de

    was

    used

    .G

    rid=

    243,

    ∆x

    =0.25,

    iterativeC

    rank-N

    icholson

    meth

    od.

  • “Einstein

    equations”are

    time-reversal

    invariant.So

    ...

    Why

    allnegative

    amplification

    factors(A

    Fs)

    areavailable?

    Expla

    natio

    nby

    the

    time-re

    versa

    lin

    varia

    nce

    (TR

    I)

    •the

    adjustment

    ofthe

    systemI,

    adjustterm

    to∂

    t︸︷︷︸(−

    ) Kij

    ︸︷︷︸(−

    )

    1α︸︷︷︸(+

    ) γij

    ︸︷︷︸(+

    ) H︸︷︷︸(+

    )

    preservesT

    RI.

    ...so

    theAFs

    remain

    zero(unchange).

    •the

    adjustment

    by(a

    partof)

    Detw

    eiler

    adjustterm

    to∂

    t︸︷︷︸(−

    ) γij

    ︸︷︷︸(+

    )

    =−

    Lα︸︷︷︸(+

    ) γij

    ︸︷︷︸(+

    ) H︸︷︷︸(+

    )

    violatesT

    RI.

    ...so

    theAFs

    canbecom

    enegative.

    Therefore

    We

    canbreak

    thetim

    e-reversalinvariant

    featureof

    the“A

    DM

    equations”.

  • Constru

    cting

    Asy

    mpto

    tically

    Constra

    ined

    Syste

    ms

    Hisa

    akiShin

    kai

    1.In

    troductio

    n

    2.T

    hre

    eappro

    ach

    es

    (1)A

    rnow

    itt-Dese

    r-Misn

    er/

    Baum

    garte

    -Shapiro

    -Shib

    ata

    -Nakam

    ura

    (2)

    Hyperb

    olic

    form

    ula

    tions

    (3)

    Attra

    ctor

    syste

    ms

    –“A

    dju

    sted

    Syste

    ms”

    3.A

    dju

    sted

    AD

    Msy

    stem

    s

    4.A

    dju

    sted

    BSSN

    syste

    ms

    5.Sum

    mary

  • strategy1

    Shibata-N

    akamura’s

    (Baum

    garte-Shapiro’s)

    modifications

    tothe

    standardAD

    M

    –define

    newvariables

    (φ,γ̃

    ij ,K,Ã

    ij ,Γ̃i),

    insteadof

    theAD

    M’s

    (γij ,K

    ij )w

    here

    γ̃ij ≡

    e −4φγ

    ij ,Ã

    ij ≡e −

    4φ(Kij −

    (1/3)γij K

    ),Γ̃

    i≡Γ̃

    ijk γ̃jk,

    usem

    omentum

    constraintin

    Γi-eq.,

    andim

    pose

    detγ̃

    ij=

    1during

    theevolutions.

    –T

    heset

    ofevolution

    equationsbecom

    e

    (∂t −

    Lβ )φ

    =−

    (1/6)αK

    ,

    (∂t −

    Lβ )γ̃

    ij=

    −2α

    Ãij ,

    (∂t −

    Lβ )K

    =αÃ

    ij Ãij

    +(1/3)α

    K2−

    γij(∇

    i ∇j α

    ),

    (∂t −

    Lβ )Ã

    ij=

    −e −

    4φ(∇i ∇

    j α)T

    F+

    e −4φα

    R(3)ij

    −e −

    4φα(1/3)γ

    ij R(3)

    (KÃ

    ij −2Ã

    ik Ãkj )

    ∂t Γ̃

    i=

    −2(∂

    j α)Ã

    ij−(4/3)α

    (∂j K

    )γ̃ij

    +12α

    Ãji(∂

    j φ)−

    2αÃ

    kj(∂

    j γ̃ik)−

    2αΓ̃

    klj Ã

    jk γ̃

    il

    −∂

    j (βk∂

    k γ̃ij−

    γ̃kj(∂

    k βi)−

    γ̃ki(∂

    k βj)

    +(2/3)γ̃

    ij(∂k β

    k) )

    Rij

    =∂

    k Γkij −

    ∂i Γ

    kkj+

    Γmij Γ

    kmk −

    Γmkj Γ

    kmi=

    :R̃

    ij+

    Rφij

    Rφij

    =−

    2D̃i D̃

    j φ−

    2g̃ij D̃

    lD̃l φ

    +4(D̃

    i φ)(D̃

    j φ)−

    4g̃ij (D̃

    lφ)(D̃

    l φ)

    R̃ij

    =−

    (1/2)g̃lm

    ∂lm

    g̃ij

    +g̃

    k(i ∂

    j) Γ̃k

    +Γ̃

    kΓ̃(ij)k

    +2g̃

    lmΓ̃

    kl(i Γ̃j)k

    m+

    g̃lm

    Γ̃kim

    Γ̃klj

    –N

    oexplicit

    explanationsw

    hythis

    formulation

    works

    better.

    AEIgroup

    (2000):the

    replacement

    bym

    omentum

    constraintis

    essential.

  • Constra

    ints

    inB

    SSN

    syste

    m

    The

    normal

    Ham

    iltonianand

    mom

    entumconstraints

    HB

    SSN

    =R

    BSSN

    +K

    2−K

    ij Kij,

    (1)

    MB

    SSN

    i=

    MA

    DM

    i,

    (2)

    Additionally,

    we

    regardthe

    following

    threeas

    theconstraints:

    Gi

    =Γ̃

    i−γ̃

    jkΓ̃ijk ,

    (3)

    A=

    Ãij γ̃

    ij,(4)

    S=

    γ̃−

    1,(5)

    Adju

    stments

    inevolu

    tion

    equatio

    ns

    ∂Btϕ

    =∂

    Atϕ

    +(1/6)αA

    −(1/12)γ̃

    −1(∂

    j S)β

    j,(6)

    ∂Btγ̃

    ij=

    ∂Atγ̃

    ij −(2/3)α

    γ̃ij A

    +(1/3)γ̃

    −1(∂

    k S)β

    kγ̃ij ,

    (7)

    ∂BtK

    =∂

    AtK

    −(2/3)α

    KA

    −αH

    BSSN

    +αe −

    4ϕ(D̃j G

    j),(8)

    ∂BtÃ

    ij=

    ∂AtÃ

    ij+

    ((1/3)αγ̃

    ij K−

    (2/3)αÃ

    ij )A+

    ((1/2)αe −

    4ϕ(∂k γ̃

    ij )−(1/6)α

    e −4ϕγ̃

    ij γ̃−

    1(∂k S

    ))Gk

    +αe −

    4ϕγ̃k(i (∂

    j) Gk)−

    (1/3)αe −

    4ϕγ̃ij (∂

    k Gk)

    (9)

    ∂BtΓ̃

    i=

    ∂AtΓ̃

    i−((2/3)(∂

    j α)γ̃

    ji+(2/3)α

    (∂j γ̃

    ji)+

    (1/3)αγ̃

    jiγ̃−

    1(∂j S

    )−4α

    γ̃ij(∂

    j ϕ))A

    −(2/3)α

    γ̃ji(∂

    j A)

    +2α

    γ̃ijM

    j −(1/2)(∂

    k βi)γ̃

    kjγ̃

    −1(∂

    j S)+

    (1/6)(∂j β

    k)γ̃ijγ̃

    −1(∂

    k S)+

    (1/3)(∂k β

    k)γ̃ijγ̃

    −1(∂

    j S)

    +(5/6)β

    kγ̃−

    2γ̃ij(∂

    k S)(∂

    j S)+

    (1/2)βkγ̃

    −1(∂

    k γ̃ij)(∂

    j S)+

    (1/3)βkγ̃

    −1(∂

    j γ̃ji)(∂

    k S).

    (10)

  • AFull

    set

    ofB

    SSN

    constra

    int

    pro

    pagatio

    neqs.

    ∂B

    St

    HB

    S

    Mi

    Gi

    SA

    =

    A11

    A12

    A13

    A14

    A15

    −(1/3)(∂

    i α)+

    (1/6)∂i

    αK

    A23

    0A

    25

    0αγ̃

    ij0

    A34

    A35

    00

    k(∂k S

    )−

    2αγ̃

    00

    00

    αK

    k∂k

    HB

    S

    Mj

    Gj

    SA

    A11

    =+

    (2/3)αK

    +(2/3)αA

    k∂k

    A12

    =−

    4e −4ϕα(∂

    k ϕ)γ̃

    kj−

    2e −4ϕ(∂

    k α)γ̃

    jk

    A13

    =−

    2αe −

    4ϕÃ

    kj ∂

    k −αe −

    4ϕ(∂

    j Ãkl )γ̃

    kl−

    e −4ϕ(∂

    j α)A

    −e −

    4ϕβ

    k∂k ∂

    j −(1/2)e −

    4ϕβ

    kγ̃−

    1(∂j S

    )∂k

    +(1/6)e −

    4ϕγ̃−

    1(∂j β

    k)(∂k S

    )−(2/3)e −

    4ϕ(∂

    k βk)∂

    j

    A14

    =2α

    e −4ϕγ̃−

    1γ̃lk(∂

    l ϕ)A

    ∂k+

    (1/2)αe −

    4ϕγ̃−

    1(∂l A

    )γ̃lk∂

    k+

    (1/2)e −4ϕγ̃−

    1(∂l α

    )γ̃lkA

    ∂k+

    (1/2)e −4ϕγ̃−

    1βm

    γ̃lk∂

    m∂

    l ∂k

    −(5/4)e −

    4ϕγ̃−

    2βm

    γ̃lk(∂

    m S)∂

    l ∂k+

    e −4ϕγ̃−

    1βm

    (∂m

    γ̃lk)∂

    l ∂k+

    (1/2)e −4ϕγ̃−

    1βi(∂

    j ∂i γ̃

    jk)∂k

    +(3/4)e −

    4ϕγ̃−

    3βiγ̃

    jk(∂i S

    )(∂j S

    )∂k −

    (3/4)e −4ϕγ̃−

    2βi(∂

    i γ̃jk)(∂

    j S)∂

    k+

    (1/3)e −4ϕγ̃−

    1γ̃pj(∂

    j βk)∂

    p ∂k

    −(5/12)e −

    4ϕγ̃−

    2γ̃jk(∂

    k βi)(∂

    i S)∂

    j+

    (1/3)e −4ϕγ̃−

    1(∂k γ̃

    ij)(∂j β

    k)∂i −

    (1/6)e −4ϕγ̃−

    1γ̃m

    k(∂k ∂

    l βl)∂

    m

    A15

    =(4/9)α

    KA

    −(8/9)α

    K2+

    (4/3)αe −

    4ϕ(∂

    i ∂j ϕ

    )γ̃ij

    +(8/3)α

    e −4ϕ(∂

    k ϕ)(∂

    l γ̃lk)

    +αe −

    4ϕ(∂

    j γ̃jk)∂

    k

    +8α

    e −4ϕγ̃

    jk(∂j ϕ

    )∂k+

    αe −

    4ϕγ̃

    jk∂j ∂

    k+

    8e −4ϕ(∂

    l α)(∂

    k ϕ)γ̃

    lk+

    e −4ϕ(∂

    l α)(∂

    k γ̃lk)

    +2e −

    4ϕ(∂

    l α)γ̃

    lk∂k

    +e −

    4ϕγ̃

    lk(∂l ∂

    k α)

    A23

    =αe −

    4ϕγ̃

    km

    (∂k ϕ

    )(∂j γ̃

    mi )−

    (1/2)αe −

    4ϕΓ̃

    mkl γ̃

    kl(∂

    j γ̃m

    i )

    +(1/2)α

    e −4ϕγ̃

    mk(∂

    k ∂j γ̃

    mi )

    +(1/2)α

    e −4ϕγ̃−

    2(∂i S

    )(∂j S

    )−(1/4)α

    e −4ϕ(∂

    i γ̃kl )(∂

    j γ̃kl)

    +αe −

    4ϕγ̃

    km

    (∂k ϕ

    )γ̃ji ∂

    m

    +αe −

    4ϕ(∂

    j ϕ)∂

    i −(1/2)α

    e −4ϕΓ̃

    mkl γ̃

    klγ̃

    ji ∂m

    +αe −

    4ϕγ̃

    mkΓ̃

    ijk ∂m

    +(1/2)α

    e −4ϕγ̃

    lkγ̃ji ∂

    k ∂l

    +(1/2)e −

    4ϕγ̃

    mk(∂

    j γ̃im

    )(∂k α

    )+

    (1/2)e −4ϕ(∂

    j α)∂

    i+

    (1/2)e −4ϕγ̃

    mkγ̃

    ji (∂k α

    )∂m

    A25

    =−

    Ãki (∂

    k α)+

    (1/9)(∂i α

    )K+

    (4/9)α(∂

    i K)+

    (1/9)αK

    ∂i −

    αÃ

    ki ∂

    k

    A34

    =−

    (1/2)βkγ̃

    ilγ̃−

    2(∂l S

    )∂k −

    (1/2)(∂l β

    i)γ̃lkγ̃

    −1∂

    k+

    (1/3)(∂l β

    l)γ̃ikγ̃

    −1∂

    k −(1/2)β

    lγ̃in(∂

    l γ̃m

    n )γ̃m

    kγ̃−

    1∂k

    +(1/2)β

    kγ̃ilγ̃

    −1∂

    l ∂k

    A35

    =−

    (∂k α

    )γ̃ik

    +4α

    γ̃ik(∂

    k ϕ)−

    αγ̃

    ik∂k

  • BSSN

    Constra

    int

    pro

    pagatio

    nanaly

    sisin

    flat

    space

    time

    •T

    heset

    ofthe

    constraintpropagation

    equations,∂

    t (HB

    SSN,M

    i ,Gi,A

    ,S)T

    ?

    •For

    theflat

    backgroundm

    etricg

    µν

    µν ,

    thefirst

    orderperturbation

    equationsof

    (6)-(10):

    ∂t (1)ϕ

    =−

    (1/6) (1)K+

    (1/6)κϕ(1)A

    (11)

    ∂t (1)γ̃

    ij=

    −2 (1)Ã

    ij −(2/3)κ

    γ̃ δij (1)A

    (12)

    ∂t (1)K

    =−

    (∂j ∂

    j (1)α)+

    κK

    1 ∂j (1)G

    j−κ

    K2 (1)H

    BSSN

    (13)

    ∂t (1)Ã

    ij=

    (1)(RB

    SSN

    ij)T

    F−

    (1)(D̃i D̃

    j α)T

    F+

    κA

    1 δk(i (∂

    j) (1)Gk)−

    (1/3)κA

    2 δij (∂

    k (1)Gk)

    (14)

    ∂t (1)̃Γ

    i=

    −(4/3)(∂

    i (1)K)−

    (2/3)κΓ̃1 (∂

    i (1)A)+

    2κΓ̃2 (1)M

    i(15)

    We

    expressthe

    adjustements

    as

    κadj

    :=(κ

    ϕ ,κγ̃ ,κ

    K1 ,κ

    K2 ,κ

    A1 ,κ

    A2 ,κ

    Γ̃1 ,κ

    Γ̃2 ).

    (16)

    •Constraint

    propagationequations

    atthe

    firstorder

    inthe

    flatspacetim

    e:

    ∂t (1)H

    BSSN

    =(κ

    γ̃ −(2/3)κ

    Γ̃1 −

    (4/3)κϕ

    +2)

    ∂j ∂

    j (1)A+

    2(κΓ̃2 −

    1)(∂j (1)M

    j ),(17)

    ∂t (1)M

    i=

    (−(2/3)κ

    K1+

    (1/2)κA

    1 −(1/3)κ

    A2+

    (1/2))∂

    i ∂j (1)G

    j

    +(1/2)κ

    A1 ∂

    j ∂j (1)G

    i+((2/3)κ

    K2 −

    (1/2))∂

    i (1)HB

    SSN,

    (18)

    ∂t (1)G

    i=

    2κΓ̃2 (1)M

    i +(−

    (2/3)κΓ̃1 −

    (1/3)κγ̃ )(∂

    i (1)A),

    (19)

    ∂t (1)S

    =−

    2κγ̃ (1)A

    ,(20)

    ∂t (1)A

    =(κ

    A1 −

    κA

    2 )(∂j (1)G

    j).(21)

  • Effect

    ofadju

    stments

    No.

    Constraints

    (number

    ofcom

    ponents)

    diag?Constr.

    Am

    p.Factors

    H(1)

    Mi(3)

    Gi(3)

    A(1)

    S(1)

    inM

    inkowskii

    background

    0.standard

    AD

    Muse

    use-

    --

    yes(0,0,�

    ,�)

    1.BSSN

    noadjustm

    entuse

    useuse

    useuse

    yes(0,0,0,0,0,0,0,�

    ,�)

    2.the

    BSSN

    use+adj

    use+adj

    use+adj

    use+adj

    use+adj

    no(0,0,0,�

    ,�,�

    ,�,�

    ,�)

    3.no

    Sadjustm

    entuse+

    adjuse+

    adjuse+

    adjuse+

    adjuse

    nono

    difference

    inflat

    background4.

    noA

    adjustment

    use+adj

    use+adj

    use+adj

    useuse+

    adjno

    (0,0,0,�,�

    ,�,�

    ,�,�

    )5.

    noG

    iadjustm

    entuse+

    adjuse+

    adjuse

    use+adj

    use+adj

    no(0,0,0,0,0,0,0,�

    ,�)

    6.no

    Miadjustm

    entuse+

    adjuse

    use+adj

    use+adj

    use+adj

    no(0,0,0,0,0,0,0,�

    ,�)

    Grow

    ingm

    odes

    7.no

    Hadjustm

    entuse

    use+adj

    use+adj

    use+adj

    use+adj

    no(0,0,0,�

    ,�,�

    ,�,�

    ,�)

    8.ignore

    Gi,A

    ,Suse+

    adjuse+

    adj-

    --

    no(0,0,0,0)

    9.ignore

    Gi,A

    use+adj

    use+adj

    use+adj

    --

    yes(0,�

    ,�,�

    ,�,�

    ,�)

    10.ignore

    Gi

    use+adj

    use+adj

    -use+

    adjuse+

    adjno

    (0,0,0,0,0,0)11.

    ignoreA

    use+adj

    use+adj

    use+adj

    -use+

    adjyes

    (0,0,�,�

    ,�,�

    ,�,�

    )12.

    ignoreS

    use+adj

    use+adj

    use+adj

    use+adj

    -yes

    (0,0,�,�

    ,�,�

    ,�,�

    )

  • New

    Pro

    posa

    ls::

    Impro

    ved

    (adju

    sted)

    BSSN

    syste

    ms

    TR

    Sbre

    akin

    gadju

    stments

    Inorder

    tobreak

    time

    reversalsym

    metry

    (TRS)

    ofthe

    evolutioneqs,

    toadjust

    ∂t φ

    ,∂t γ̃

    ij ,∂t Γ̃

    iusing

    S,G

    i,or

    toadjust

    ∂t K

    ,∂t Ã

    ijusing

    Ã.

    ∂t φ

    =∂

    BS

    φHαH

    BS

    φG αD̃

    k Gk

    φS1 αS

    φS2 α

    D̃jD̃

    j S∂

    t γ̃ij

    =∂

    BS

    tγ̃

    ij+

    κγ̃H

    αγ̃

    ij HB

    S+

    κγ̃G

    1 αγ̃

    ij D̃k G

    k+

    κγ̃G

    2 αγ̃

    k(i D̃

    j) Gk

    γ̃S1 α

    γ̃ij S

    γ̃S2 α

    D̃i D̃

    j S∂

    t K=

    ∂B

    St

    K+

    κKM

    αγ̃

    jk(D̃j M

    k )+

    κKÃ

    1 αÃ+

    κKÃ

    2 αD̃

    jD̃j Ã

    ∂t Ã

    ij=

    ∂B

    St

    Ãij

    AM1 α

    γ̃ij (D̃

    kMk )

    AM2 α

    (D̃(i M

    j) )+

    κAÃ

    1 αγ̃

    ij Ã+

    κAÃ

    2 αD̃

    i D̃j Ã

    ∂t Γ̃

    i=

    ∂B

    St

    Γ̃i+

    κΓ̃H

    αD̃

    iHB

    S+

    κΓ̃G

    1 αGi+

    κΓ̃G

    2 αD̃

    jD̃j G

    i+κ

    Γ̃G3 α

    D̃iD̃

    j Gj+

    κΓ̃S

    αD̃

    iHB

    S

    orin

    theflat

    background

    ∂A

    DJ

    t(1)φ

    =+

    κφH

    (1)HB

    S+

    κφG ∂

    k (1)Gk

    φS1 (1)S

    φS2 ∂

    j ∂j (1)S

    ∂A

    DJ

    t(1)γ̃

    ij=

    γ̃Hδij (1)H

    BS

    γ̃G1 δ

    ij ∂k (1)G

    k+

    (1/2)κγ̃G

    2 (∂j (1)G

    i+∂

    i (1)Gj)

    γ̃S1 δ

    ij (1)S+

    κγ̃S

    2 ∂i ∂

    j (1)S∂

    AD

    Jt

    (1)K=

    KM

    ∂j (1)M

    j+

    κKÃ

    1 (1)Ã+

    κKÃ

    2 ∂j ∂

    j (1)̶

    AD

    Jt

    (1)Ãij

    =+

    κAM

    1 δij ∂

    k (1)Mk

    +(1/2)κ

    AM2 (∂

    i Mj+

    ∂j M

    i )+

    κAÃ

    1 δij Ã

    AÃ2 ∂

    i ∂j Ã

    ∂A

    DJ

    t(1)̃Γ

    i=

    Γ̃H∂

    i (1)HB

    S+

    κΓ̃G

    1 (1)Gi+

    κΓ̃G

    2 ∂j ∂

    j (1)Gi+

    κΓ̃G

    3 ∂i ∂

    j (1)Gj+

    κΓ̃S

    ∂i (1)S

  • Constra

    int

    Am

    plifi

    catio

    nFacto

    rsw

    itheach

    adju

    stment

    adjustment

    CAFs

    diag?eff

    ectof

    theadjustm

    ent

    ∂t φ

    κφH

    αH(0,0,±

    √−

    k2(∗3),8κ

    φHk

    2)no

    κφH

    <0

    makes

    1N

    eg.

    ∂t φ

    κφG

    αD̃

    k Gk

    (0,0,±√−

    k2(∗2),

    longexpressions)

    yesκ

    φG<

    0m

    akes2

    Neg.

    1Pos.

    ∂t γ̃

    ijκ

    SD

    αγ̃

    ij H(0,0,±

    √−

    k2(∗3),(3/2)κ

    SDk

    2)yes

    κS

    D<

    0m

    akes1

    Neg.

    Case

    (B)

    ∂t γ̃

    ijκ

    γ̃G1αγ̃

    ij D̃k G

    k(0,0,±

    √−

    k2(∗2),

    longexpressions)

    yesκ

    γ̃G1>

    0m

    akes1

    Neg.

    ∂t γ̃

    ijκ

    γ̃G2αγ̃

    k(i D̃j) G

    k(0,0,

    (1/4)k2κ

    γ̃G2 ±

    √k

    2(−1

    +k

    2κγ̃G

    2 /16)(∗2),long

    expressions)yes

    κγ̃G

    2<

    0m

    akes6

    Neg.

    1Pos.

    Case

    (E1)

    ∂t γ̃

    ijκ

    γ̃S1αγ̃

    ij S(0,0,±

    √−

    k2(∗3),3κ

    γ̃S1 )

    noκ

    γ̃S1<

    0m

    akes1

    Neg.

    ∂t γ̃

    ijκ

    γ̃S2αD̃

    i D̃j S

    (0,0,±√−

    k2(∗3),−

    κγ̃S

    2 k2)

    noκ

    γ̃S2>

    0m

    akes1

    Neg.

    ∂t K

    κKM

    αγ̃

    jk(D̃j M

    k )(0,0,0,±

    √−

    k2(∗2),

    (1/3)κKM

    k2±

    (1/3) √k

    2(−9

    +k

    2κ2KM

    ))no

    κKM

    <0

    makes

    2N

    eg.

    ∂t Ã

    ijκ

    AM1αγ̃

    ij (D̃kM

    k )(0,0,±

    √−

    k2(∗3),−

    κAM

    1 k2)

    yesκ

    AM1>

    0m

    akes1

    Neg.

    ∂t Ã

    ijκ

    AM2α(D̃

    (i Mj) )

    (0,0,−k

    2κAM

    2 /4±√

    k2(−

    1+

    k2κ

    AM

    2 /16)(∗2),

    longexpressions)

    yesκ

    AM2>

    0m

    akes7

    Neg

    Case

    (D)

    ∂t Ã

    ijκ

    AA1αγ̃

    ij A(0,0,±

    √−

    k2(∗3),3κ

    AA1 )

    yesκ

    AA1<

    0m

    akes1

    Neg.

    ∂t Ã

    ijκ

    AA2αD̃

    i D̃j A

    (0,0,±√−

    k2(∗3),−

    κAA

    2 k2)

    yesκ

    AA2>

    0m

    akes1

    Neg.

    ∂t Γ̃

    Γ̃HαD̃

    iH(0,0,±

    √−

    k2(∗3),−

    κAA

    2 k2)

    noκ

    Γ̃H>

    0m

    akes1

    Neg.

    ∂t Γ̃

    Γ̃G1αG

    i(0,0,(1/2)κ

    Γ̃G1 ±

    √−k

    2+

    κ2Γ̃G

    1 (∗2),long.)

    yesκ

    Γ̃G1<

    0m

    akes6

    Neg.

    1Pos.

    Case

    (E2)

    ∂t Γ̃

    Γ̃G2αD̃

    jD̃j G

    i(0,0,−

    (1/2)κΓ̃G

    2 ±√−

    k2+

    κ2Γ̃G

    2 (∗2),long.)

    yesκ

    Γ̃G2>

    0m

    akes2

    Neg.

    1Pos.

    ∂t Γ̃

    Γ̃G3αD̃

    iD̃j G

    j(0,0,−

    (1/2)κΓ̃G

    3 ±√−

    k2+

    κ2Γ̃G

    3 (∗2),long.)

    yesκ

    Γ̃G3>

    0m

    akes2

    Neg.

    1Pos.

    gr-q

    c/0204002

    (PR

    Din

    prin

    t)

  • Com

    pariso

    ns

    ofA

    dju

    sted

    BSSN

    syste

    ms

    (linear

    wave)

    Mexico

    NR

    2002

    Work

    shop

    particip

    ants

    Figu

    re2:

    Violation

    ofH

    amilton

    iancon

    straints

    versus

    time:

    Adju

    stedB

    SSN

    system

    sap

    plied

    forTeu

    kolsky

    wave

    initial

    data

    evolution

    with

    harm

    onic

    slicing,

    and

    with

    perio

    dic

    bou

    ndary

    condition

    .C

    actus/A

    EIT

    horn

    s/BSSN

    code

    was

    used

    .G

    rid=

    243,

    ∆x

    =0.25,

    iterativeC

    rank-N

    icholson

    meth

    od.

    Cou

    rtesyof

    N.D

    orban

    dan

    dD

    .Polln

    ey(A

    EI).

  • An

    Evolu

    tion

    ofA

    dju

    sted

    BSSN

    Form

    ula

    tion

    by

    Yo-B

    aum

    garte

    -Shapiro

    ,gr-q

    c/0209066

    02000

    40006000

    t/M

    1018

    1016

    1014

    1012

    1010

    108

    106

    104

    ∆Krms

    A3

    A4

    A5

    A6

    A7

    A8

    02000

    40006000

    t/M

    0.88

    0.9

    0.92

    0.94

    0.96A

    ngular mom

    entum/M

    2

    Innersurface + volum

    eO

    utersurface

    0.89

    0.9

    0.91

    0.92

    0.93

    0.94M

    ass/M

    Innersurface + volum

    eO

    utersurface

    02000

    40006000

    t/M

    1018

    1016

    1014

    1012

    1010

    108

    106

    104

    rms of ∆

    fαtrK

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7C

    onstraint residual

    Ham

    .M

    om.

    Kerr-S

    child

    BH

    (0.9

    J/M

    ),excisio

    nw

    ithcu

    be,

    1+

    log-lapse

    ,Γ-d

    river

    shift.

    ∂t Γ̃

    i=

    (···)+

    23Γ̃

    iβi,j −

    (χ+

    23)G

    iβj,j

    χ=

    2/3fo

    r(A

    4)-(A

    8)

    ∂t γ̃

    ij=

    (···)−καγ̃

    ij Hκ

    =0.1∼

    0.2fo

    r(A

    5),

    (A6)

    and

    (A8)

  • Sum

    mary

    Tow

    ard

    sa

    stable

    and

    accu

    rate

    form

    ula

    tion

    for

    num

    erica

    lre

    lativ

    ity

    •Severa

    lre

    ports

    say

    num

    erica

    lsta

    bilitie

    sdepend

    on

    the

    form

    ula

    tions

    toapply,

    alth

    ough

    they

    are

    math

    em

    atica

    llyequiv

    ale

    nt.

    •sta

    tus

    =ch

    aotic,

    many

    trials

    and

    erro

    rs

    We

    tried

    toundersta

    nd

    the

    back

    gro

    und

    inan

    unifi

    ed

    way.

    •O

    ur

    pro

    posa

    l=

    “Evalu

    ate

    eig

    envalu

    es

    ofco

    nstra

    int

    pro

    pagatio

    neqns”

    We

    giv

    esa

    tisfacto

    ryco

    nditio

    ns

    for

    stable

    evolu

    tions.

    Fourie

    rtra

    nsfo

    rmatio

    nallo

    ws

    todiscu

    sslo

    wer-o

    rder

    term

    s.

    •O

    ur

    Obse

    rvatio

    n=

    “Sta

    bility

    will

    change

    by

    addin

    gco

    nstra

    ints

    inR

    HS”

    We

    nam

    ed

    “A

    dju

    sted

    Syste

    m”.

    Num

    erica

    llyco

    nfirm

    ed

    inth

    eM

    axw

    ell

    syste

    mand

    Ash

    tekar

    syste

    m.

    •O

    ur

    Obse

    rvatio

    n2=

    The

    idea

    work

    seven

    for

    the

    AD

    Mfo

    rmula

    tion

    We

    expla

    inth

    eeffectiv

    epara

    mete

    rra

    nge

    ofD

    etw

    eile

    r’ssy

    stem

    (1987).

    We

    pro

    pose

    dvarie

    tyofadju

    stments.

    Severa

    lnum

    erica

    lco

    nfirm

    atio

    ns.

    •O

    ur

    Obse

    rvatio

    n3=

    The

    idea

    work

    salso

    for

    the

    BSSN

    form

    ula

    tion

    We

    expla

    inw

    hy

    adju

    sting

    mom

    entu

    mco

    nstra

    ints

    impro

    ves

    the

    stability.

    We

    pro

    pose

    dvarie

    tyofadju

    stments.

    Severa

    lnum

    erica

    lco

    nfirm

    atio

    ns.

    Evalu

    atio

    nofC

    AFsm

    ay

    be

    an

    alte

    rnativ

    eguid

    elin

    eto

    hyperb

    oliza

    tion

    ofth

    esy

    stem

    .

  • Next

    Ste

    ps?

    •G

    enera

    lizeth

    epro

    cedure

    toco

    nstru

    ctadju

    sted

    syste

    ms

    –dynam

    icaland

    auto

    matica

    ldete

    rmin

    atio

    nof

    κunder

    asu

    itable

    prin

    ciple

    .

    –ta

    rget

    toco

    ntro

    leach

    constra

    int

    vio

    latio

    nby

    adju

    sting

    multip

    liers.

    –cla

    rifyth

    ere

    aso

    ns

    ofnon-lin

    ear

    vio

    latio

    nin

    curre

    nt

    test

    evolu

    tions.

    •M

    ore

    on

    hyperb

    olic

    form

    ula

    tions

    –effects

    ofnon-p

    rincip

    alpart?

    –cla

    rifyth

    ere

    aso

    ns

    ofadvanta

    ges

    ofkin

    em

    atic

    para

    mete

    rs(in

    KST

    )m

    ixed-

    form

    varia

    ble

    s,and/or

    densitize

    dla

    pse

    ?

    –lin

    ks

    toth

    ein

    itial-b

    oundary

    valu

    epro

    ble

    m(IB

    VP

    ).

    •A

    ltern

    ativ

    enew

    ideas?

    –co

    ntro

    lth

    eorie

    s,optim

    izatio

    nm

    eth

    ods

    (convex

    functio

    nalth

    eorie

    s),m

    ath

    -

    em

    atica

    lpro

    gra

    mm

    ing

    meth

    ods,

    or

    ....

    •N

    um

    erica

    lco

    mpariso

    ns

    offo

    rmula

    tions

    –“C

    om

    pariso

    ns

    of

    Form

    ula

    tions

    of

    Ein

    stein

    ’sequatio

    ns

    for

    Num

    erica

    lR

    el-

    ativ

    ity”

    (Mexico

    NR

    work

    shop,2002)

    inpro

    gre

    ss

  • Kidder-S

    cheel-Teukolsky

    hyperb

    olicform

    ulation(A

    nderson-York

    +Frittelli-R

    eula)

    Phys.

    Rev.

    D.64

    (2001)064017

    •Construct

    aFirst-order

    formusing

    variables(K

    ij ,gij ,d

    kij )

    where

    dkij ≡

    ∂k g

    ij

    Constraints

    are(H

    ,Mi ,C

    kij ,C

    klij )

    whereC

    kij ≡

    dkij −

    ∂k g

    ij ,and

    Cklij ≡

    ∂[k d

    l]ij

    •D

    ensitizethe

    lapse,Q

    =log(N

    g −σ)

    •Adjust

    equationsw

    ithconstraints

    ∂̂0 g

    ij=

    −2N

    Kij

    ∂̂0 K

    ij=

    (···)+

    γN

    gij H

    +ζN

    gabC

    a(ij)b

    ∂̂0 d

    kij

    =(···)

    +ηN

    gk(i M

    j)+

    χN

    gij M

    k

    •Re-deining

    thevariables

    (Pij ,g

    ij ,Mkij )

    Pij

    ≡K

    ij+

    ẑgij K

    ,

    Mkij

    ≡(1/2)[k̂

    dkij

    +êd

    (ij)k+

    gij (â

    dk

    +b̂b

    k )+

    gk(i (ĉd

    j)+

    d̂bj) )],

    dk

    =g

    abd

    kab ,b

    k=

    gabd

    abk

    The

    redefinitionparam

    eters

    –do

    notchange

    theeigenvalues

    ofevolution

    eqs.

    –do

    noteff

    ecton

    theprincipal

    partof

    theconstraint

    evolutioneqs.

    –do

    affect

    theeigenvectors

    ofevolution

    system.

    –do

    affect

    nonlinearterm

    sof

    evolutioneqs/constraint

    evolutioneqs.