adcancements in solid acid

Upload: brekb-mndz-mjia

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Adcancements in Solid Acid

    1/24

    Correspondence to: Yogesh C. Sharma, Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India.

    E-mail: [email protected]

     © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd

    Review

    69

     Advancements in solid acid

    catalysts for ecofriendly andeconomically viable synthesis

    of biodiesel

     Yogesh C. Sharma and Bhaskar Singh, Banaras Hindu University, Varanasi, India, John Korstad, Oral Roberts

    University, Tulsa, OK, USA 

    Received July 27, 2010; revised version received August 27, 2010; accepted September 9, 2010

     View online at Wiley Online Library (wileyonlinelibrary.com); DOI: 10.1002/bbb.253;

     Biofuels, Bioprod. Bioref. 5:69–92 (2011)

     Abstract: Solid acid (heterogeneous) catalysts have a unique advantage in esterification and transesterification reac-

    tions which enhances the use of high acid value oil to be used as feedstock for synthesis of biodiesel. Various solid

    acid catalysts such as resins, tungstated and sulfated zirconia, polyaniline sulfate, heteropolyacid, metal complexes,

    sulfated tin oxide, zeolite, acidic ionic liquid, and others have been explored as potential heterogeneous catalysts.

    The activity of the catalyst differs slightly resulting in moderate to high conversion and yield. The reuse of the solidcatalyst is governed by their deactivation, poisoning, and the extent of leaching in the reaction medium. The applica-

    bility of these catalysts for synthesis of biodiesel along with their reusability aspect is discussed in this review.

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd

    Keywords: solid acid catalysts; calcinations; activity; leaching; reuse; biofuels

    Introduction

    D

    evelopment o heterogeneous catalysts has been a

    relatively recent area o research in the synthesis o

    biodiesel. Te need or development o heterogene-

    ous catalysts has arisen rom the act that homogeneous cat-

    alysts used or biodiesel development pose a ew drawbacks.

    Tese drawbacks include washing o biodiesel with water

    to remove the catalyst present which results in wastewater

    generation and loss o biodiesel as a result o water washing.

    Heterogeneous catalysts have the benet o easy separation

    rom the product ormed without requirement o wash-

    ing. Reusability o the catalyst is another advantage o the

    heterogeneous catalyst.Heterogeneous catalysts are categorized as solid acid and

    solid base. Solid base catalysts include a wide group o com-

    pounds in the category o alkaline earth meta l hydroxides,

    hydrotalcites/layered double hydroxides, alumina loaded

    with various compounds, zeolites, and various other com-

    pounds showing high basicity coupled with active basic

  • 8/18/2019 Adcancements in Solid Acid

    2/2470 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

    sites, pore size, and other parameters. Solid base catalysts

    have been quite successul with high conversion and yield o

    biodiesel obtained. However, they are sensitive to the pres-

    ence o ree atty acids and thus solid acids have a preerence

    over solid base catalysts. Excellent review papers on solid

    catalysts are available.1–6 Tis review ocuses exclusively

    on solid acid catalysts as potential heterogeneous catalysts

    or biodiesel synthesis applied in recent publications. Solid

    acid catalysts have been used in various industrial applica-

    tions. Te solid acid catalysts differ in acidity, surace area,

    mechanical resistance, thermal and hydrothermal stability,

    and cost o production. Hence, a catalyst may be chosen

    on the requirements needed or synthesis o a compound.

    Nevertheless, they indeed are good alternates to the homo-

    geneous catalysts such as H2SO4 and HF.5 Heterogeneous

    solid acid catalysts can simultaneously catalyze esterica-

    tion and transesterication reactions.6 Tus, the application

    o such catalysts, which are effi cient in both o these reac-

    tions, is preerable as most non-edible oil and waste cooking

    oil possesses high acid value that cannot undergo alka line

    transesterication without reduction in acid value. In such

    eedstock with high acid value, biodiesel synthesis becomes a

    two-step process with acid esterication reaction ollowed by

    alkaline transesterication. In addition to their easy removal

    and reusability, solid acid catalysts do not cause corrosionas ound with common acid homogeneous catalysts, such as

    suluric acid. As the heterogeneous catalysts are insoluble

    in the oil and methanol phase, they require high tempera-

    ture or an optimum yield o biodiesel. Te application o

    heterogeneous catalysts or production o biodiesel in the

    industrial perspective warrants or minimal energy require-

    ment. Tis can be achieved i the heterogeneous catalysts are

    prepared easily and need moderate reaction conditions. Te

    leaching aspect is another important criterion that governs

    the suitability o a particular catalyst. Hence, there is a needor development o heterogeneous catalysts that can produce

    biodiesel at conditions (e.g. temperature and pressure) com-

    parable to that used in homogeneous catalysis.7 Tis review

    deals with the recent publications dealing with catalyst

    preparation, operating reaction conditions, reusability, and

    easibility o the catalyst.

    Solid base catalysts have higher catalytic perormance or

    transesterication than solid acid. However, the latter is

    preerred over the ormer because o simultaneous esterica-

    tion and transesterication or eedstock possessing high

    acid value.8

    Solid acid catalyst

    In general, a catalyst that is to be used or synthesis o

    biodiesel should be selective, specic, and result in esteri-

    cation/transesterication with high conversion and yield o

    biodiesel. A solid acid catalyst should posses high stability,

    numerous strong acid sites, large pores, a hydrophobic sur-

    ace providing a avorable condition or reaction, and should

    also be economically viable.

    Resins and membranes

    Ion-exchange resins are composed o copolymers o divinyl-

    benzene, styrene, and sulonic acid groups grafed on ben-

    zene. Teir catalytic activity depends strongly on swelling

    properties as swelling capacity controls the reactant’s acces-

    sibility to the acid sites and hence their overall reactivity.

    Ion-exchange resins have ofen been used or esterication

    as well as t ransesterication reactions. Tese ion-exchange

    resins have a cross-linked polymeric matrix on which the

    active sites or the esterication reaction are due to protons

    bonded to sulonic groups.9 Te surace area and pore size

    distribution o the resin is characterized by the content othe cross-linking component. Lower cross-linking is known

    to cause higher swelling o ion-exchange resins. Swelling

    capacity, in turn, controls the reactant’s accessibility to the

    acid sites and thereby their total reactivity. Even with a low

    swelling capacity, the ion-exchange resin has higher pore

    diameter which can let the entrance o ree atty acids (FFAs)

    to the inner surace o the catalyst leading to a better esteri-

    cation reaction.

    Cation exchange resins (NKC-9, 001 × 7 and D61) were

    tried by Feng et al.10

     and ound to be effective in esterica-tion o high acid value (13.7 mg KOH/g) eedstock o waste

    cooking oil (WCO) origin. NKC-9 had high water-adsorbing

    capacity avoring its role in effective esterication. A high

    average pore diameter o NKC-9 was helpul or reactants to

    access the active sites o the resin resulting in greater than

    90% conversion. Te reaction conditions were 6:1 (alcohol

    to oil) molar ratio, 24 wt% o the catalyst at 64oC or 4 h

    o reaction time. Te catalyst NKC-9 urther reused up to

  • 8/18/2019 Adcancements in Solid Acid

    3/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   71

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

    10 runs. Te activity o the catalyst in subsequent reuse

    did not deteriorate, but rather it was enhanced. Tis has

    been attributed to the breakdown o the resin particles by

    mechanical agitation, which increased the surace area o

    the resin. Afer 10 runs, there was loss o the catalyst dur-

    ing separation which ultimately decreased the ree atty acid

    (FFA) conversion, so new resin was added. Kitakawa et al .11 

    tried anion-exchange and cat ion-exchange resins as hetero-

    geneous catalysts or batch and continuous transesterica-

    tion reaction o triolein in an expanded bed reactor and

    ound anion-exchange resin to perorm better than the cat-

    ion-exchange resin. Te reason attributed to better perorm-

    ance o anion-exchange resin was the higher adsorption

    affi nity o alcohol on resin rather than tr iolein. Te lower

    cross-linking density and smal ler particle size played more

    signicant roles in enhancing the react ion rate than porosity

    and caused high reaction and high conversion rates. A high

    conversion o 98.8% was achieved with t he optimized reac-

    tion conditions. Te catalytic activ ity decreased in the sub-

    sequent run due to leaking o hydroxyl ions rom the resin.

    A three-step regeneration method was adopted or the reuse

    o the catalyst, and or our runs similar activity o the cata-

    lyst was achieved. Ozbay et al .12 observed high average pore

    diameter with high BE (Brunauer, Emmett, and eller)

    surace area to be more effective than high swelling (lowcross-linking level) o ion-exchange resin (Amberlyst-15) in

    esterication reaction with waste cooking oil as eedstock.

    High pore diameter enabled the ree atty acid molecules

    to enter the inner surace o the catalyst and enhance the

    esterication rate. Although moderate conditions (60oC and

    2% catalyst) were suffi cient or the reaction, the conversion

    o FFA to biodiesel was low (45.7%). Tis low conversion is a

    limitation o the study and urther enhancement o the reac-

    tion conditions is warranted or the easibility o the catalyst

    or esterication reaction.Gelular and microporous type ion-exchange resins (EBD

    100, EBD 200, EBD 300) were studied by Russbueldt and

    Hoelderich13 and ound to be successul or conversion o

    high FFA oil to biodiesel. Te catalysts used were EBD-

    100 (with gelular polymer matrix), EBD-200 and EBD-300

    (microporous resins), and Amberlyst-15. Te low cross-

    linking in EBD-100 caused high methanol uptake which

    increased the catalyst volume 4.8 times by swelling in

    methanol. Te other resins (EBD-200 and EBD-300) had

    lower methanol uptake than EBD-100. 100% conversion

    was obtained by EBD-100 and EBD-200 catalysts. With

    EBD-300, 81% conversion was obtained. Te act ivity o the

    catalysts decreased in subsequent runs and to almost negli-

    gible in the ourth run. Te possible reason or deactivation

    was attributed to the presence o salt contaminants in the

    sunower oil which blocked the acid sites. Tus, desalting

    the eedstock has been suggested as precursor or the

    transesterication o the eedstock with ion-exchange resin

    catalysts. Addition o small amounts o water was ound

    to have only little inuence on the completion o the reac-

    tion as water was trapped in the methanol phase, and not

    on the methyl ester in the oil phase, which maintained high

    conversion o eedstock to biodiesel.13 A cation-exchange

    resin (D002) has been shown to effectively catalyze rapeseed

    oil deodorizer distillate o high FFA value o 48.80 ± 1.46

    wt% corresponding to acid value o 97.61 ± 1.87 mg KOH/g.

    A high yield o 96% was obtained by 18 wt% catalyst at 9:1

    alcohol to oil (A:O) molar ratio at 60oC or 4 h in a column

    reactor. Te catalyst was reused effectively or 10 cycles with

    a yield greater than 88%.14 

    A solid acid catalyst, poly vinyl alcohol (PVA) cross-linked

    with sulosuccinic acid possessing sulonic acid groups or

    transesterication o soybean oil, was ound to be effi cientand superior to commercial resins such as Naon membr-

    anes and Dowex resins. Higher content o sulonic groups led

    to better perormance by the PVA polymer cross-linked with

    sulosuccinic acid. Better catalytic activity o PVA has also

    been attributed to high swelling capability o PVA in oil and

    less in methanol. Due to this, oil concentration was ound to

    be more with PVA than with Naon, resulting in higher cata-

    lytic activity with PVA as catalyst. Te reverse happened with

    Naon membrane as catalyst, where swelling was observed

    in methanol but not in soybean oil. Swelling o Naon mem-brane in methanol made the catalyst lipophobic, resulting

    in a low reaction rate.15 Dowex monosphere 550 resin has

    been effective or esterication and transesterication o oils

    with higher FFA content. A conversion o 80% was obtained

    at approximately 6:1 A:O molar ratio, 2 wt% catalyst, 45oC,

    and 200 rpm stirring. Regeneration o the catalysts afer each

    experiment was desired because the conversion was reduced

    to 25% afer the rst run. However, a leaching study o the

  • 8/18/2019 Adcancements in Solid Acid

    4/2472 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

    catalyst wasn’t conducted, which could have provided an

    insight into the heterogeneity o the catalyst.16 

    Te effect o water on the esterication o FFA by solid acid

    catalyst has been studied by Park et al .17 Amberlyst-15 was

    ound to be poisoned by the presence o water in the reaction

    medium and its activity was substantially reduced in com-

    parison to the homogeneous suluric acid catalyst. Te pres-

    ence o water resulted in poor accessibility o reactants to

    the acid sites. Tis was overcome by a two-step esterication

    process (addition o resh methanol and cata lyst to the reac-

    tants in the second step), which increased the react ion rate

    and reduced the reaction time. In the case o H2SO4, pres-

    ence o water up to 5 wt% was ound to be tolerable when the

    methanol to oil ratio was 6:1.

    Te synthesis o biodiesel rom silica unctionalized with

    4-ethyl-benzene sulonic acid catalyst was carried out by

    Aiba-Rubio et al.18 Leaching was ound to be predominant

    in the rst run and slowed down in subsequent runs. A high

    temperature o 150oC deterred regeneration o the catalyst

    or reuse as the organosulonic acid sites were ound to be

    combusted. A signicant difference in the activity o the

    catalyst was observed between the rst and second runs,

    whereas the reaction rate was ound to be similar or the

    second, third, and ourth runs, which suggested that deac-

    tivation o the catalyst occurred in the rst run. All o theproducts and reactants in general, and glycerol in particular,

    were responsible or leaching o the catalyst. Tis leaching

    was dominant in the rst run which has been attributed

    either to the loss o active acid sites or activity o acid sites

    in ormation o deactivating organic species. Tus, regen-

    eration o the catalyst isn’t possible because the organosul-

    onic group will be combusted. Ion-exchange resins have

    also ound their applicability in purication o biodiesel

    when a homogeneous catalyst, sodium methoxide, was

    used. Although the ion-exchange resin wasn’t so effi cient inremoval o methanol, it brought the glycerol level to the EN

    14214 specication.19 able 1 depicts the reaction conditions

    o resins and membranes used as heterogeneous catalysts.

    Superacid catalysts (Tungstated and sulfated

    zirconia)

    Acids that are stronger than Ho = –12 corresponding to

    the acid strength o 100% H2SO4 are called ‘super acids’.

    Common super acids include HF (a Brønsted acid) and BF3 

    (a Lewis acid).20 Zirconia has shown catalytic activity, and

    also a good support or catalysts, owing to its high thermal

    stability, stability under oxidizing and reducing conditions,

    and the amphoteric character o its surace hydroxyl groups.

    Sulated zirconia and tungstated zirconia are examples o

    solid super acids and exhibited high catalytic activities

    because o active acid sites.21 ungstated zirconia–alumina

    (WZA), sulated tin oxide (SO4/SnO2; SO), and sulated

    zirconia–alumina (SZA) were tried as solid super acid cata-

    lysts or transesterication o soybean oil and esterication

    o n-octanoic acid. More than 90% conversion during trans-

    esterication was obtained at a temperature o 250oC with

    WZA, with soybean oil as eedstock. During esterication o

    n-octanoic acid, the catalysts WZA, SZA and SO showed

    94, 99, and 100% conversion at 175oC. Conversion o WZA

    and SZA catalyst urther increased to 100% at 200oC.22 

    Various solid acid catalysts such as Amberlyst-15, Naon-50,

    supported phosphoric acid, sulated zirconia (SZ), tungstated

    zirconia (WZ), zeolite Hβ, and ES-10 H, along with solid

    base catalysts, were compared with that o conventional

    homogeneous acid and base catalysts or transesterica-

    tion o triacetin by Lopez et al .23 o obtain 50% conversion

    with the solid acid catalysts, a large variance in time was

    recorded. While only 10 min was needed or 50% conversiono triacetin, the times needed by the solid acid catalysts were

    150, 330, 538, and 2047 min or Amberlyst-15, SZ, Naon-50,

    and WZ, respectively. Te catalysts showed decrease in

    triacetin conversion (40–67%) afer ve reaction cycles o 2 h

    each. Te concentration o the species related to active sites

    showed 80–95% o the original values and hence the cause

    o deactivation was attributed to site blockage by adsorption

    o intermediates and/or products ormed that are more polar

    than the original reactants.

    Esterication o acetic acid and transesterication otriacetin by tungstated zirconia (WZ) were perormed by

    Lopez et al .24 Te effect o calcination temperature on the

    experiments and the nature o active sites or esterication

    and transesterication reaction were observed. When cal-

    cined at 400oC, the X-ray diffractogram showed the catalyst

    to possess amorphous structure and small crystallites o

    tetragonal zirconia. At high ca lcination temperature (500–

    800oC), the catalyst was comprised primari ly o tetragonal

  • 8/18/2019 Adcancements in Solid Acid

    5/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   73

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

    phase o zirconia. At ≥800oC calcination temperature, crys-

    talline WO3 particles were ormed. Increase in calcination

    temperature resulted in loss o total surace area o the cata-

    lyst which was due to loss o surace area o ZrO2 structure.

    Tis resulted in transormation o tungsten oxide rom mon-

    omeric to polymeric species. Calcination temperature was

    ound to strongly inuence activity o the catalyst or both

    the esterication and transesterication reactions, with the

    optimum at 800oC. Loss o catalytic activity occurred due to

    disappearance o heteropolyoxotungstate clusters, suggest-

    ing it to be the catalyst active site.

    Calcination temperature plays an important role in the

    activation o the solid acid catalyst. A pioneering work on

    this aspect has been done by Kiss et al .25 where calcination

    temperature o 600–700oC has been ound to be optimum

    or sulated zirconia catalyst or esterication o atty acids.

    Modied zirconias, namely titania zirconia (iZ), SZ, and

    WZ, have been used as heterogeneous catalysts or simul-

    taneous esterication and transesterication by López

    et al .26 Te optimum calcination temperature was ound to

    be different or the three modied zirconias. Te optimum

    calcination temperature was ound to be 500oC or SZ and

    400–500oC or iZ. emperature higher than this results in

    sulur loss, which decreases the catalyst’s surace area and

    ultimately loss o its activity. Presence o sulate ions stabi-lizes the zirconia structure and increases the surace area.

    O the three catalysts, WZ showed better activity over SZ

    because o the easy generation o the ormer in the xed bed

    reactor. Also, SZ will have to be re-impregnated with H2SO4 

    or its regeneration which could lead to leaching o sulur

    and may be a hindrance in the production o biodiesel. iZ,

    although suitable or transesterication, was not ound to be

    suitable or esterication because o poisoning o its active

    basic sites by carboxylic acids and hence has been reported

    to be unsuitable or higher acid value eedstocks.Zirconia-supported isopoly tungstate (WO3/ZrO2) was

    prepared by impregnation o ammonium metatungstate, and

    was used or transesterication o sunower oil. Another

    catalyst, zirconia-supported heteropoly tungstate was pre-

    pared by the impregnation o silicotungstic acid and phos-

    photungstic acid on zirconium oxyhydroxide. Te activity

    o zirconia-supported isopoly tungstate was better than

    zirconia-supported heteropoly tungstate. WO3/ZrO2 catalyst

    calcined at 750oC gave 97% conversion o the eedstock to

    biodiesel at 200oC with 15:1 methanol to oil molar ratio.

    Te catalyst was reused successully afer separating and

    calcined at 500oC or 3 h in air. Te catalyst was also used

    to convert sesame and mustard oil to biodiesel, where con-

     version o 93% and 95%, respectively, were obtained. Afer

    removal rom the solution o methanol, the catalyst showed

    minor conversion o 7% and displayed potential prospect as

    a heterogeneous catalyst.27 

    WO3/ZrO2 was pelletized and used in packed-bed continu-

    ous reactor by Park et al.28 or conversion o high FFA eed-

    stock. Hexane and biodiesel were ound to be good solvents

    to enhance the miscibility o the oil and methanol, resulting

    in yield o 65% in 1 h but took substantial time (20 h) to rise

    to 85%. However, the conversion decreased thereafer to 65%

    when the reaction time was increased to 140 h. Te reason

    attributed to this decreased yield with reaction time is the

    deposition o soybean oil on the particles o the catalyst and

    reduction o WO3 by the eedstock oleic acid. Te catalytic

    activity was restored by calcination in air. Pelletized catalyst

    resulted in less FFA conversion compared to that rom the

    powdered catalyst due to reduced BE surace area and pore

    size distribution. Te conversion o 65% was maintained or

    140 h. Although Park et al.28 advocate packed-bed reactor or

    large scale production o biodiesel using pelletized catalyst,a low yield in comparison to powdered orm deems urther

     justication. Leaching o SZ and impact o alcohol on its

    deactivation at higher temperature was carr ied out to see its

    potential as a heterogeneous catalyst by Suwannakarn et al.29 

    It was ound that at 100oC almost 70% o the sulate ion

    in the orm o sul uric acid was leached rom the solution,

    exhibiting homogeneous nature o the catalyst. Te ability

    o the sulate to leach rom sulated zirconia was attributed

    to the presence o –OH groups in the alcohol. Suluric acid

    reacted with alcohol to orm monoalkyl hydrogen sulateand dialkyl sulate.

    Sulated zirconia catalysts were prepared using different

    methods (such as solvent-ree precipitation) by Garcia et al .30 

    to examine their act ivity as heterogeneous catalysts. Only SZ

    prepared by solvent-ree method gave an effi cient conversion

    (98.6% in methanol and 92% in ethanol) o soybean oil to

    biodiesel in 1 h reaction time at 120oC. Tis has been attrib-

    uted to the high quantity o acid sites. Low conversion with

  • 8/18/2019 Adcancements in Solid Acid

    6/2474 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

       T  a   b   l  e   1 .   R  e  s   i  n  s  a  n   d  m  e  m   b  r  a  n  e  s  a  s   h  e   t  e  r  o  g  e  n  e  o  u  s  c  a   t  a   l  y  s   t  s

     .

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k ,

       A  c   i   d  v  a   l  u  e

       M  e   t   h  o   d  o   f

      p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a

       t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r  r  a   t   i  o

       (  a   l  c  o   h  o   l

       t  o  o   i   l   )

       R

      e  a  c   t   i  o  n

       t   i  m  e   (   h   )  ;

       t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

       Z  e  o   l   i   t  e ,   I  o  n  -

      e  x  c   h  a  n  g  e  r  e  s   i  n ,

       M  e   t  a   l  o  x   i   d  e  s

       (  s  u   l   f  a   t  e   d

      z   i  r  c  o  n   i  a   )

       D  o   d  e  c  a  n  o   i  c  a  c   i   d

       S  u   l   f  a   t  e   d  z   i  r  c  o  n   i  a  c  a   t  a  -

       l  y  s   t  :   5   0  g   Z  r   O   C   l   2 .   8   H   2   O

      w  a  s   d   i  s  s  o   l  v  e   d   i  n

       5   0   0  m   l  w  a   t  e  r   f  o   l   l  o  w  e   d

       b  y  p  r  e  c   i  p   i   t  a   t   i  o  n  o   f  z   i  r  -

      c  o  n   i  u  m   h  y   d  r  o  x   i   d  e  a   t

      p   H  =   9  u  s   i  n  g  a  m  m  o  n   i  a

      s  o   l  u   t   i  o  n .   Z  r   (   O   H   )   4  w  a  s

      w  a  s   h  e   d  w   i   t   h  w  a   t  e  r

       t  o  r  e  m  o  v  e   C   l  –    i  o  n  s .

       Z  r   (   O   H   )   4  w  a  s   d  r   i  e   d   1   6   h

      a   t   1   2   0  o   C  a  n   d   i  m  p  r  e  g  -

      n  a   t  e   d  w   i   t   h   1   N   H   2   S   O   4

      a  n   d  c  a   l  c   i  n  e   d   i  n  a   i  r

       S  u   l   f  a   t  e   d  z   i  r  c  o  n   i  a

      c  a   t  a   l  y  s   t  :   S  u  r   f  a  c

      e

      a  r  e  a  =   1   1   8  m

       2  g

      –   1 

       S  p  e  c   i   fi  c  p  o  r  e  v  o   l  u  m  e

      =   0 .   0   9   9  c  m

       3  g  –

       1 

       A  v  e  r  a  g  e  p  o  r  e  s   i  z  e  =

       3 .   0  n  m

       6   5   0 ,   3

       3  :   1

       1 ,   1   4   0  –   1   8   0

       3 .   0

       C  =   9   6

       4

       A  m   b  e  r   l  y  s   t   1   5 ,

       1   6  ;   R  e   l   i   t  e   C   F   S

       S  o  y   b  e  a  n

       R  e  s   i  n  s  w  e  r  e   d  r   i  e   d   i  n  a

      v  e  n   t   i   l  a   t  e   d  o  v  e  n   f  o  r   2   4   h

      a   t   1   0   0  o   C

       N  o   t   d  o  n  e

       N  o   t   d  o  n  e

       8  :   1

       3   0  m   i  n ,   1   2   0

       5  g

       C  =   9   5

       9

       W  a  s   t  e   f  a   t   t  y  a  c   i   d  s

       (   O   l  e   i  n  s   ) ,   5   0   % 

       A  c   i   d   i   t  y

       C  a   t   i  o  n  -

      e  x  c   h  a  n  g  e  r  e  s   i  n

       (   N   K   C  -   9 ,   0   0   1

      ×   7 ,  a  n   d   D   6   1   )

       W  a  s   t  e   f  r   i  e   d  o   i   l ,

       1   3 .   7  m  g   K   O   H   /  g

       N   K   C  -   9  w  a  s  w  a  s   h  e   d

      w   i   t   h   d  e   i  o  n   i  z  e   d  w  a   t  e  r

      a  n   d   t  r  a  n  s   f  o  r  m  e   d  w   i   t   h   1

       M   H   C   l .

       S  u  r   f  a  c  e  a  r  e  a  =

       7   7

      m   2   /  g   A  v  e  r  a  g  e  p

      o  r  e

       d   i  a  m  e   t  e  r  =

       5   6  n  m

       N  o   t   d  o  n  e

       6  :   1

       4 ,   6   4

       2   0

       C  =   9   0

       1   0

       A  n   i  o  n   /  c  a   t   i  o  n  -

      e  x  c   h  a  n  g  e  r  e  s   i  n

       T  r   i  o   l  e   i  n   (   6   3   % 

      p  u  r   i   t  y   )  ;   R  e  s   t  p  a  r   t

       (   3   7   %   w  a  s   i  m  p  u  -

      r   i   t  y   &  u  n  r  e  a  c   t   i  v  e   )

       A  n   i  o  n   i  c  e  x  c   h  a  n  g  e  r  e  s   i  n

       i  n  c   h   l  o  r   i   d  e   f  o  r  m  w  a  s

      m   i  x  e   d  w   i   t   h   1   M   N  a   O   H

       t  o   d   i  s  p   l  a  c  e  c   h   l  o  r   i   d  e

       i  o  n  s  w   i   t   h   h  y   d  r  o  x  y   l   i  o  n  s .

       N  o   t  r  e  p  o  r   t  e   d

       N  o   t   d  o  n  e

       1   0  :   1

       4 ,   5   0

       4   0   (   i .  e .

       4  g   )

       C  =   9   8 .   8

       1   1

       A  c   i   d   i  c   i  o  n  -

      e  x  c   h  a  n  g  e  r  e  s   i  n

       (   A  m   b  e  r   l  y  s   t   &

       D  o  w  e  x   )

       W  a  s   t  e  c  o  o   k   i  n  g  o   i   l

       A  c   i   d   i   t  y  =   0 .   4   1  –

       0 .   4   7  w   t   %   )

       A  m   b  e  r   l  y  s   t   &   D  o  w  e  x

      r  e  s   i  n  s  w  e  r  e   d  r   i  e   d   i  n

      a  n  o  v  e  n   f  o  r   1   2   h  a   f   t  e  r

      m  e   t   h  a  n  o   l  w  a  s   h   i  n  g .

       A  m   b  e  r   l  y  s   t   (   A  -   1   5   )

       S  u  r   f  a  c  e  a  r  e  a  =   5   3  m

       2   /  g

       A  v  e  r  a  g  e  p  o  r  e   d

       i  a  m  -

      e   t  e  r  =   3   0  n  m

       P  o  r  o  s   i   t  y  =   3   3   %

       N  o   t   d  o  n  e

       2   0

      v  o   l   %

       1   0   0  m   i  n ,   6   0

       2 .   0

       C  =   4   5 .   7

       1   2

       R  e  s   i  n   i   )   G  e   l  u   l  a  r

       E   B   D   1   0   0   i   i   )

       M  a  c  r  o  p  o  r  o  u  s

       (   E   B   D   2   0   0

       E   B   D   3   0   0   )   i   i   i   )

       A  m   b  e  r   l  y  s   t  -   1   5

       S  u  n   fl  o  w  e  r   0 .   6   % 

       F   F   A

       R  e  s   i  n  w  a  s   d  r   i  e   d   b  y

      w  a  s   h   i  n  g   t   h  r   i  c  e  w   i   t   h

      w   i   t   h   1   0   0  m   l  m  e   t   h  a  n  o   l

       f  o  r   1   h   b  e   f  o  r  e  u  s  e .

       M   i  c  r  o  p  o  r  e  s   i  z  e

      =

       1  n  m   M  a  c  r  o  p  o  r  e  s   i  z  e

      =   1   0   0  n  m   I  n  n  e  r

      s  u  r  -

       f  a  c  e  a  r  e  a  =   4   0  m

       2   /  g

       S  p   h  e  r   i  c  a   l  p  a  r   t   i  c

       l  e  o   f

      s   i  z  e   0 .   5  m  m   d   i  a

      m  e   t  e  r

       N  o   t   d  o  n  e

       N  o   t

      m  e  n   t   i  o  n  e   d

       2   4 ,   1   2   0

       1 .   0

       C  =   1   0   0

       1   3

       R  a  p  e  s  e  e   d   0 .   6   % 

       F   F   A

       U  s  e   d   f  r  y   i  n  g  o   i   l  s

       1   5 .   7   %    F

       F   A

  • 8/18/2019 Adcancements in Solid Acid

    7/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   75

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

       C  a   t   i  o  n  -

      e  x  c   h  a  n  g  e  r  e  s   i  n

       (   D   0   0   2 ,   0   0   2   C   R ,

       7   3   2   )

       R  a  p  e  s  e  e   d  o   i   l   d  e  o  -

       d  o  r   i  z  e  r   d   i  s   t   i   l   l  a   t  e ,

       4   8 .   8   0  ±   1 .   4   6  w   t   %

     

       F   F   A

       T   h  e  e  x  p  e  r   i  m  e  n   t  a   l  r  e  s   i  n

      w  a  s   i  m  m  e  r  s  e   d   i  n   5   % 

       H   C   l  -  e   t   h  a  n  o   l  m   i  x   t  u  r  e

      s  o   l  v  e  n   t   f  o  r   3   0  m   i  n .  a  n   d

      e   l  u   t  e   d  w   i   t   h  e   t   h  a  n  o   l

      u  n   t   i   l  n  e  u   t  r  a   l  p   H  a  n   d

       d  r   i  e   d   i  n  a  n  o  v  e  n  a   t

       7   0  o   C   f  o  r   2   h

       D   0   0   2   P  a  r   t   i  c   l  e  s

       i  z  e  =

       0 .   0   5  m  m ,   C  r  o  s  s   l   i  n   k  -

       i  n  g   d  e  n  s   i   t  y  =   3   2   %

       N  o   t   d  o  n  e

       9  :   1

       4 ,   6   0

       1   8 .   0

       Y  =   9   6

       1   4

       0   0   2   C   R   P  a  r   t   i  c   l  e

      s   i  z  e

      =   1 .   2   5  m  m ,   C  r  o

      s  s

       l   i  n   k   i  n  g   d  e  n  s   i   t  y  =

       3   8   %

       7   3   2   P  a  r   t   i  c   l  e  s   i  z

      e

      =   1 .   0   2  m  m ,   C  r  o

      s  s

       l   i  n   k   i  n  g   d  e  n  s   i   t  y  =   3   5

      ±   1   %

       P   V   A   5 ,   P   V   A   2   0 ,

       P   V   A   S   S   2   0  :

      c  r  o  s  s   l   i  n   k  e   d

      w   i   t   h  s  u   l   f  o  s  u  c  -

      c   i  n   i  c  a  c   i   d

       S  o  y   b  e  a  n  o   i   l

       P   V   A   S   S   2   0  m  e  m   b  r  a  n  e

      w  a  s  p  r  e  p  a  r  e   d   b  y

      e  s   t  e  r   i   fi  c  a   t   i  o  n  o   f   5  -  s  u   l  -

       f  o  s  a   l   i  c   i   l   i  c  a  c   i   d  o  n   t   h  e

      r  e  m  a   i  n   i  n  g   h  y   d  r  o  x  y   l

      g  r  o  u  p  o   f  a  c  r  o  s  s  -   l   i  n   k  e   d

       P   V   A  m  a   t  r   i  x

       P   V   A   S   S   2   0   T   h   i  c

       k  n  e  s  s

      =   0 .   1   4  m  m

       S  w  e   l   l   i  n  g   (   %   )   i  n

      m  e   t   h  a  n  o   l  =   1   8 .

       9

       N  o   t   d  o  n  e

       N  o   t

      m  e  n   t   i  o  n  e   d

      – ,   6   0

       N  o   t

      m  e  n   t   i  o  n  e   d

       N  o   t

      m  e  n   t   i  o  n  e   d

       1   5

       D  o  w  e  x  m  o  n  o  -

      s  p   h  e  r  e   5   5   0   A

       I   d  e  a   l   f  r  y   i  n  g  o   i   l

       (   1   0   %    O

       l  e   i  c  a  c   i   d   )

       F   F   A  =   1   0 .   6   8   4   %

       N  o   t   d  o  n  e

       N  o   t   d  o  n  e

       N  o   t   d  o  n  e

       6 .   1   2   8  :   1

       2 ,   4   5

       2 .   2   6   7

      w   t   %

       C  =   8   0

       1   6

       S  o  y   b  e  a  n  o   i   l

       S   i   l   i  c  a   f  u  n  c  -

       t   i  o  n  a   l   i  z  e   d  w   i   t   h

       4  -  e   t   h  y   l  -   b  e  n  -

      z  e  n  e  s  u   l   f  o  n   i  c

      g  r  o  u  p  s

       S  u  n   fl  o  w  e  r

       C  o  m  m  e  r  c   i  a   l  g  r  a   d  e

       P  a  r   t   i  c   l  e  s   i  z  e  =   4   0  –   6   3

      µ  m

       N  o   t   d  o  n  e

       6  :   1

       5 ,   1   5   0

       1 .   5  w   t   %

       Y  =   6   0

       1   8

       T  a   b   l  e   1 .   C  o  n   t   i  n  u  e   d

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k ,

       A  c   i   d  v  a   l  u  e

       M  e   t   h  o   d  o   f

      p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a

       t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r  r  a   t   i  o

       (  a   l  c  o   h  o   l

       t  o  o   i   l   )

       R

      e  a  c   t   i  o  n

       t   i  m  e   (   h   )  ;

       t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

  • 8/18/2019 Adcancements in Solid Acid

    8/2476 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

    ethanol has been attributed to the presence o 0.44% water

    in ethanol compared to 0.08% in methanol. Conversion

    with ethanol urther increased to 96% when reaction was

    carried out or 6.5 h. However, the limitation observed with

    SZ was leaching o sulate ions which resulted in signicant

    deactivation o the catalyst when reused. No conversion was

    obtained with conventional zirconia, whereas standard sul-

    ated zirconia prepared by precipitation and impregnation

    method gave a poor conversion o only 8.5 ± 3.8% under the

    same conditions.

    Lou et al.31 reported on sulated zirconia and niobic acid

    (Nb2O5.nH2O) used as catalysts or esterication and trans-

    esterication o waste cooking oils with high (27.8 wt%) FFA

    content to give a low yield o 44 and 16%, respectively, in

    14 h reaction time. WO3/ZrO2, SO42–/ZrO2, and Amberlyst

    15 were used as heterogeneous catalysts by Park et al.,32 with

    all catalysts giving 93% conversion o FFA-bearing used

    cooking oil. However, SO42– was leached in the reaction

    medium using SO42–/ZrO2 as catalyst, lessening its applica-

    tion as a catalyst. Among the three catalysts, 20 wt% WO3/

    ZrO2 showed high catalytic activity and structura l stability.

    WOx/ZrO2 in nanoparticle size supported on MCM-41 silica

    exhibited acidic properties and was ound to be suitable or

    esterication o oleic acid. 100% conversion was obtained

    with WO3 loading o 15–20 wt% afer activation at 700oC.Te catalyst was ound to be stable even afer being operated

    at 200oC and was reusable or our cycles without leaching o

    tungsten. However, the reaction conditions were a problem.

    A high molar ratio o 67:1 A:O or 24 h reaction time and

    18.7 wt% o catalyst at 65oC was needed or completion o

    the reaction. High amount o methanol and high reaction

    time increases the overall production cost o biodiesel.33 A

    similar loading o WO3 on ZrO2 (i.e. 20 wt%) was observed

    to be optimum or 96% FFA conversion rom waste acid oil

    by Park et al .34

     under optimized reaction conditions, whichincluded 9:1 A:O molar ratio, 0.4 g o catalyst/ml o oil, at

    150oC or 2 h. Although tungsten leached in the reaction, the

    catalytic activity was unaffected.

    Te catalytic activity and stability o sulated zirconia and

    sulated titanium oxide were improved by addition o lanth-

    anum.35 SO42–/ZrO2–iO2/La

    3+ prepared by precipitation

    and impregnation method or synthesis o biodiesel showed

    95% conversion effi ciency and decreased to only 5% even

    afer ve runs. Loading lanthanum on the surace o ZrO2–

    iO2 changed the chemical state o exterior atom and also

    strengthened the interaction o SO42– with ZrO2–iO2. Te

    catalyst was observed to be stable or the purpose o its reuse

    and its activity was ound to be better than SO42–/ZrO2–iO2 

    catalyst. Li et al.36–37 observed the same SO42–/ZrO2–iO2/

    La3+ to work effectively or soapstock as eedstock. Te con-

     version effi ciency o esterication and transesterication was

    ound to be 98.02 and 97.25% respectively, under moderate

    reaction conditions. Te catalyst SO42–/ZrO2–iO2/La

    3+ 

    was also observed to be effective or simultaneous esterica-

    tion and transesterication o oil containing 60 wt% FFAs.

    Te catalyst developed was reused or ve times without

    any treatment and the yield observed afer ve cycles was

    90.20 wt%, which is near the 92.8% yield obtained afer the

    rst cycle. Kansedo et al .38 prepared biodiesel rom Cerbera

    odollam using sulated zirconia catalyst. Although optimi-

    zation o variables affecting the reaction was not taken in

    account, a high yield o 83.8% was obtained.

    A carbon-based solid acid catalyst was prepared by Shu

    et al .39 by carbonizing vegetable oil asphalt and petroleum

    asphalt. Te high catalytic activity observed owing to its

    high density and stabil ity o acid sites, loose irregular net-

    work, and the hydrophobic property o its carbon sheets

    that prevented the hydration o –OH groups in the pres-ence o water. Te low surace area o 7.48 m2 g–1 was an

    indication that –SO3H groups were in the interior o the

    catalyst. Te large pores size o 43.90 nm was helpul or

    the reactants to diffuse into the interior o the catalyst.

    Increased catalytic activity was observed or the second

    run and decreased subsequently in the third run. Increase

    in catalytic activity has been attributed to swelling o the

    catalyst in the presence o swelling agent. Te leaching o

    –SO3H groups was the cause o decreased catalytic activity

    in the third run. Leaching o sulate has also been reportedby Petchmala et al.,40 where conversion o eedstock to

    methyl esters decreased rom 90.1% to 35.0% in the next

    run. Although the catalytic activity o the catalyst can be

    restored by re-impregnation with suluric acid and re-

    calcination, the leached sul ate in the product may cause

    biodiesel to get off-specication. able 2 depicts the reaction

    conditions o tungstated and sulated zirconia used as het-

    erogeneous catalyst.

  • 8/18/2019 Adcancements in Solid Acid

    9/24

  • 8/18/2019 Adcancements in Solid Acid

    10/2478 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

       T  a   b   l  e   2 .   T  u  n  g  s   t  a   t  e   d  a  n   d  s  u   l   f  a   t  e   d  z   i  r  c  o  n   i  a  a  s   h  e   t  e  r  o  g  e  n  e  o  u  s

      c  a   t  a   l  y  s   t  s

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k ,

       A  c   i   d  v  a   l  u  e

       M  e   t   h  o   d  o   f

      p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a   t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r  r  a   t   i  o

       (  m  e   t   h  a  n  o   l

       t  o  o   i   l   )

       R  e  a  c

       t   i  o  n   t   i  m  e

       (   h   )  ;   t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

       T  u  n  g  s   t  a   t  e   d

      z   i  r  c  o  n   i  a  -

      a   l  u  m   i  n  a

       (   W   O   3   /   Z  r   O   2   )

       S  o  y   b  e  a  n  o   i   l

      n  -  o  c   t  a  n  o   i  c  a  c   i   d

       M   i  x   t  u  r  e  o   f   h  y   d  r  a   t  e   d

      z   i  r  c  o  n   i  a  p  o  w   d  e  r ,

       h  y   d  r  a   t  e   d  a   l  u  m   i  n  a ,

      a  q  u  e  o  u  s  a  m  m  o  n   i  u  m

      m  e   t  a   t  u  n  g  s   t  a   t  e  s  o   l  u  -

       t   i  o  n  a  n   d   d  e   i  o  n   i  z  e   d

      w  a   t  e  r  w  a  s  p  r  e  p  a  r  e   d

      a  n   d   t   h  e  n   k  n  e  a   d  e   d   f  o  r

       2   5  m   i  n .   t  o  s   h  a  p  e   i  n   t  o

      p  e   l   l  e   t  s  a  n   d   d  r   i  e   d  a   t

       1   3   0  o   C  a  n   d  c  a   l  c   i  n  e   d

       N  o   t   d  o  n  e

       8   0   0 ,   1

       4   0  :   1

       2   0 ,   3   0   0

       4  g

       C  >   9   0

       2   2

       4 .   5  :   1

       2   0 ,   2   0   0

       4  g

       C  =   1   0   0

       S  u   l   f  a   t  e   d

      z   i  r  c  o  n   i  a  a  n   d

      o   t   h  e  r   M   i  x  e   d

      m  e   t  a   l  o  x   i   d  e  s

       D  o   d  e  c  a  n  o   i  c  a  c   i   d

       F   i  r  s   t  s   t  e  p  :

       H  y   d  r  o  x  y   l  a   t   i  o  n  o   f

      z   i  r  c  o  n   i  u  m ,   t   i   t  a  n   i  u  m ,

      a  n   d   t   i  n  c  o  m  p   l  e  x  e  s

       S  e  c  o  n   d  s   t  e  p  :

       S  u   l   f  o  n  a   t   i  o  n  w   i   t   h

       H   2   S   O   4   f  o   l   l  o  w  e   d   b  y

      c  a   l  c   i  n  a   t   i  o  n   i  n  a   i  r

       Z  r   O   2   /   S   O   4   2  –    S  u  r   f  a  c  e

      a  r  e  a  :   1   1   8  m   2   /  g ,

      p  o  r  e  v  o   l  u  m  e  :   0 .   0   9

       8

      c  m   3   /  g  ;   S  u   l   f  u  r  c  o  n  -

       t  e  n   t  :   2 .   3   %

       6   5   0 ,   4

       3  :   1

       1 ,   1   3   0  –   1   5   0

       3 .   0

       C  =   9   0   %

       2   5

       Z   i  r  c  o  n   i  a

      s  u  p  p  o  r   t  e   d

       i  s  o  p  o   l  y  a  n   d

       h  e   t  e  r  o  p  o   l  y

       t  u  n  g  s   t  a   t  e  s

       (   H   P   A   )

       S  u  n   fl  o  w  e  r ,

       S  e  s  a  m  e ,   M  u  s   t  a  r   d

       Z   i  r  c  o  n   i  u  m  o  x  y   h  y   d  r  o  x  -

       i   d  e  w  a  s  p  r  e  p  a  r  e   d   b  y

       h  y   d  r  o   l  y  s   i  s  o   f  z   i  r  c  o  n  y   l

      c   h   l  o  r   i   d  e  s  o   l  u   t   i  o  n  a  n   d

       d  r   i  e   d  a   t   1   2   0  o   C   f  o  r

       1   2   h ,  p  o  w  e  r  e   d ,  a  n   d

      a  g  a   i  n   d  r   i  e   d   f  o  r   1   2   h

       S  u  r   f  a  c  e  a  r  e  a  =   7   0

      m   2   /  g ,   S  u  r   f  a  c  e   d  e  n

      -

      s   i   t  y  =   6 .   4   W   n  m   2 ,  

       A  c   i   d   i   t  y  =   2 .   6   0   N   H   3

      n  m   2

       7   5   0 ,   4

       2   0  :   1

       5 ,   2   0   0

       3

       C  =   9   7

       2   7

       W   O   3   /   Z  r   O   2

       (  p  e   l   l  e   t   t  y  p  e   )

       U  s  e   d   V  e  g  e   t  a   b   l  e  o   i   l

       Z  r   O   2  p  e   l   l  e   t  s  w  e  r  e

      s   t  e  a  m  e   d  a   t   1   9   0  o   C

      w   i   t   h  a  m  m  o  n   i  u  m

      m  e   t  a   t  u  n  g  s   t  a   t  e   (  a  q   ) .

       T   h  e  m   i  x   t  u  r  e  w  a  s  s   t   i  r  -

      r  e  r   f  o  r   2   h  a  n   d  a   f   t  e  r

      r  e  m  o  v   i  n  g .  e  x  c  e  s  s

      w  a   t  e  r ,   i   t  w  a  s  c  a   l  c   i  n  e   d

       B   E   T   S  u  r   f  a  c  e  a  r  e  a

      =   4   0  m   2   /  g ,   A  v  e  r  a  g

      e

      p  o  r  e  s   i  z  e  =   1   1   0    Å

       8   0   0 ,   5

       N  o   t  g   i  v  e  n

       N  o   t  g

       i  v  e  n

       N  o   t  g   i  v  e  n

       C  =   7   0

       2   8

       S  -   Z  r   O   2

       S  o  y   b  e  a  n  o   i   l

       Z  r   O   2   C   l   2 .   8   H   2   O  w  a  s

      m   i  x  e   d  w   i   t   h   (   N   H   4   )   S   O   4

       f  o  r   2   0  m   i  n .  a   t   1  :   6

      m  o   l  a  r  r  a   t   i  o   i  n  a  g  a   t  e

      m  o  r   t  a  r

       S  -   Z  r   O   2  w  a  s   f  o  u  n   d

       t  o   b  e  a  m  o  r  p   h  o  u  s  ;

       B   E   T  s  u  r   f  a  c  e  a  r  e  a

      =

       1   2   6  m   2   /  g

       6   0   0 ,   5

       2   0  :   1

       1 ,   1   2   0

       5

       9   8 .   6   (   M   )

       3   0

       9   2 .   0   (   E   )

  • 8/18/2019 Adcancements in Solid Acid

    11/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   79

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

       W   O   3   /   Z  r   O   2

       S  o  y   b  e  a  n  o   i   l   (   4  w   t   % 

      o   l  e   i  c  a  c   i   d   )

       W   O   3   /   Z  r   O   2  w  a  s  p  r  e  -

      p  a  r  e   d   b  y   i  m  p  r  e  g  -

      n  a   t   i  n  g   Z  r   (   O   H   )   4  w   i   t   h

      a  m  m  o  n   i  u  m  m  e   t  a   t  u  n  g  -

      s   t  a   t  e  s  o   l  u   t   i  o  n

       W   O   3  a  n   d   Z  r   O   2  w  e

      r  e

      c  r  y  s   t  a   l   l   i  n  e   i  n  n  a   t  u  r  e .

       S  u  r   f  a  c  e  a  r  e  a  =   5   5

     .   1

      m   2   /  g  a   t   3   0  w   t   % 

       W   O   3   l  o  a   d   i  n  g .

       8   0   0 ,   N  o   t  g   i  v  e  n

       9  :   1

       2 ,   7   5

       0 .   2   9  g   /  m   l

      o   f  o   i   l

       C  =   9   3

       3   2

       S   O   4

       2  –   /   Z  r   O   2

       S   O   4

       2  –   /   Z  r   O   2  p  r  e  p  a  r  e   d

       b  y   d  e   h  y   d  r  a   t   i  o  n  o   f

       H   2   S   O   4  a  n   d   Z  r   (   O   H   )   4

       A  m   b  e  r   l  y  s   t   1   5

       A  m   b  e  r   l  y  s   t   1   5  w  a  s  o   f

      c  o  m  m  e  r  c   i  a   l  g  r  a   d  e

       M   C   M  -   4   1

       S   i   l   i  c  a

      s  u  p  p  o  r   t  e   d

       W   O   3

       O   l  e   i  c  a  c   i   d

       S   i   /   Z  r  m  o   l  a  r  r  a   t   i  o  =

       5  :   1 ,   Z  r  -   M   C   M  -   4   1  w  a  s

      s   t  e  a  m  e   d  a   t   1   9   0  o   C

       f  o  r   4   h   t  o  g  e  n  e  r  a   t  e

      s  u  r   f  a  c  e   O   H  g  r  o  u  p  s .

       T  u  n  g  s   t  e  n  w  a  s   i  n  c  o  r  -

      p  o  r  a   t  e   d   b  y   i  m  p  r  e  g  n  a  -

       t   i  o  n   t  e  c   h  n   i  q  u  e  u  s   i  n  g

      a  m  m  o  n   i  u  m  m  e   t  a   t  u  n  g  -

      s   t  a   t  e  a  q .  s  o   l  u   t   i  o  n  a  n   d

       t   h  e  n   d  r   i  e   d  a   t   6   0  o   C

       M  e  s  o  p  o  r  o  u  s

      s   t  r  u  c   t  u  r  e

       7   0   0 ,   2

       6   7  :   1

       2   4 ,   6   5

       1   8 .   7  w   t   %

       C  =   1   0   0

       3   3

       W   O   3   /   Z  r   O   2

       W  a  s   t  e  a  c   i   d  o   i   l

       (   D  a  r   k  o   i   l   )   F   F   A  =

       5   4 .   9   %

       W   O   3   /   Z  r   O   2  w  a  s  p  r  e  -

      p  a  r  e   d   b  y   i  m  p  r  e  g  -

      n  a   t   i  n  g   Z  r   (   O   H   )   4  w   i   t   h

      a  m  m  o  n   i  u  m  m  e   t  a   t  u  n  g  -

      s   t  a   t  e  s  o   l  u   t   i  o  n

       S  u  r   f  a  c  e  a  r  e  a  =   5   6

     .   7

      m   2   /  g   P  o  r  e  s   i  z  e  =

       1   3   0 .   1

        Å

       8   0   0 ,   5

       9  :   1

       2 ,   1   5   0

       0 .   4   0  g   /  m   l

      o   f  o   i   l   (   2   0

      w   t   %   )

       C  =   9   6

       3   4

       S   O   4

       2  –   /

       Z  r   O   2  -   T   i   O   2   /

       L  a

       3  +

       R  a  p  e  s  e  e   d  o   i   l   f  e  e   d  -

      s   t  o  c   k   F   F   A  =   2   0   1 .   1

      m  g   K   O   H   /  g

       T   i   C   l   4  a  n   d   L  a   (   N   O   3   )   3

      w  e  r  e  a   d   d  e   d   t  o

      a  q .  s  o   l  u   t   i  o  n  o   f

       Z  r   O   C   l   2 .   8   H   2   O .   C  o  n  c .

       N   H   4   O   H  a  n   d   t   h  e

      m   i  x   t  u  r  e  w  e  r  e  s   t   i  r  r  e   d

      v   i  g  o  r  o  u  s   l  y   t  o  p   H

       9  –   1   0  a  n   d   k  e  p   t   f  o  r

       2   4   h .   T   h  e  p  r  e  c   i  p   i   t  a   t  e

      w  a  s  w  a  s   h  e   d  w   i   t   h

       d  e   i  o  n   i  z  e   d  w  a   t  e  r  u  n   t   i   l

       C   l  –    i  n   t   h  e   fi   l   t  r  a   t  e  w  a  s

      r  e  m  o  v  e   d .   T   h  e  c  a   k  e

       f  o  r  m  e   d  w  a  s   d  r   i  e   d

      a   t   1   1   0  o   C   f  o  r   1   2   h .

       T   h  e  p  o  w  e  r  e   d  c  o  m  -

      p   l  e  x  o  x   i   d  e  w  a  s   t   h  e  n

       i  m  p  r  e  g  n  a   t  e   d  w   i   t   h

       0 .   5   M   H   2   S   O   4   f  o  r   2   4   h

      a  n   d   fi   l   t  e  r  e   d .

       5   5   0 ,   3

       5 ,   6   0

       5 .   0  w   t   %

       C  >   9   5

       3   5

       T  a   b   l  e   2 .   C  o  n   t   i  n  u  e   d

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k ,

       A  c   i   d  v  a   l  u  e

       M  e   t   h  o   d  o   f

      p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a   t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r  r  a   t   i  o

       (  m  e   t   h  a  n  o   l

       t  o  o   i   l   )

       R  e  a  c   t   i  o  n   t   i  m  e

       (   h   )  ;   t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

  • 8/18/2019 Adcancements in Solid Acid

    12/2480 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

       S   O   4

       2  –   /

       Z  r   O   2  –   T   i   O   2   /

       L  a

       3  +

       S  o  a  p  s   t  o  c   k

       N  o   t  g   i  v  e  n

       N  o   t  g   i  v  e  n

       N  o   t   d  o  n  e

       1   5  :   1

       4 ,   6   0

       5 .   0  w   t   %

       C  >   9   5

       3   6

       S   O   4

       2  –   /

       Z  r   O   2  –   T   i   O   2   /

       L  a

       3  +

       A  c   i   d  o   i   l   F   F   A  =   6   0

      w   t   %    (

       1   1   9 .   5   8  m  g

       K   O   H   /  g   )

       T   i   C   l   4  a  n   d   L  a   (   N   O   3   )   3

      w  e  r  e  a   d   d  e   d   t  o

      a  q .  s  o   l  u   t   i  o  n  o   f

       Z  r   O   C   l   2 .   8   H   2   O .   T   h  e

      m   i  x   t  u  r  e  a  n   d   N   H   4   O   H

       (  c  o  n  c .   )  s  o   l  u   t   i  o  n  w  a  s

      p  r  e  p  a  r  e   d   b  y  v   i  g  o  r  -

      o  u  s   l  y  s   t   i  r  r   i  n  g  a   t  p   H

       9  -   1   0  a  n   d   k  e  p   t   f  o  r

       2   4   h .   T   h  e  p  r  e  c   i  p   i   t  a   t  e

      w  a  s   t   h  e  n  w  a  s   h  e   d

      w   i   t   h   d  e   i  o  n   i  z  e   d  w  a   t  e  r

      a  n   d   fi   l   t  e  r  e   d  u  n   t   i   l

       C   l  -   i  n   t   h  e   fi   l   t  r  a   t  e  w  a  s

      r  e  m  o  v  e   d .   T   h  e  c  a   k  e

      o   b   t  a   i  n  e   d  a   f   t  e  r   fi   l   t  r  a  -

       t   i  o  n  w  a  s   t   h  e  n   d  r   i  e   d

      a   t   1   1   0  o   C   f  o  r   1   2   h .

       T   h  e  p  o  w   d  e  r  e   d  c  o  m  -

      p   l  e  x  o  x   i   d  e  w  a  s   t   h  e  n

       i  m  p  r  e  g  n  a   t  e   d  w   i   t   h

      s  u   l   f  u  r   i  c  a  c   i   d  o   f   0 .   5   M

       f  o  r   2   4   h  a  n   d   fi   l   t  e  r  e   d .

       T   h  e  s  a  m  p   l  e  w  a  s   t   h  e  n

       d  r   i  e   d  a  n   d  c  a   l  c   i  n  e   d

       t  o  p  r  e  p  a  r  e   S   O   4

       2  –   /

       Z  r   O   2  –   T   i   O   2   /   L  a   3  +

       N  o   t  g   i  v  e  n

       5   5   0 ,   3

       1   5  :   1

       2 ,   2   0   0

       5 .   0  w   t   %

       Y  =   9   0  ;   C  =

       9   6 .   2   4

       3   7

       S  u   l   f  a   t  e   d

      z   i  r  c  o  n   i  a

      a   l  u  m   i  n  a

       C  e  r   b  e  r  a .

       O   d  o   l   l  a  m 

       (   S  e  a   M  a  n  g  o   )

       N  o   t  g   i  v  e  n

       N  o   t  g   i  v  e  n

       4   0   0 ,   2 .   5

       8  :   1

     ,   1   8   0

       5 .   0  w   t   %

       Y  =   8   3 .   8   %

       3   8

       C  a  r   b  o  n   i  z  e   d

      a  n   d  s  u   l  -

       f  o  n  a   t  e   d

      v  e  g  e   t  a   b   l  e  o   i   l

      a  s  p   h  a   l   t   (   V  -   C  -

       6   0   0  -   S  -   2   1   0   )

       W  a  s   t  e  o   i   l

       C  a  r   b  o  n  -   b  a  s  e   d  s  o   l   i   d

      a  c   i   d  c  a   t  a   l  y  s   t  s  w  e  r  e

      p  r  e  p  a  r  e   d   f  r  o  m  c  a  r  -

       b  o  n   i  z  e   d  v  e  g  e   t  a   b   l  e  o   i   l

      a  s  p   h  a   l   t  a  n   d  p  e   t  r  o  -

       l  e  u  m  a  s  p   h  a   l   t .

       S  u  r   f  a  c  e  a  r  e  a  =   7 .   4   8

      m   2  g  -   1    A  v  e  r  a  g  e  p  o

      r  e

       d   i  a  m  e   t  e  r  =   4   3 .   9   0  n  m

       N  o   t   d  o  n  e

       1   8 .   2  :   1

       2 .   5 ,   2

       6   0

       1 .   0  w   t   %

       C  =   8   9 .   9   3

       3   9

       P  e   t  r  o   l  e  u  m

      a  s  p   h  a   l   t  c  a   t  a  -

       l  y  s   t   (   P  -   C  -

       7   5   0  -   S  -   2   1   0

      a  n   d   P  -   C  -

       9   5   0  -   S  -   2   1   0   )

       T  a   b   l  e   2 .   C  o  n   t   i  n  u  e   d

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k ,

       A  c   i   d  v  a   l  u  e

       M  e   t   h  o   d  o   f

      p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a   t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r  r  a   t   i  o

       (  m  e   t   h  a  n  o   l

       t  o  o   i   l   )

       R  e  a  c   t   i  o  n   t   i  m  e

       (   h   )  ;   t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

  • 8/18/2019 Adcancements in Solid Acid

    13/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   81

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

    was ound to esteriy oleic acid and stear ic acid as well.

    ungsten HPA catalysts are active or esterication as well

    as transesterication reactions. Te activity o the catalyst

    was tried in homogeneous as well as heterogeneous media.

    Among the homogeneous catalysts were HPA hydrates,

    H3PW12O40.25H2O, and H4SW12O40.25H2O. Te heteroge-

    neous catalyst used was Cs2.5H0.5PW12O40. Suluric acid had

    better activity t han HPA in homogeneous medium, whereas

    Amberlyst-15 perormed better than HPA in heterogene-

    ous medium. In heterogeneous medium, the HPA catalysts

    were leached. Tis can be avoided by severe pre-treatment o

    the catalyst, but the resultant activity o the cata lyst will be

    affected.48 Heterogenized HPAs such as H3PW12O40/SiO2,

    Cs2HPW12O40, and H3PW12O40/SiO2 were studied as cata-

    lysts or transesterication o rapeseed oil. Tese catalysts

    possessed Brønsted acidity o high strength and catalyt ic

    activity, better than H2SO4 and H3PO4, but the acid strength

    didn’t necessarily correlate with catalytic activity. Te cata-

    lyst was prepared by precipitation steps using precursor

    solutions. Te precipitate was recovered by centriugation

    and then water washed. Based on the method o preparation,

    Cs2HPW12O40 offered good resistance to leaching o active

    phase present in the catalyst.49 

    Te sol-gel hydrothermal method was used to prepare

    mesoporous polyoxometalate tantalum pentoxide compositesolid acid catalyst (H3PW12O40/a2O5) and tried or esteri-

    cation reaction o lauric acid, which resulted in 99.9% yield

    with 7:1 alcohol to oil molar ratio at 78 ± 2oC or 3 h reaction

    time. ICP-AES analysis o the reaction solution afer removal

    o catalyst conrmed that the catalyst was not leached. Upon

    regeneration o the catalyst by boiling ethanol and wash-

    ing with hexane overnight, 95.6–94.8% ester yields were

    obtained afer successive runs, and its reusability was con-

    rmed.50 A heteropoly solid acid catalyst (H4PNbW11O40/

    WO3-Nb2O5) has been shown by Katada et al.51

     to have highcatalytic activity when used or transesterication o triolein

    and methanol/ethanol. Calcination at 500oC gave the best

    results. Te high activity o the cata lyst has been attributed

    to strong Brønsted acidity, bearing ester yield o 81%. Te

    catalyst also worked in the presence o water in 95% ethanol.

    Tus, crude alcohol can be used in the reaction, resulting

    in lower production costs or biodiesel. Te dissolution o

    the catalyst was undetectable or niobium and low (

  • 8/18/2019 Adcancements in Solid Acid

    14/2482 © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb

    YC Sharma, B Singh, J Korstad Review: Solid acid catalysts for biodiesel synthes

    or tungsten. A xed-bed continuous ow reaction has been

    proposed or large-scale production o biodiesel using the

    catalyst, with easy separation.

    Niobium oxide has been used to impregnate heteropoly

    tungstate by Srilatha et al.52 12-tungstophosphoric acid

    (PA) was impregnated on niobium oxide or this purpose.

    Acid strength was ound to increase with PA content and

    was optimum with 25 wt% loading on Nb2O5. A high con-

     version o methyl esters (99.1 and 97.3%) were observed

    with palmitic acid and sunower oil, respectively with 4 h

    reaction time at 65oC. Moderate calcination temperature

    o 400oC was adequate or the perormance o the catalyst.

    emperatures higher than 400oC or calcination led to deg-

    radation o PA to metal oxides, thus decreasing the cata-

    lytic activity.

    Zhang et al.53 used microwave-assisted transesterica-

    tion reaction to produce biodiesel by heteropolyacid cata-

    lyst (Cs2.5H0.5PW12O40) rom Xanthoceras sorbifolia oil.

    Te method resulted in a high yield (>96%) in only 10 min

    o reaction time with 1.0 wt% o oil, 12:1 methanol to oil

    molar ratio, at 60oC o optimized reaction conditions. Te

    presence o our exchangeable protons and the distribution

    o alkal i cation in the Keggin network prompted Pesaresi

    et al.54 to try low amount o Cs loading on heteropoly

    acid (H4SiW12O40) and ound that Cs loading >0.8 perKeggin resulted in heterogeneous activity o the cata lyst.

    A high yield o 99% was obtained using heteropoly acid

    (Cs2.5H0.5PW12O40) tried by Li et al.55 or transesterica-

    tion o Eruca Sativa oil possessing FFA o 3.5%. Although a

    longer reaction time was taken or completion o the reac-

    tion, the other variables were moderate such as methanol to

    oil molar ratio o 6:1, 85 × 10 –3:1 (catalyst to oil) weight ratio,

    at 65oC.

    a2O5 has been incorporated on Keggin-type heteropoly

    acid by sol-gel co-condensation method by Xu et al.56

     as ahybrid catalyst or preparation o biodiesel. Te incorporation

    o a2O5 on the heteropoly acid resulted in enhanced activ-

    ity o the catalyst. Te hydrophobic nature o the catalyst has

    been enhanced by hydrophobic alkyl group such as methyl or

    phenyl. Te Keggin structure was ound to disperse homo-

    geneously throughout the hybrid catalyst. Te catalyst was

    reused or subsequent runs and wasn’t leached in the reaction

    medium and was easily desorbed rom the glycerol.

    Pure hydropoly (H3PW) ollows the homogeneous catalytic

    pathway because o its solubility in ethanol. o make the

    catalyst heterogeneous, the heteropoly acid was supported

    with zirconia (ZrO2) by Oliveira et al.42 or conversion o

    oleic acid to methyl esters taking ethanol as solvent. Te het-

    eropoly acid was ound to be well dispersed over the support,

    and only the monoclinic phase o ZrO2 was detected. 20 wt%

    o H3PW loaded on ZrO2 provided 88% conversion o oleic

    acid with 10 wt% o catalyst in with 6:1 A:O molar ratio in

    4 h. Some amount o the catalyst (8 wt%) was leached in the

    solution. Te catalyst when reused afer washing with n-hex-

    ane, drying, and calcination at 300oC or 4 h resulted in 70%

    conversion. Silver has been doped over heteropoly acid to

    orm AgxH3-xPW12O40, with Ag content varying rom 0.5

    to 3 by Zieba et al.43 Te FIR analysis indicated no change

    in structure o Keggin anions o the heteropoly acid when

    the protons were replaced by the silver cations. With silver

    content x > 1, only one phase o silver salt with good crystal-

    linity was observed. With silver content x = 0.5, a two-phase

    mixture o silver salt and crystalline hydropoly acid was

    observed. Te catalyst loading up to x = 1 showed leaching

    o the catalyst silver loaded heteropolyacid leading to the

    homogeneous pathway reaction. Loading x > 1 resulted in

    lowering o homogeneous nature and occurrence o het-

    erogeneous pathway. Te homogeneous catalytic activityresulted in gel-type material which had to be immobilized

    on a support to make the catalyst. Heteropoly acid has been

    used or simultaneous esterication and transesterication

    reaction by Baig et al.57 or synthesis o biodiesel. Although

    a high temperature o 200oC and a high molar ratio was

    adopted, the biodiesel obtained ull led the specications o

    ASM. Te reaction condition o heteropolyacids as hetero-

    geneous catalysts is given in able 3.

    Pyrone complexes with metalsA group o pyrone complexes were used as catalyst by

    Abreu et al.58. Sn(3-hydroxy-2-methyl-4-pyrone)2(H2O)2,

    Pb(3-hydroxy-2-methyl-4-pyrone)2(H2O)2, Zn(3-hydroxy-

    2-methyl-4-pyrone)2(H2O)2 were develop a homogeneous

    catalyst or transesterication using various oils. Among

    the three pyrone complexes, tin complex showed a com-

    paratively high yield o 35.6 and 37.1% with babassu and

    soybean oil respectively. Te maximum yield with lead and

  • 8/18/2019 Adcancements in Solid Acid

    15/24

    © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 5:69–92 (2011); DOI: 10.1002/bbb   83

    Review: Solid acid catalysts for biodiesel synthesis YC Sharma, B Singh, J Korsta

       T  a   b   l  e   3 .   H  e   t  e  r  o  p  o   l  y  a  c   i   d  s  a  s

       h  e   t  e  r  o  g  e  n  e  o  u  s  c  a   t  a   l  y  s   t  s .

       C  a   t  a   l  y  s   t

       F  e  e   d  s   t  o  c   k   M

      e   t   h  o   d  o   f  p  r  e  p  a  r  a   t   i  o  n

       C   h  a  r  a  c   t  e  r   i  z  a   t   i  o  n

       C  a   l  c   i  n  a   t   i  o  n

       R  e  a  c   t   i  o  n  c  o  n   d   i   t   i  o  n  s

       C  o  n  v  e  r  s   i  o  n

       (   C   )   /   Y   i  e   l   d

       (   Y   )   (   %   )

       R  e   f  e  r  e  n  c  e  s

       T  e  m  p  e  r  a   t  u  r  e

       (  o   C   ) ,   t   i  m  e   (   h   )

       M  o   l  a  r

      r  a   t   i  o

       (  m  e   t   h  a  n  o   l

       t  o  o   i   l   )

       R  e  a  c   t   i  o  n

       t   i  m

      e   (   h   )  ;

       t  e  m  p  e  r  a   t  u  r  e

       (  o   C   )

       C  a   t  a   l  y  s   t

      a  m  o  u  n   t

       (  w   t   %   )

       H   3   P   W