active distribution network (adine) - epri | smartgrid ...smartgrid.epri.com/doc/11_sg post...

19
Active Distribution Network Active Distribution Network (ADINE) (ADINE) Modeling and real Modeling and real time simulation time simulation Sami Repo Dr.Tech., Associate professor Tampere University of Technology, Finland [email protected] 4 th International Conference on Integration of Renewable and Distributed Energy Resources December 6-10, 2010 Albuquerque, NM, USA Conference Sponsors Associate Sponsors

Upload: hakiet

Post on 02-Apr-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Active Distribution Network Active Distribution Network (ADINE) (ADINE) Modeling and realModeling and real‐‐time simulationtime simulation

Sami RepoDr.Tech., Associate professorTampere University of Technology, [email protected]

4th International Conference on Integration of Renewable and Distributed Energy ResourcesDecember 6-10, 2010Albuquerque, NM, USA

Conference Sponsors Associate Sponsors

4th International Conference on Integration of Renewable and Distributed Energy Resources

ContentsContents

• Real‐time digital simulations with RTDS

• Combination of RTDS and dSPACE simulations

• Example of “ideal” simulation sequence

• Interaction simulation

22

4th International Conference on Integration of Renewable and Distributed Energy Resources

Hardware in loop testingHardware in loop testing

33

4th International Conference on Integration of Renewable and Distributed Energy Resources

Non‐detection zone of LOM

0.05110 %U >>

0.150 %U <<

10106 %U >

1090 %U <

0.251 Hzf >

0.247 Hzf <

Delay [s]Operation limit

1.6 MVA hydro power unit, Synchronous generatorExciter + AVR (IEEE AC8B) and Q controller (IEEE Var Type 2)No turbine or governor controller

4th International Conference on Integration of Renewable and Distributed Energy Resources

Non‐detection zone of LOM

-0.5 0 0.5 1-0.5

0

0.5

1

deltaP = Pload - Pdg [MW]

delta

Q =

Qlo

ad -

Qdg

[MVa

r]

0.2 0.2

0.2

0.2

0.2

0.5

0.5

0.5

0.5

0.5

0.7

0.7

0.7

0.7

3

3

6

6

-0.2 -0.1 0 0.1 0.2-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

deltaP = Pload - Pdg [MW]

delta

Q =

Qlo

ad -

Qdg

[MVa

r]

0.1

0.1

0.3

0

0.3

0.5 0.5

0.7

0.7

0.7

3

3

3 66

Frequency and voltageFrequency and voltagefunctionsfunctions

Frequency and voltageFrequency and voltageFunctions + ROCOFFunctions + ROCOF

4th International Conference on Integration of Renewable and Distributed Energy Resources

Combination of RTDS and dSPACE

dSPACE is real‐time simulator for control systems (we use dSPACE to model power electronics and its control)

4th International Conference on Integration of Renewable and Distributed Energy Resources

Full power converter models

4th International Conference on Integration of Renewable and Distributed Energy Resources

Example of full power converter FRT simulations

a) 8 9 10 11 12 13-1000

-500

0

500

1000

Usync aUsync bUsync c

b) 8 9 10 11 12 13-2000

-1000

0

1000

2000

i L2ai L2bi L2c

Fig. 4.4. a) Connection point voltage, b) Connection point current.

a) 8 9 10 11 12 13-1000

-800

-600

-400

-200

0

200

400

i L1d*i L1d

b) 8 9 10 11 12 130

500

1000

1500

Udc

Fig. 4.5. a) d-component of the grid current and its reference, b) dc-link voltage and chopper current during the fault.

a) 8 9 10 11 12 13-600

-500

-400

-300

-200

-100

0

100

Pgen*Pgen

b) 8 9 10 11 12 13

-600

-400

-200

0

200

400

q*q

Fig. 4.6. a) Instantaneous active power of the generator and its reference, b) Connection point instantaneous reactive power and its reference.

a) 8 9 10 11 12 13-400

-200

0

200

400

600

800

i L1q*i L1q

b) 8 9 10 11 12 13-15000

-10000

-5000

0

Te

Fig. 4.7. a) q-component of the NSC current and its reference. b) Electrical torque of the generator.

a) 8 9 10 11 12 1335

40

45

50

55

Wr*Wr

b) 8 9 10 11 12 13-600

-400

-200

0

200

p net

Fig. 4.8. a) Rotational speed of the turbine and its reference, b) Instantaneous active power in

ti i t

Output power

reduction

Reactive power

support

Reducing electrical

torque

Kinetic energy

increases

Pitch control

activated

4th International Conference on Integration of Renewable and Distributed Energy Resources

Microturbine LV network simulations

0 0.5 1 1.5 2220

225

230

235

240

time (s)

Volta

ge (V

)

3 Phase Motor start

0 0.5 1 1.5226

228

230

232

234

2363% Tap change in MV net

time (s)

Volta

ge (V

)Network

DGL

Load Sensitiveload

0 0.5 1 1.5200

205

210

215

220

225

230

235

240Dip on the HV net giving remaining V 0f 90% for 0.3 s

time (s)

Volta

ge (V

)

4th International Conference on Integration of Renewable and Distributed Energy Resources

CoCo‐‐ordinatedordinated voltage controlvoltage control

1010

Hydro power plant

OPC: Measurements

SCADA DMSCommands

Matlab

State estimation

Coordinatedvoltage control Operator

AVR

AVC relay

Setting values

110 / 20 kV substation

4th International Conference on Integration of Renewable and Distributed Energy Resources

Loadflow studies

20 40 60 80 100 120 140 1600

500

1000

1500

2000

2500

3000

Time [h]P

ower

[kW

]

Wind, no controlWind, control 3 MW, no control

20 40 60 80 100 120 140 16020

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

Time [h]

Vol

tage

[kV

]

No production Wind, no controlWind, control 3 MW, no control

Voltage at wind farmconnection point

Wind power production

4th International Conference on Integration of Renewable and Distributed Energy Resources

Benefits of co‐ordination

0

500

1000

1500

2000

2500

3000

364 473 572 690 825 992 1174

Loading of Kasnäs feeder [kW]

Net

wor

k tra

nsfe

r cap

abilit

y [k

W]

Unity power factor, FlexibleLocal voltage control, FlexibleCo-ordinated control, FlexibleUnity power factor, FixedLocal voltage control, FixedCo-ordinated control, Fixed

4th International Conference on Integration of Renewable and Distributed Energy Resources

Time domain performance in PSCAD

4 units areconnected

Tm0.0 0.5 pu

2 units aredisconnected

2 units aredisconnected

Voltage limits ofBasic control

Voltage limits ofRestoring control

Insensitivity area

The voltages are restored to an acceptable level

Basic control decreases OLTC setting value

Delay of basic control

Position of tap changer

Substation voltageVoltage setting of OLTC

Max voltageMin voltage

Tm0.5 1.0 pu

Delay of AVR and tap changer

Tap changer operates

4th International Conference on Integration of Renewable and Distributed Energy Resources

RTDS testing of control algorithm

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3800.95

1.0

1.05

1.1

[pu]

Maximum voltage Minimum voltage Generator voltage

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 3800.95

1

1.05

[pu]

Substation voltage Voltage set point of OLTC

Voltage limits ofrestoring control

Voltage limits of basic control

AVC relaydeadband Basic control decreases

AVC set point

Network voltages are restoredto an acceptable level

Tap changer operatesRestoring control increasesAVC set point

4th International Conference on Integration of Renewable and Distributed Energy Resources

Interactions of STATCOM and DFIG wind turbine

4th International Conference on Integration of Renewable and Distributed Energy Resources

4th International Conference on Integration of Renewable and Distributed Energy Resources

4th International Conference on Integration of Renewable and Distributed Energy Resources

Test sites

ABB+TUT AREVA

Compower+LU

4th International Conference on Integration of Renewable and Distributed Energy Resources

Thank you!

www.adine.fi

1919

ADINE is a project co‐funded by the European Commission