[acs symposium series] sound and vibration damping with polymers volume 424 || requirements imposed...

29
Chapter 17 Requirements Imposed on Polymeric Materials by Structural Damping Applications Edward M. Kerwin, Jr., and Eric E. Ungar Laboratories Division, BBN Systems and Technologies Corporation, 10 Moulton Street, Cambridge, MA 02138 We review the application of polymeric materials in structural damping, giving an introduction to the field as it is seen by the designer of damping treatments. Our objective is to provide an overview of the ways in which visoelastic damping materials are used, and of the resulting material-property requirements, and the corres- ponding polymer deformation types (extension, shear, or wavebearing). Finally, we show how the requirements of a given damping problem define the visoelastic properties required of candidate polymers, as influenced by the mechanical and environmental conditions that obtain. The purpose of this paper is to present an introduction to structural damping for those polymer chemists who are not already familiar with the field. We shall treat several subjects, including what structural damping can accomplish, the definition of damping in terms of energy and loss factor, and the important classes of damping mechanisms. Finally, we look briefly at the range of problems in which damping may be applied, and at the resulting requirements imposed on the viscoelastic materials involved. This approach presents a narrow view of the whole field of structural damping. It considers only those damping mechanisms that involve viscoelastic materials, and covers the wide variety of treatment schemes only generically with regard to the types of viscoelastic- material deformations of import. Thus, we are not able to cover the details of damping-treatment design and engineering, nor the material-property requirements from other areas of acoustics, such as the fields of vibration isolation, shock mitigation, and underwater sound. 0097-6156/90/0424-0317$08.25/0 © 1990 American Chemical Society Downloaded by MICHIGAN STATE UNIV on November 30, 2013 | http://pubs.acs.org Publication Date: May 1, 1990 | doi: 10.1021/bk-1990-0424.ch017 In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Upload: l-h

Post on 23-Dec-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

Chapter 17

Requirements Imposed on Polymeric Materials by Structural Damping Applications

Edward M. Kerwin, Jr., and Eric E. Ungar

Laboratories Division, BBN Systems and Technologies Corporation, 10 Moulton Street, Cambridge, MA 02138

We review the application of polymeric materials in structural damping, giving an introduction to the f i e l d as it is seen by the designer of damping treatments. Our objective is to provide an overview of the ways in which visoelastic damping materials are used, and of the resulting material-property requirements, and the corres­ponding polymer deformation types (extension, shear, or wavebearing). Finally, we show how the requirements of a given damping problem define the visoelastic properties required of candidate polymers, as influenced by the mechanical and environmental conditions that obtain.

The purpose of this paper is to present an introduction to structural damping for those polymer chemists who are not already familiar with the fi e l d . We shall treat several subjects, including what structural damping can accomplish, the definition of damping in terms of energy and loss factor, and the important classes of damping mechanisms. Finally, we look briefly at the range of problems in which damping may be applied, and at the resulting requirements imposed on the viscoelastic materials involved.

This approach presents a narrow view of the whole f i e l d of structural damping. It considers only those damping mechanisms that involve viscoelastic materials, and covers the wide variety of treatment schemes only generically with regard to the types of viscoelastic-material deformations of import. Thus, we are not able to cover the details of damping-treatment design and engineering, nor the material-property requirements from other areas of acoustics, such as the fields of vibration isolation, shock mitigation, and underwater sound.

0097-6156/90/0424-0317$08.25/0 © 1990 American Chemical Society

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 2: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

318 SOUND AND VIBRATION DAMPING WITH POLYMERS

N e v e r t h e l e s s , we hope t h a t t h i s s p e c i a l - p u r p o s e p r e s e n t a t i o n w i l l p r o v e u s e f u l .

The F u n c t i o n s o f S t r u c t u r a l Damping

S t r u c t u r a l damping i s d e f i n e d as t h e i r r e v e r s i b l e r e m o v a l o f e n e r g y f r o m a v i b r a t i n g s y s t e m . Damping, t h e r e f o r e , s e r v e s t o c o n t r o l " f r e e " r e s p o n s e s , i . e . , t h o s e r e s p o n s e s f o r w h i c h t h e e l a s t i c a n d i n e r t i a l f o r c e s b a l a n c e , l e a v i n g t h e s y s t e m r e s p o n s e c o n t r o l l e d by t h e l o s s e s i n t h e s y s t e m . I n t h e a b s e n c e o f l o s s e s , t h e r e s p o n s e s w o u l d be f o r c e -f r e e , a nd once e x c i t e d , w o u l d c o n t i n u e a r b i t r a r i l y f a r i n t i m e o r s p a c e . The c a t e g o r y " f r e e " r e s p o n s e s t h u s i n c l u d e s b o t h r e s o n a n c e s a n d f r e e l y t r a v e l i n g waves. I t i s t h e s e t h a t a r e c o n t r o l l e d by s y s t e m damping.

Thus, damping c a n a c c o m p l i s h t h e f o l l o w i n g : • l i m i t s t e a d y - s t a t e , r e s o n a n t r e s p o n s e , • c a u s e t r a n s i e n t r e s p o n s e s t o d e c a y more r a p i d l y ,

and • a t t e n u a t e t r a v e l l i n g waves.

B r o a d e r p o t e n t i a l r e s u l t s i n c l u d e t h e r e d u c t i o n o f s t r u c t u r a l v i b r a t i o n , o f r a d i a t e d sound, and o f s t r u c t u r a l f a t i g u e .

Damping, E n e r g y , a n d L o s s F a c t o r

I f , i n a f r e e l y v i b r a t i n g s y s t e m t h a t c o n t a i n s a l o s s mechanism, t h e s y s t e m e n e r g y i s s e e n t o d e c a y a t a r a t e t h a t i s p r o p o r t i o n a l t o t h e i n s t a n t a n e o u s e n e r g y W, i . e . , -dW/dt=a*W, i t f o l l o w s t h a t t h e d e c a y i s e x p o n e n t i a l , W = W 0e~ a t. ( T h i s i s t h e c a s e f o r a l i n e a r s y s t e m i n w h i c h t h e l o s s c o e f f i c i e n t i t s e l f i s i n d e p e n d e n t o f v i b r a t i o n a m p l i t u d e . ) The d e c a y c o e f f i c i e n t i s a = COTJ ,where CO = 2ftf i s t h e a n g u l a r f r e q u e n c y o f v i b r a t i o n , a nd T| i s d e f i n e d a s t h e s y s t e m l o s s f a c t o r . S i n c e t h e e n e r g y d e c a y r a t e i s n d i s f t h e power d i s s i p a t e d , i t f o l l o w s d i r e c t l y t h a t n ^ i s = C0T|W. Thus, we have t h e s y s t e m l o s s f a c t o r T| d e f i n e d i n a v e r y b a s i c way i n e n e r g y and power t e r m s as f o l l o w s :

*n = n d i s/cow

I n many c a s e s o f i n t e r e s t , t h e v i b r a t i n g s y s t e m c o m p r i s e s a number o f e l e m e n t s , e a c h o f w h i c h may have i t s own l o s s f a c t o r Tji and i t s own c o n t r i b u t i o n Wi t o t h e s y s t e m v i b r a t o r y e n e r g y . These e l e m e n t s m i g h t be, f o r exa m p l e , t h e s e v e r a l l a y e r s o f a l a m i n a t e d beam o r p l a t e . I n s u c h a c a s e , t h e power d i s s i p a t i o n r a t e i s t h e sum o f t h e s e v e r a l c o n t r i b u t i o n s , a n d t h e s y s t e m e n e r g y i s t h e sum o f t h e s e v e r a l e n e r g i e s . We, t h e r e f o r e , have t h e f a m i l i a r a n d u s e f u l d e f i n i t i o n o f s y s t e m l o s s f a c t o r as f o l l o w s ( 1 ) :

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 3: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 319

Tl=

T h i s i s an i m p o r t a n t r e s u l t . I t shows t h a t i n o r d e r f o r a g i v e n s y s t e m e l e m e n t t o be e f f e c t i v e i n damping t h e s y s t e m , t h a t e l e m e n t must n o t o n l y have a s i g n i f i c a n t l o s s f a c t o r , b u t i t must a l s o p a r t i c i p a t e s i g n i f i c a n t l y i n t h e t o t a l e n e r g y o f t h e s y s t e m .

I t i s c u s t o m a r y i n d e a l i n g w i t h l i n e a r ( o r l i n e a r i z e d ) b e h a v i o r o f d y n a m i c a l s y s t e m s t o d e s c r i b e t h e p r o p e r t i e s o f v i s c o e l a s t i c m a t e r i a l s as comp l e x q u a n t i t i e s (2). F o r exa m p l e , we w r i t e Young's modulus

E = E 1 - i E " = E 1 (1-iTj)

w h e r e _ E i s t h e co m p l e x modulus E f i s t h e " s t o r a g e " modulus E" i s t h e " l o s s " modulus

and T| =E"/E' i s t h e l o s s f a c t o r o f t h e m a t e r i a l

The l o s s f a c t o r T| i s sometimes d e n o t e d as t a n 8, where 8 i s t h e p h a s e a n g l e between t h e s t o r a g e and l o s s components o f h a r m o n i c s t r e s s .

C o r r e s p o n d i n g l y , we have f o r t h e s h e a r modulus

G = G' - i G " = G' ( l - i T | )

O t h e r e l a s t i c m o d u l i o r c o m p l i a n c e s , e.g., b u l k , d i l a t a t i o n , e t c . , may be d e s c r i b e d as abo v e . N o t e t h a t t h e use o f i = V-l i n t h e above e x p r e s s i o n s i m p l i e s a t i m e d e p e n d e n c e e " i c o t. (Some a u t h o r s p r e f e r + j ; t h e c h o i c e i s a r b i t r a r y . )

The F u n c t i o n o f Damping. The f u n c t i o n o f damping i s t o c o n t r o l t h e " f r e e " r e s p o n s e s o f a s y s t e m . Such r e s p o n s e s a r e t h o s e i n w h i c h t h e s y s t e m k i n e t i c and p o t e n t i a l e n e r g i e s a r e i n b a l a n c e , so t h a t d i s s i p a t i v e i n f l u e n c e s a r e c o n t r o l l i n g . F r e e r e s p o n s e s i n c l u d e (a) r e s o n a n c e i n f r e q u e n c y a n d (b) p r o p a g a t i o n o f f r e e waves i n s p a c e . I n t h e f a m i l i a r c a s e o f a r e s o n a n c e i n f r e q u e n c y , t h e r e s p o n s e t o a g i v e n o s c i l l a t i n g f o r c e i n t h e v i c i n i t y o f r e s o n a n c e o r n a t u r a l f r e q u e n c y i s p e a k e d , s h o w i n g a maximum a t t h e r e s o n a n c e f r e q u e n c y and a f i n i t e b a n d w i d t h o f h i g h r e s p o n s e . B o t h f e a t u r e s a r e c o n t r o l l e d b y t h e s y s t e m l o s s f a c t o r : See F i g u r e 1.

The peak a m p l i f i c a t i o n f a c t o r Q i s d e f i n e d as

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 4: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

320 SOUND AND VIBRATION DAMPING WITH POLYMERS

a n d d e s c r i b e s t h e peak r e s p o n s e a t r e s o n a n c e r e l a t i v e t o t h e r e s p o n s e t h a t w o u l d e x i s t a t t h e r e s o n a n c e f r e q u e n c y i f o n l y t h e s y s t e m s t i f f n e s s ( o r o n l y t h e mass) were c o n t r o l l i n g . ( C o n s i d e r t h e s i m p l e c a s e o f a mass on a s p r i n g . )

The r e s o n a n c e f r a c t i o n a l b a n d w i d t h i s A f / f n = T], f o r T| n o t t o o l a r g e , and r e p r e s e n t s t h e f r a c t i o n a l f r e q u e n c y d i f f e r e n c e b etween t h e " h a l f - p o w e r " o r "3-dB-down" p o i n t s i n t h e r e s p o n s e , i . e . , t h e p o i n t s where t h e s q u a r e d a m p l i t u d e d r o p s t o h a l f i t s peak v a l u e .

The above d i s c u s s i o n i m p l i e s s t e a d y - s t a t e r e s p o n s e i n t i m e . An e q u i v a l e n t r e c i p r o c a l v i e w o f s t e a d y - s t a t e r e s o n a n c e r e s p o n s e i s t h a t i n t h e v i c i n i t y o f r e s o n a n c e t h e r e i s a d i p i n t h e f o r c e r e q u i r e d t o m a i n t a i n a c o n s t a n t l e v e l o f r e s p o n s e . The f o r c e - r e d u c t i o n r a t i o i s Q, and t h e f r a c t i o n a l b a n d w i d t h o f t h e f o r c e r e d u c t i o n i s T|. I n c o n t r a s t , a t r u l y f o r c e - f r e e r e s p o n s e o f a r e s o n a n t s y s t e m (once e x c i t e d ) w o u l d i n v o l v e t h e e x p o n e n t i a l d e c a y o f v i b r a t i o n a m p l i t u d e w i t h t i m e . As we have m e n t i o n e d e a r l i e r , d e c a y i s a l s o c o n t r o l l e d b y t h e s y s t e m l o s s f a c t o r as f o l l o w s :

T e m p o r a l d e c a y r a t e : At = 27 . 3 T | f n (dB/sec) ,

where a v i b r a t i o n l e v e l L v w o u l d be e x p r e s s e d i n t h e c u s t o m a r y l o g a r i t h m i c d e c i b e l (dB) measure f o r a r e s p o n s e q u a n t i t y v, s u c h a s v e l o c i t y ,

L v = 10 l o g l—Z-Y ( d B r e V r e f ) . \ V r e f /

Thus a l e v e l change o f 10 dB c o r r e s p o n d s t o a f a c t o r 10 change i n an e n e r g y o r i n t e n s i t y - l i k e q u a n t i t y s u c h as v 2 .

The c o n c e p t o f t h e i n f l u e n c e o f damping on v i b r a t i o n d e c a y i s v e r y f a m i l i a r . However, t h e q u a n t i t a t i v e i m p l i c a t i o n o f a g i v e n v a l u e o f l o s s f a c t o r may be l e s s s o . To h e l p c o n v e y t h e c h a r a c t e r o f t h e t e m p o r a l d e c a y , T a b l e I shows t h e f o l l o w i n g f o r a r a n g e o f l o s s f a c t o r s : (a) t h e number o f c y c l e s o f v i b r a t i o n r e q u i r e d f o r t h e v i b r a t i o n a m p l i t u d e t o d e c a y t o o n e - t e n t h o f i t s i n i t i a l v a l u e , (b) a c o r r e s p o n d i n g r e p r e s e n t a t i v e sound, a n d (c) t h e c l a r i t y o r p i t c h o f t h e soun d . N o t e t h a t as t h e l o s s f a c t o r i n c r e a s e s , t h e d e c a y t i m e d e c r e a s e s , and t h e f r e q u e n c y b a n d w i d t h i n c r e a s e s . The r e s u l t i s t h a t a u n i q u e f r e q u e n c y o r p i t c h f o r t h e t r a n s i e n t becomes p r o g r e s s i v e l y l e s s w e l l d e f i n e d . T h i s i s i n k e e p i n g w i t h t h e " u n c e r t a i n t y p r i n c i p l e " r e l a t i n g t i m e and f r e q u e n c y Q ) .

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 5: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 321

T a b l e I . Dependence o f t h e C h a r a c t e r o f a T r a n s i e n t Decay on L o s s F a c t o r

L o s s F a c t o r N: c y c l e s f o r d e c a y t o 0.1

a m p l i t u d e S o u n d — P i t c h

< 0.001 > 730 " C l a n g " — a p p r o a c h e s p u r e t o n e

0.01 73 " B o n g " — c l e a r p i t c h

0.1 7.3 " B u n k " — d i s c e r n a b l e p i t c h

0.5 1.5 " T h u d " — a l m o s t w i t h o u t p i t c h

I n a way t h a t i s p a r a l l e l t o t h e t e m p o r a l d e c a y o f v i b r a t i o n o f a r e s o n a n t s y s t e m , damping g o v e r n s t h e s p a t i a l a t t e n u a t i o n o f f r e e l y p r o p a g a t i n g waves. I n F i g u r e 2, we see a wave, assumed e x c i t e d somewhere on t h e l e f t , t r a v e l i n g t o t h e r i g h t w i t h o u t f u r t h e r e x c i t a t i o n . The wave t r a v e l s w i t h "phase s p e e d " c a t a f r e q u e n c y f , w i t h a w a v e l e n g t h X g i v e n as

X = c / f .

As we have n o t e d above, t h e s y s t e m l o s s f a c t o r d e f i n e s t h e t e m p o r a l d e c a y o f t h e s y s t e m e n e r g y . T h e r e f o r e , i n c o n s i d e r i n g t h e s p a t i a l d e c a y o f v i b r a t i o n , we f i n d t h e " e n e r g y " s p e e d ( o r "group v e l o c i t y " ) c g i n v o l v e d i n t h e r e s u l t :

S p a t i a l d e c a y r a t e : Ax = 27.3 -°- T] ( d B / w a v e l e n g t h ) c g

[The e n e r g y s p e e d i s d e f i n e d (4-5) as c g = d f / d ( l A ) . ] I n n o n - d i s p e r s i v e s y s t e m s , s u c h as a c o u s t i c waves i n a

f l u i d o r s i m p l e t e n s i o n waves on a s t r i n g , t h e wave s p e e d does n o t v a r y w i t h f r e q u e n c y . Thus t h e e n e r g y s p e e d c g i s t h e same as t h e p h a s e s p e e d c, so t h a t

A\ = 27.3 T| (6B/X) ( n o n - d i s p e r s i v e waves)

T h e r e a r e wave t y p e s , however, i n w h i c h t h e wave s p e e d has an i n h e r e n t dependence on f r e q u e n c y . A v e r y i m p o r t a n t p r a c t i c a l example i s t h e p r o p a g a t i o n o f b e n d i n g waves on beams o r p l a t e s (.5.) where (when t h e w a v e l e n g t h i s l a r g e w i t h r e s p e c t t o t h e t h i c k n e s s o f t h e p l a t e o r beam) t h e e n e r g y s p e e d i s t w i c e t h e p h a s e s p e e d : c g = 2c. F o r s u c h b e n d i n g waves, we have

A^= 13.6 T| (dB/X) ( b e n d i n g waves)

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 6: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

322 SOUND AND VIBRATION DAMPING WITH POLYMERS

10

o Q . C O < D

OC 5K "5 O

2 ro

OC

1.0

0.1

Af/fn=n J V- t \ Q-i

\ i / ? / /

// jy Controlling

^Stiffness Resis

\ \ N \

N X

\ \ Parameter:

i % w

tance Massx.

I X 0.1

F i g u r e 1,

1.0

Relative Frequency f/f n

10

R e s o n a n c e B a n d w i d t h and A m p l i f i c a t i o n D e t e r m i n e d by L o s s F a c t o r

AA = 27.3 77 dB/A c 9

= 27.3 77 dB/A for nondispersive waves

= 13.6 77 dB/A for bending waves

F i g u r e 2 . F r e e Wave S p a t i a l A t t e n u a t i o n Due t o Damping

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 7: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 323

Damping C o n f i g u r a t i o n s t h a t U t i l i z e V i s c o e l a s t i c M a t e r i a l s

V i s c o e l a s t i c m a t e r i a l s have f o u n d a p p l i c a t i o n i n v i b r a t i o n d a mping i n a m y r i a d o f c o n f i g u r a t i o n s . Some o f t h e s e a r e v e r y much s p e c i f i c t o a p a r t i c u l a r a p p l i c a t i o n o r d e v i c e o r s t r u c t u r e , w h i l e o t h e r s a r e b r o a d l y u s e f u l . I n t h i s s e c t i o n , i t i s o u r p u r p o s e t o i n d i c a t e t h e g e n e r a l ways i n w h i c h v i s c o e l a s t i c m a t e r i a l s a r e a p p l i e d by d e s c r i b i n g two w i d e l y u s e d t y p e s o f damping t r e a t m e n t s , o u t l i n i n g t h e i r modes o f o p e r a t i o n , t h e dependence o f t h e i r p e r f o r m a n c e on m a t e r i a l p r o p e r t i e s and s y s t e m g e o m e t r y , s e v e r a l e l a b o r a t i o n s on t h e b a s i c c o n f i g u r a t i o n s , a nd a few ex a m p l e s o f a p p l i c a t i o n s . I n t h i s way, we hope t o c o n v e y some u n d e r s t a n d i n g o f why c e r t a i n p a r a m e t e r s a n d p r o p e r t i e s o f v i s c o e l a s t i c m a t e r i a l s a r e i m p o r t a n t i n damping a p p l i c a t i o n s .

The two g e n e r a l t r e a t m e n t s t h a t we s h a l l e x p l o r e a r e t h e " f r e e " v i s c o e l a s t i c l a y e r , a nd t h e c o n s t r a i n e d v i s c o e l a s t i c l a y e r . (These a r e sometimes r e f e r r e d t o as " e x t e n s i o n a l " a nd " s h e a r " damping, r e s p e c t i v e l y . ) These a r e s k e t c h e d i n F i g u r e 3, w h i c h shows e a c h t r e a t m e n t as a p p l i e d t o a p l a t e ( o r beam), and a l s o shows t h e t y p e o f d e f o r m a t i o n t h a t t h e v i s c o e l a s t i c l a y e r u n d e r g o e s due t o b e n d i n g o f t h e b a s e p l a t e . B e n d i n g v i b r a t i o n s a r e v e r y i m p o r t a n t i n t h e f i e l d s o f n o i s e a n d v i b r a t i o n c o n t r o l , a n d much o f o u r d i s c u s s i o n w i l l c o n c e r n t h e damping o f b e n d i n g waves. I n a d d i t i o n , i n c o n s i d e r i n g t h e e f f e c t i v e n e s s o f damping t r e a t m e n t s , one f i n d s t h a t t h e r e a r e t y p i c a l l y one o r more g e o m e t r i c p a r a m e t e r s o f t h e s t r u c t u r e a n d t h e t r e a t m e n t , a n d one o r more e l a s t i c o r s t i f f n e s s p a r a m e t e r s t h a t government t h e s y s t e m p e r f o r m a n c e .

The F r e e V i s c o e l a s t i c L a y e r . As we see i n F i g u r e 3, t h e f r e e v i s c o e l a s t i c l a y e r i s b onded t o t h e p l a t e t o be damped. As t h e p l a t e v i b r a t e s i n b e n d i n g , t h e v i s c o e l a s t i c l a y e r i s d e f o r m e d p r i n c i p a l l y i n e x t e n s i o n and c o m p r e s s i o n i n p l a n e s p a r a l l e l t o t h e p l a t e s u r f a c e . Such damping l a y e r s have l o n g been known, and a t f i r s t were a p p l i e d m o r e - o r - l e s s e m p i r i c a l l y . I n t h e e a r l y 1950s O b e r s t (_£,Z) and L i e n a r d (£,j)) p u b l i s h e d a n a l y s e s d e s c r i b i n g q u a n t i t a t i v e a n a l y t i c a l m odels o f f r e e l a y e r b e h a v i o r .

The damping p e r f o r m a n c e o f a f r e e l a y e r t r e a t m e n t f o r p l a t e b e n d i n g waves i s shown i n F i g u r e 4 (JLQ., 11) • T h i s c h a r t , w h i c h i s O b e r s t 1 s r e s u l t , g i v e s t h e s y s t e m l o s s f a c t o r T| r e l a t i v e t o X\2r t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c m a t e r i a l , a s a f u n c t i o n o f t h e t h i c k n e s s r a t i o H 2 / H 1 ( v i s c o e l a s t i c l a y e r t o p l a t e ) . E a c h o f t h e s e v e r a l c u r v e s c o r r e s p o n d s t o a p a r t i c u l a r v a l u e o f t h e r e l a t i v e Young's s t o r a g e modulus E 2 / E 1 ( v i s c o e l a s t i c l a y e r t o p l a t e ) .

T h i s d e s c r i p t i o n o f t h e damping e f f e c t i v e n e s s o f t h e f r e e l a y e r i s c l e a r and s i m p l e : I t s f e a t u r e s a r e t h a t s y s t e m l o s s f a c t o r i n c r e a s e s

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 8: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

324 SOUND AND VIBRATION DAMPING WITH POLYMERS

Visco-elastic Constraining

(a) Free layer (b) Constrained layer

F i g u r e 3 . F r e e and C o n s t r a i n e d V i s c o e l a s t i c - L a y e r Damping T r e a t m e n t s

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 9: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 325

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 10: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

326 SOUND AND VIBRATION DAMPING WITH POLYMERS

a) w i t h l a y e r t h i c k n e s s b) w i t h l a y e r m odulus, and, o f c o u r s e , c) w i t h t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c l a y e r

( t h e r e s u l t a n t s y s t e m l o s s f a c t o r i s p r o p o r t i o n a l t o T|2, t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c l a y e r . )

I n t h e c e n t r a l r e g i o n o f F i g u r e 4 a p a r t i c u l a r l y s i m p l e r e s u l t a p p l i e s : t h e l o s s f a c t o r r a t i o T|/T}2 i s p r o p o r t i o n a l t o ( H 2 / H 1 ) 2 . Thus, o v e r a u s e f u l r a n g e

* Et feF *•

Her e t h e i n f l u e n c e s o f a g e o m e t r i c p a r a m e t e r , H 2 / H 1 , a n d o f an e l a s t i c p a r a m e t e r , E 2 / E 1 , a r e c l e a r . T h i s a n a l y t i c a l m o d e l f o r f r e e - l a y e r damping makes c l e a r t h e d e s i r a b l e p r o p e r t i e s o f t h e v i s c o e l a s t i c m a t e r i a l . S p e c i f i c a l l y , t h e f r e e - l a y e r damping m a t e r i a l s h o u l d have b o t h l a r g e s t o r a g e m odulus E 2 and l a r g e l o s s f a c t o r T|2. Over much o f t h e r a n g e , i t i s f a i r t o s a y t h a t t h e s y s t e m l o s s f a c t o r i s m a x i m i z e d by m a x i m i z i n g t h e l o s s m o d u l u s , t h a t i s , t h e p r o d u c t E 2 T I 2 • However, a t t h e u p p e r end o f p e r f o r m a n c e shown i n F i g u r e 4, a h i g h e r v a l u e o f l o s s f a c t o r T|2 i s somewhat more e f f e c t i v e t h a n a h i g h e r modulus E 2 (M.L. D r a k e , p e r s o n a l c o m m u n i c a t i o n , 1 9 8 9 ) .

We n o t e h e r e t h a t f o r s i m p l i c i t y , we have i m p l i e d t h a t " b e s t p e r f o r m a n c e " means h i g h e s t s y s t e m l o s s f a c t o r . T h i s i s t h e c a s e f o r a number o f damping a p p l i c a t i o n s , b u t n o t f o r a l l c a s e s . D. J . Mead (12,12.) has n o t e d t h e q u a n t i t a t i v e i m p o r t a n c e o f o t h e r s y s t e m p a r a m e t e r s ( s t i f f n e s s a n d mass) i n o p t i m i z i n g a damping t r e a t m e n t i n c a s e s where maximum l o s s f a c t o r i s n o t t h e c r i t e r i o n o f b e s t p e r f o r m a n c e ( e . g . , m i n i m i z i n g s t r e s s , a c c e l e r a t i o n , e t c . ) . These c o n s i d e r a t i o n s a r e p a r t i c u l a r l y i m p o r t a n t i n c o n t r o l l i n g s t r u c t u r a l f a t i g u e and eq u i p m e n t m a l f u n c t i o n .

An i n t e r e s t i n g c h a r a c t e r i s t i c o f t h e f r e e v i s c o e l a s t i c l a y e r i s t h a t i t i s , t o f i r s t o r d e r , " l o c a l l y r e a c t i n g " . T h a t i s , t h e s t r a i n i n t h e l a y e r i s p r o p o r t i o n a l t o t h e l o c a l c u r v a t u r e o f p l a t e , so t h a t t h e e n e r g y d i s s i p a t e d i n t h e v i s c o e l a s t i c l a y e r i s p r o p o r t i o n a l l o c a l l y t o t h e e l a s t i c e n e r g y i n t h e p l a t e . T h e r e f o r e , f o r f u l l c o v e r a g e by t h e v i s c o e l a s t i c l a y e r , t h e damping p e r f o r m a n c e (as s y s t e m l o s s f a c t o r ) i s i n d e p e n d e n t o f t h e mode shape o f t h e v i b r a t i o n . T h i s f a c t s i m p l i f i e s t h e s p e c i f i c a t i o n o f a t r e a t m e n t f o r w i d e f r e q u e n c y c o v e r a g e (as t h e r e i s no i n h e r e n t f r e q u e n c y o r mode-shape d e p e n d e n c e ) . I t i s , h o wever, p o s s i b l e t o o p t i m i z e p a r t i a l c o v e r a g e f o r a p a r t i c u l a r mode o r a l i m i t e d c l a s s o f modes.

The C o n s t r a i n e d V i s c o e l a s t i c L a y e r . The s e c o n d o f o u r two g e n e r a l damping t r e a t m e n t s i s t h e c o n s t r a i n e d v i s c o e l a s t i c l a y e r shown i n F i g u r e 3 ( b ) . The c o m p l e t e c o n s t r a i n e d - l a y e r c o n f i g u r a t i o n i s a t h r e e - l a y e r l a m i n a t e c o m p r i s i n g b a s e l a y e r t o be damped, v i s c o e l a s t i c l a y e r , a n d c o n s t r a i n i n g

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 11: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 327

l a y e r . As F i g u r e 3 s u g g e s t s , t h e p r i n c i p a l d e f o r m a t i o n o f t h e v i s c o e l a s t i c l a y e r o c c u r s as s h e a r as t h e c o m p o s i t e u n d e r g o e s t r a n s v e r s e ( b e n d i n g ) m o t i o n . (The b e h a v i o r o f t h e c o n s t r a i n e d - l a y e r s y s t e m i s d e s c r i b e d i n a number o f r e f e r e n c e s . See, f o r e x a m p l e , R e f e r e n c e s 2, 14-19.)

I n b e n d i n g v i b r a t i o n , t h i s t h r e e - l a y e r s y s t e m e x h i b i t s an i n h e r e n t d i s p e r s i o n f r o m " c o u p l e d " b e n d i n g f o r l a r g e w a v e l e n g t h s (low f r e q u e n c i e s ) t o " u n c o u p l e d " b e n d i n g f o r s m a l l w a v e l e n g t h s ( h i g h f r e q u e n c i e s ) . I n t h e s e l o w - and h i g h - f r e q u e n c i e s r e g i m e s , t h e e l a s t i c e n e r g y o f d e f o r m a t i o n l i e s a l m o s t e n t i r e l y i n t h e b e n d i n g and e x t e n s i o n o f t h e b a s e a n d c o n s t r a i n i n g l a y e r s . Thus, i n t h e s e l i m i t s o f v e r y l o w and v e r y h i g h f r e q u e n c y , t h e v i s c o e l a s t i c l a y e r c a n n o t b r i n g a b o u t s i g n i f i c a n t damping o f t h e s y s t e m . (But see t h e l a t e r d i s c u s s i o n o f segmented c o n s t r a i n i n g l a y e r s . )

[The m e a n i n g o f t h e t e r m s i s as f o l l o w s : I n c o u p l e d b e n d i n g , t h e w a v e l e n g t h i s l o n g enough so t h a t t h e s h e a r s t i f f n e s s o f t h e v i s c o e l a s t i c l a y e r ( a c t i n g o v e r a l e n g t h o f h a l f o f t h e b e n d i n g w a v e l e n g t h b e t w e e n s t r e s s r e v e r s a l s ) i s a b l e t o c a u s e t h e b a s e and c o n s t r a i n i n g members t o s t r e t c h a nd compress r a t h e r t h a n a l l o w i n g s i g n i f i c a n t s h e a r s t r a i n i n t h e v i s c o e l a s t i c c e n t r a l l a y e r . A t s u f f i c i e n t l y l a r g e w a v e l e n g t h s , t h e c o m p o s i t e bends e s s e n t i a l l y a s t h o u g h i t were " p e r f e c t l y " b onded t o g e t h e r by a c e n t r a l l a y e r w i t h " i n f i n i t e " s h e a r s t i f f n e s s . ]

[ I n c o n t r a s t , f o r s h o r t w a v e l e n g t h s ( h i g h f r e q u e n c i e s ) t h e s h e a r s t i f f n e s s o f a h a l f w a v e l e n g t h o f t h e v i s c o e l a s t i c l a y e r i s s m a l l r e l a t i v e t o t h e e x t e n s i o n a l s t i f f n e s s o f t h e b a s e a n d c o n s t r a i n i n g l a y e r s . I n t h e l i m i t o f v e r y s h o r t w a v e l e n g t h s , t h e l a m i n a t e b e h a v e s as t h o u g h t h e two o u t e r l a y e r s were j o i n e d b y a c e n t r a l l a y e r o f v a n i s h i n g s h e a r s t i f f n e s s , b u t w h i c h m a i n t a i n s t h e s p a c i n g b etween l a y e r s . Thus t h e " u n c o u p l e d " b e n d i n g s t i f f n e s s o f t h e l a m i n a t e a p p r o a c h e s s i m p l y t h e sum o f t h e b e n d i n g s t i f f n e s s o f t h e o u t e r l a y e r s , i . e . , a l e s s e r s t i f f n e s s t h a n t h a t o f t h e l a y e r s t i g h t l y c o u p l e d a t l a r g e w a v e l e n g t h s . ]

However, i n t h e m i d - f r e q u e n c y r e g i o n , where t h e e l a s t i c e n e r g y i n t h e v i s c o e l a s t i c l a y e r c a n r e p r e s e n t a u s e f u l f r a c t i o n o f t h e t o t a l , t h e s y s t e m l o s s f a c t o r r i s e s a n d p a s s e s t h r o u g h a maximum. F i g u r e 5 shows t h i s b e h a v i o r w i t h t h e w a v e l e n g t h (X) dependence r e p r e s e n t e d by a " s h e a r p a r a m e t e r " y d e f i n e d as f o l l o w s :

where t h e r e c i p r o c a l o f t h e p a r a m e t e r a d e f i n e s a c h a r a c t e r i s t i c d i s t a n c e i n w h i c h a s h e a r p e r t u r b a t i o n i n t h e l a m i n a t e r e l a x e s t o 1/e o f i t s i n i t i a l v a l u e (1A, 17, ZD.) . (See F i g u r e 6.) T h e r e f o r e , t h e s h e a r p a r a m e t e r m e a s u r e s t h e s q u a r e o f t h e r a t i o o f t h e b e n d i n g w a v e l e n g t h t o t h i s c h a r a c t e r i s t i c l e n g t h . C l e a r l y a i n v o l v e s s i m p l y t h e p r o d u c t o f t h e s h e a r s t i f f n e s s G 2 / H 2 o f a u n i t l e n g t h

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 12: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

328 SOUND AND VIBRATION DAMPING WITH POLYMERS

yopt Shear Parameter y

F i g u r e 5 . C h a r a c t e r i s t i c Damping P e r f o r m a n c e o f a C o n t i n u o u s C o n s t r a i n e d V i s c o e l a s t i c L a y e r

F i g u r e 6 . S h e a r R e l a x a t i o n i n a C o n s t r a i n e d V i s c o ­e l a s t i c L a y e r T r e a t m e n t

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 13: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 329

a n d w i d t h o f t h e v i s c o e l a s t i c l a y e r , and t h e summed e x t e n s i o n a l c o m p l i a n c e s 1 / K i , I/K3 o f u n i t l e n g t h and w i d t h o f t h e b a s e and c o n s t r a i n i n g l a y e r s .

S i n c e , f o r b e n d i n g o f a s i m p l e beam o r p l a t e , f r e q u e n c y and w a v e l e n g t h a r e r e l a t e d as f « 1/A,2, i t f o l l o w s t h a t t h e s h e a r p a r a m e t e r y i s i n v e r s e l y p r o p o r t i o n a l t o f r e q u e n c y .

The l o s s f a c t o r peak w h i c h o c c u r s a t y o p t c a n be l o c a t e d i n f r e q u e n c y by t h e a p p r o p r i a t e c h o i c e o f t h e p a r a m e t e r s t h a t d e f i n e y (see b e l o w ) . The maximum l o s s f a c t o r T| m a x a t t h e peak i s g o v e r n e d by T[2 t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c l a y e r and by a " s t i f f n e s s " p a r a m e t e r Y s i m p l y d e f i n e d as (17)

v _ ^coupled ~ ^uncoupled X — ,

^uncoupled

where t h e c o u p l e d and u n c o u p l e d b e n d i n g s t i f f n e s s e s have b e e n d i s c u s s e d above. F i g u r e 7 (JLQ, ZX) shows T| m a x v e r s u s Y f o r a r a n g e o f v a l u e s o f T |2. We see t h a t T] i s p r o p o r t i o n a l t o Y f o r s m a l l e r v a l u e o f t h e s e p a r a m e t e r s , b u t i n c r e a s e s more s l o w l y as e i t h e r p a r a m e t e r becomes l a r g e r ( s a y Y > 0.3 o r T] > 0.5) .

The p a r a m e t e r Y depends o n l y on t h e p r o p e r t i e s o f t h e b a s e and c o n s t r a i n i n g l a y e r s . A l t h o u g h we have c a l l e d i t a s t i f f n e s s p a r a m e t e r , Y does become de p e n d e n t o n l y on ge o m e t r y when t h e two o u t s i d e l a y e r s have e q u a l e l a s t i c m o d u l i .

Above we r e f e r r e d t o t h e optimum s h e a r p a r a m e t e r Yopt, w h i c h d e f i n e s t h e l o c a t i o n o f t h e peak damping as a f u n c t i o n o f w a v e l e n g t h ( o r f r e q u e n c y ) . We have (11)

Yopt = . 1 — — V (1+Y) (X-Tll)

Thus, t h e c o n s t r a i n e d - l a y e r s y s t e m p a r a m e t e r s o f i m p o r t a r e t h e f o l l o w i n g :

(1) The S t i f f n e s s / G e o m e t r i c p a r a m e t e r Y w h i c h d e f i n e s t h e " s e v e r i t y " o f t h e b e n d i n g - w a v e d i s p e r s i o n c h a r a c t e r i s t i c b e tween c o u p l e d and u n c o u p l e d c o n d i t i o n s . Y and t h e l o s s f a c t o r T|2 o f t h e v i s c o e l a s t i c l a y e r d e t e r m i n e t h e maximum s y s t e m damping f o r t h e t r e a t m e n t .

( 2 ) The S h e a r P a r a m e t e r y w h i c h d e f i n e s t h e l o c a t i o n w i t h i n t h e d i s p e r s i o n c h a r a c t e r i s t i c s o f a g i v e n f r e q u e n c y b y c o m p a r i n g t h e c o r r e s p o n d i n g b e n d i n g w a v e l e n g t h w i t h t h e c h a r a c t e r i s t i c s h e a r r e l a x a t i o n l e n g t h i n t h e l a m i n a t e . y i s a com b i n e d g e o m e t r i c and e l a s t i c p a r a m e t e r . The g o v e r n i n g p r o p e r t y o f t h e v i s c o e l a s t i c l a y e r i s i t s s h e a r s t i f f n e s s G 2 / H 2 .

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 14: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

330 SOUND, AND VIBRATION DAMPING WITH POLYMERS

The d e s i g n o f a c o n s t r a i n e d - l a y e r t r e a t m e n t (IX, UL, Z) i n v o l v e s a number o f s t e p s a n d i t e r a t i o n s . T y p i c a l l y (but n o t a l w a y s ) o u r g o a l w o u l d be t o a c h i e v e a g i v e n maximum l o s s f a c t o r T j m a x

a n < d t o l o c a t e t h i s peak p e r f o r m a n c e a t a g i v e n f r e q u e n c y f o r t h e o p e r a t i n g t e m p e r a t u r e r a n g e e x p e c t e d . Out o f t h e d e s i g n p r o c e s s w i l l come d e s i r e d r a n g e s o f v a l u e s o f Y and T |2, hence a v a l u e o f Yopt/- a n c * e v e n t u a l l y a d e s i r e d r a n g e f o r t h e s h e a r s t i f f n e s s G 2 / H 2 o f t h e v i s c o e l a s t i c l a y e r . Thus, t h e m a t e r i a l - p r o p e r t y r e q u i r e m e n t s w i l l be

a) a u s e f u l l y l a r g e l o s s f a c t o r T |2, and b) a s e l e c t e d v a l u e o f G 2 / H 2 A w i t h a p r a c t i c a l l y

a c h i e v a b l e H 2 .

As a r e s u l t , one may be a b l e t o c h o o s e f r o m a s e t o f m a t e r i a l s , a d j u s t i n g t h e s h e a r s t i f f n e s s by a d j u s t i n g t h e l a y e r t h i c k n e s s H 2 . ( T h i s i s s o m e t h i n g o f an o v e r s i m p l i f i c a t i o n , b e c a u s e t h e v a l u e o f H 2 i n f l u e n c e s Y.) T h i s a b i l i t y t o a d a p t a v i s c o e l a s t i c m a t e r i a l t o a p a r t i c u l a r a p p l i c a t i o n c a n a l l o w t h e i n c l u s i o n o f a r a n g e o f c a n d i d a t e m a t e r i a l s h a v i n g d e s i r a b l e p r o p e r t i e s a s i d e f r o m t h e d y n a m i c e l a s t i c p r o p e r t i e s G 2 and T |2 .

V a r i a t i o n s on C o n s t r a i n e d V i s c o e l a s t i c L a y e r S y s t e m s . The c o n s t r a i n e d v i s c o e l a s t i c l a y e r t r e a t m e n t r as a p p l i e d t o a b a s e member, i s a t i t s s i m p l e s t , a c o n t i n u o u s 3 - l a y e r l a m i n a t e . Numerous v a r i a t i o n s and e l a b o r a t i o n s have been e x p l o r e d , a n d a number have f o u n d p r a c t i c a l a p p l i c a t i o n . I n t h i s s e c t i o n we r e v i e w a few o f t h e s e as f u r t h e r i l l u s t r a t i o n s o f t h e a p p l i c a t i o n o f v i s c o e l a s t i c m a t e r i a l s i n s h e a r - d e p e n d e n t c o n f i g u r a t i o n s . E x a m p l e s d i s c u s s e d a r e

• Segmented c o n s t r a i n i n g l a y e r • M u l t i p l e c o n s t r a i n e d - l a y e r t r e a t m e n t s • " F i s h - s c a l e " t r e a t m e n t : m u l t i p l e , o v e r l a p p i n g

segmented l a y e r s .

Segmented Constraining Layer. As we s a i d i n t h e p r e c e d i n g s e c t i o n , a c h a r a c t e r i s t i c o f t h e c o n t i n u o u s c o n s t r a i n e d v i s c o e l a s t i c l a y e r t r e a t m e n t i s i t s i n h e r e n t w a v e l e n g t h ( f r e q u e n c y ) dependence. The s y s t e m l o s s f a c t o r f a l l s o f f on e i t h e r s i d e o f a peak v a l u e (see F i g u r e 5). H a p p i l y , t h e damping p e r f o r m a n c e i n t h e l o w - f r e q u e n c y , l a r g e -w a v e l e n g t h r e g i o n b e l o w t h e damping peak c a n be i m p r o v e d s i g n i f i c a n t l y by s e g m e n t i n g ( c u t t i n g ) t h e c o n s t r a i n i n g l a y e r p e r i o d i c a l l y . (See F i g u r e 8.)

T h i s a p p r o a c h , s u g g e s t e d by D. J . Mead (22) and a n a l y z e d b y P a r f i t t et al. (2Z, 22.), and l a t e r b y P l u n k e t t and Lee (24.) and b y Z e i n e t d i n o v a e t al. (25), r e s u l t s i n l o c a l l y i n c r e a s e d s t r a i n s i n t h e v i s c o e l a s t i c l a y e r i n t h e r e g i o n s a r o u n d t h e c u t s , and t h e r e f o r e r e s u l t s i n a d d i t i o n a l d i s s i p a t i o n . P a r f i t t ' s e x p e r i m e n t a l r e s u l t s

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 15: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

F i g u r e 8. Segmented C o n s t r a i n e d - L a y e r T r e a t m e n t

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 16: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

332 SOUND AND VIBRATION DAMPING WITH POLYMERS

a r e shown i n F i g u r e 9, where i n c r e a s i n g numbers o f c u t s i n t h e c o n s t r a i n i n g l a y e r o f a t r e a t m e n t a p p l i e d t o a beam c a u s e t h e l o w f r e q u e n c y damping t o r i s e , r e a c h a maximum, and t h e n f a l l . T h e r e i s , f o r a g i v e n t r e a t m e n t , an optimum segment l e n g t h , w h i c h i s shown i n b o t h t h e o r y a n d e x p e r i m e n t . As one w o u l d e x p e c t , t h e optimum l e n g t h b a l a n c e s segment l e n g t h a g a i n s t t h e s h e a r - r e l a x a t i o n l e n g t h f o r t h e l a m i n a t e . When t h e c u t s a r e t o o c l o s e t o e a c h o t h e r ( i n t e r m s o f t h e s h e a r r e l a x a t i o n l e n g t h ) , t h e i n d u c e d s t r a i n f i e l d s i n t e r f e r e w i t h e a c h o t h e r , r e d u c i n g t h e e f f e c t i v e n e s s o f s e g m e n t i n g . As F i g u r e 9 shows, t h e optimum d e s i g n r a i s e s t h e l o w - f r e q u e n c y b r a n c h o f t h e l o s s -f a c t o r c h a r a c t e r i s t i c p r a c t i c a l l y t o t h e l e v e l o f damping s e e n a t t h e peak.

I n c i d e n t a l l y , K e r w i n and S m i t h (2_Q.) have shown t h a t e s s e n t i a l l y t h e same s e g m e n t - l e n g t h o p t i m i z a t i o n y i e l d s b e s t damping o f l o n g i t u d i n a l o r e x t e n s i o n a l waves i n t h e b a s e p l a t e . The segmented c o n s t r a i n e d v i s c o e l a s t i c l a y e r i s one o f t h e few t r e a t m e n t s c a p a b l e o f p r o v i d i n g u s e f u l d amping o f s u c h waves, w h i c h a r e t r o u b l e s o m e i n c e r t a i n c a s e s .

M u l t i p l e , Continuous Constrained V i s c o e l a s t i c Layer Treatments. M u l t i p l e l a y e r s o f c o n s t r a i n e d - l a y e r t r e a t m e n t a r e an o b v i o u s p o s s i b i l i t y f o r c o n s i d e r a t i o n . Some p r a c t i c a l a d v a n t a g e s m i g h t a c c r u e , s u c h a s e a s i e r h a n d l i n g a n d i n s t a l l a t i o n on c u r v e d s u r f a c e s . I t m i g h t a l s o be p o s s i b l e t o m a n u f a c t u r e and s t o c k f e w e r " s i z e s " o f t r e a t m e n t , g a i n i n g a p p l i c a t i o n s f l e x i b i l i t y t h r o u g h t h e u s e o f m u l t i p l e l a y e r s . F u r t h e r , d e s i g n p r o b l e m s may be e a s e d i n f i n d i n g optimum c o n f i g u r a t i o n s w i t h o u t b e i n g f o r c e d t o use v e r y t h i n l a y e r s o f a good, b u t l o w - m o d u l u s , v i s c o e l a s t i c m a t e r i a l .

S e v e r a l s t u d i e s o f m u l t i p l e l a y e r t r e a t m e n t s have been made (2_£, 22., 22, 2J_. F o r s u c h t r e a t m e n t c o m p r i s i n g i d e n t i c a l l a y e r s , t h e r e does n o t a p p e a r t o be a s t r o n g p e r f o r m a n c e a d v a n t a g e o v e r a s i n g l e c o n s t r a i n e d - l a y e r t r e a t m e n t o f e q u a l w e i g h t (25., 22.) .

An i m p o r t a n t e x c e p t i o n i s t h e use o f m u l t i p l e l a y e r s o f d i f f e r e n t p r o p e r t i e s , e s p e c i a l l y where damping p e r f o r m a n c e must be a c h i e v e d o v e r a b r o a d e r t e m p e r a t u r e r a n g e , o r e q u i v a l e n t l y a t s e v e r a l w i d e l y s e p a r a t e d t e m p e r a t u r e s . I n s u c h an a p p l i c a t i o n , as H e n d e r s o n (27) p o i n t s o u t , an i n n e r c o n s t r a i n e d - l a y e r t r e a t m e n t c o n t a i n s a h i g h - t e m p e r a t u r e v i s c o e l a s t i c damping m a t e r i a l , w h i l e an o u t e r t r e a t m e n t u s e s a l o w e r - t e m p e r a t u r e damping m a t e r i a l . S u c h a c o n f i g u r a t i o n p r o v i d e s good s h e a r c o u p l i n g t o t h e o u t e r t r e a t m e n t i n t h e l o w e r t e m p e r a t u r e r a n g e where t h e i n n e r v i s c o e l a s t i c l a y e r i s s t i f f . A t h i g h e r t e m p e r a t u r e s , t h e i n n e r c o n s t r a i n e d - l a y e r t r e a t m e n t i s , o f c o u r s e , w e l l c o u p l e d t o t h e v i b r a t i n g s t r u c t u r e , a nd i s t h e r e f o r e a b l e t o p r o v i d e e f f e c t i v e damping.

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 17: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 333

Multiple-Layer Segmented Treatments. A n o t h e r i n t e r e s t i n g clamping c o n f i g u r a t i o n i n v o l v e s t h e u s e o f m u l t i p l e - l a y e r s e gmented c o n s t r a i n e d l a y e r s . See F i g u r e 10. T h i s c o n f i g u r a t i o n was p a t e n t e d by P a i n t e r (2J1, 2_£) and has been a n a l y z e d by Warnaka, K e r w i n , and C a r b o n e l l (2Q) and b y P l u n k e t t a nd Lee (24.) .

The e l a s t i c segments ( p l a t e l e t s o r " f i s h s c a l e s " ) t a k e on t h e r o l e o f a m a c r o s c o p i c f i l l e r f o r t h e v i s c o e l a s t i c m a t e r i a l , r a i s i n g E 1 and t h e r e f o r e E" ( a t l e a s t a t f i l l e r c o n c e n t r a t i o n s t h a t a r e n o t s o h i g h as t o r e d u c e t h e e f f e c t i v e l o s s f a c t o r e x c e s s i v e l y ) . The r e s u l t i s an o r t h o t r o p i c c o m p o s i t e m a t e r i a l t h a t c a n e x h i b i t t h e p r o p e r t i e s o f a v e r y e f f e c t i v e " f r e e " l a y e r t r e a t m e n t . As one w o u l d e x p e c t , t h e d e s i g n p r o c e s s i n v o l v e s o p t i m i z i n g t h e i n c r e a s e d e x t e n s i o n a l l o s s modulus by b a l a n c i n g t h e e x t e n s i o n a l s t i f f n e s s o f t h e segments and t h e s h e a r s t i f f n e s s o f v i s c o e l a s t i c l a y e r . E s s e n t i a l l y t h e same p h y s i c a l c o n s i d e r a t i o n s a p p l y as i n o p t i m i z i n g t h e segment l e n g t h i n a s i n g l e s e g m e n t e d - c o n s t r a i n e d - l a y e r t r e a t m e n t .

T h i s p l a t e l e t - f i l l e d t r e a t m e n t , a l t h o u g h a t t r a c t i v e i n some r e s p e c t s , does n o t a p p e a r t o have f o u n d w i d e a p p l i c a t i o n , p e r h a p s b e c a u s e o f i t s c o m p l e x i t y .

S p a c e d Damping T r e a t m e n t s f o r B e n d i n g Waves. A homogeneous member t h a t v i b r a t e s i n b e n d i n g e x p e r i e n c e s o s c i l l a t i n g c u r v a t u r e o f i t s n e u t r a l p l a n e (and o f i t s s u r f a c e s ) . The r e s u l t i n g e x t e n s i o n a l s t r a i n s i n c r e a s e l i n e a r l y w i t h d i s t a n c e f r o m t h e n e u t r a l p l a n e . T h e r e i s , t h e r e f o r e , t h e p o s s i b i l i t y o f m a k i n g g e o m e t r i c m a n i p u l a t i o n s o f a damping t r e a t m e n t t o make i t more e f f e c t i v e . One s u c h c o n c e p t known as " s p a c e d damping" i s p a r t i c u l a r l y a p p l i c a b l e t o f r e e a n d c o n s t r a i n e d v i s c o e l a s t i c l a y e r s ( 3 1 - 3 6 r 2_i) , and i s i l l u s t r a t e d i n F i g u r e 11. T h e r e we see t h a t t h e d e f o r m a t i o n o f t h e v i s c o e l a s t i c l a y e r i n e x t e n s i o n o r s h e a r i s i n c r e a s e d t h r o u g h t h e u s e o f a s p a c e r t h a t p l a c e s t h e f r e e l a y e r o r t h e c o n s t r a i n i n g l a y e r f u r t h e r f r o m t h e n e u t r a l p l a n e . The r e s u l t s c a n be h i g h e r l o s s f a c t o r , r e d u c e d t r e a t m e n t w e i g h t , o r t h e n e e d f o r a s m a l l e r amount o f v i s c o e l a s t i c m a t e r i a l .

The p r o p e r t i e s d e s i r e d o f an i d e a l s p a c e r l a y e r a r e t h a t i t be s t i f f i n s h e a r , b u t t h a t t h e s p a c e r i t s e l f c o n t r i b u t e m i n i m a l l y t o t h e b e n d i n g s t i f f n e s s o f t h e b a s e s t r u c t u r e , s h i f t i n g t h e n e u t r a l p l a n e as l i t t l e as p o s s i b l e . We n o t e t h a t f o r t h e s p a c e d c o n s t r a i n e d l a y e r , t h e c o m b i n e d f u n c t i o n o f t h e v i s c o e l a s t i c l a y e r a nd s p a c e r i s t o p r o v i d e a t h i c k , d i s s i p a t i v e a nd a p p r o p r i a t e l y s t i f f ( i n s h e a r ) l a y e r b etween t h e c o n s t r a i n i n g a nd b a s e l a y e r s . T h e r e f o r e t h e o r d e r o f t h e v i s c o e l a s t i c a n d s p a c e r e l e m e n t s i s a r b i t r a r y a nd t h e y may be s u b d i v i d e d a s l o n g as t h e d e s i r e d p r o p e r t i e s a r e p r e s e r v e d . These p o s s i b i l i t i e s g i v e a d d i t i o n a l f r e e d o m i n a d a p t i n g v i s c o e l a s t i c m a t e r i a l s f o r e f f e c t i v e damping.

O t h e r s p a c e r - l i k e g e o m e t r i c m a n i p u l a t i o n s have been c o n s i d e r e d f o r c o n s t r a i n e d v i s c o e l a s t i c l a y e r s . These

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 18: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

334 SOUND AND VIBRATION DAMPING WITH POLYMERS

(0

0 . 0 3

0.01

0.001

Nu

— 8

3 r of J 5eg snts 1

Nu

— 8

16 4

A - Frequencies where cut spacing = A

4

1/ 3 4 5 7 I00 3 4 5 7 IK 5K

Frequency (Hz)

F i g u r e 9. M e a s u r e d L o s s F a c t o r o f Segmented C o n s t r a i n e d L a y e r Damping f o r V a r i o u s Segment L e n g t h s on a 3 6 - i n . - L o n g B a r (The c u r v e f o r 3 segments may a c t u a l l y be f o r 2.) ( A d a p t e d from r e f . 22)

F i g u r e 10. M u l t i p l e Segmented C o n s t r a i n e d - L a y e r T r e a t m e n t

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 19: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 335

Visco-Elastic. Layer V

Plate•

(a) Simple ' (b) Spaced

Spacer used to increase extensional strain in free layer.

Constraining y Layer ^

^M/isco-Elastic-r Layer

Plate

• Spacer

• Spacer

(a) Simple (b) Spaced

Spacer used to increase shear strain in constrained layer.

F i g u r e 11. S i m p l e and S p a c e d F r e e and C o n s t r a i n e d V i s c o e l a s t i c - L a y e r Damping T r e a t m e n t s

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 20: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

336 SOUND AND VIBRATION DAMPING WITH POLYMERS

i n c l u d e W h i t t i e r ' s (22., 2J)) a r c h e d t r u s s , shown i n F i g u r e 12(a) a n d P a i n t e r ' s ( M , 21) h a t - s e c t i o n o f F i g u r e 1 2 ( b ) .

R e s o n a n t Damping T r e a t m e n t s , where damping i s r e q u i r e d o v e r a m o r e - o r - l e s s l i m i t e d r a n g e o f f r e q u e n c y , r e s o n a n t damping t r e a t m e n t s c a n be o f use (2, 2.) . F i g u r e 13 shows e x a m p l e s o f r e s o n a n t o r " t u n e d " dampers t h a t u s e v i s c o e l a s t i c m a t e r i a l s a s t h e lumped e l a s t i c e l e m e n t i n c o m b i n a t i o n w i t h an a p p r o p r i a t e mass. The v i s c o e l a s t i c e l e m e n t c a n have i t s p r i n c i p a l d e f o r m a t i o n e i t h e r i n e x t e n s i o n o r i n s h e a r , d e p e n d i n g on t h e g e o m e t r y c h o s e n .

A r e s o n a n t damper f u n c t i o n s a s f o l l o w s : A t t h e r e s o n a n c e f r e q u e n c y (as d e t e r m i n e d by t h e mass and t h e s t i f f n e s s ) , t h e i n p u t impedance t o t h e b a s e o f t h e damper becomes r e s i s t i v e and r i s e s t o a r e l a t i v e l y h i g h v a l u e , w h i c h i s p r o p o r t i o n a l t o t h e moving mass and i n v e r s e l y p r o p o r t i o n a l t o t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c m a t e r i a l . Power, t h e r e f o r e , f l o w s i n t o t h e damper a n d i s d i s s i p a t e d .

The p e r f o r m a n c e and m a t e r i a l r e q u i r e m e n t s f o r a r e s o n a n t damper a r e d i f f e r e n t f r o m t h o s e f o r , s a y , a f r e e o r c o n s t r a i n e d v i s c o e l a s t i c l a y e r . F o r a g i v e n b a s e v e l o c i t y a m p l i t u d e , t h e i n p u t r e s i s t a n c e , and, t h e r e f o r e t h e power d i s s i p a t e d a t t h e r e s o n a n c e f r e q u e n c y i s i n v e r s e l y p r o p o r t i o n a l t o t h e l o s s f a c t o r o f t h e v i s c o e l a s t i c m a t e r i a l . However, t h e b a n d w i d t h o v e r w h i c h t h e h i g h i n p u t r e s i s t a n c e i s s e e n i s d i r e c t l y p r o p o r t i o n a l t o t h e l o s s f a c t o r . Thus a l o w l o s s f a c t o r g i v e s a h i g h d amping peak t h a t c o v e r s o n l y a n a r r o w f r e q u e n c y r a n g e . C o n v e r s e l y ,a h i g h m a t e r i a l l o s s f a c t o r r e s u l t s i n a l o w e r maximum damping, b u t an i n c r e a s e d e f f e c t i v e b a n d w i d t h . O b v i o u s l y , t h e c h o i c e o f m a t e r i a l p r o p e r t i e s depends on t h e p r o b l e m a t hand: i . e . , on t h e b a n d w i d t h a n d m a g n i t u d e o f damping r e q u i r e d . A f u r t h e r c o n t r o l l i n g f a c t o r i s t h e e x p e c t e d t e m p e r a t u r e r a n g e b e c a u s e t h e t e m p e r a t u r e d ependence o f t h e d y n amic p r o p e r t i e s o f t h e v i s c o e l a s t i c m a t e r i a l w i l l g o v e r n t h e t e m p e r a t u r e v a r i a b i l i t y o f t h e damper p e r f o r m a n c e .

V i s c o e l a s t i c m a t e r i a l s c a n a l s o be u s e d a s w a v e b e a r i n g members i n r e s o n a n t dampers (21, 22.) . I n t h i s c a s e a v i s c o e l a s t i c l a y e r a p p l i e d t o a p l a t e o r beam becomes w a v e b e a r i n g t h r o u g h i t s t h i c k n e s s . Thus, w i t h i n c r e a s i n g f r e q u e n c y , t h e l a y e r c a n p r e s e n t a r e l a t i v e l y h i g h r e s i s t i v e impedance t o t h e p l a t e when t h e l a y e r t h i c k n e s s becomes an odd m u l t i p l e o f t h e q u a r t e r w a v e l e n g t h o f c o m p r e s s i o n a l waves. (The s y s t e m damping d i p s a t even m u l t i p l e s o f X/4.) The damping p e r f o r m a n c e i s d e p e n d e n t on t h e m a t e r i a l t h i c k n e s s , c h a r a c t e r i s t i c i m p edance, a n d l o s s f a c t o r ( e q u i v a l e n t l y on i t s d e n s i t y , wave s p e e d , and l o s s f a c t o r . )

An e xample o f t h e m e a s u r e d damping by s u c h a l a y e r i s shown i n F i g u r e 14 (22.) . R e l a t i v e l y h i g h damping i s shown

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 21: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 337

Shear deformation for upward deflection of beam

F i g u r e 12(a) A r c h e d T r u s s Damping (Adapted from r e f . 29)

Tr e a t m e n t

1 -Constraining Layer

- Viscoelastic Layer

- Hat-Section Spacer

F i g u r e 1 2 ( b ) . " H a t - S e c t i o n " Damping T r e a t m e n t (Adapted from ref.29)

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 22: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

338 SOUND AND VIBRATION DAMPING WITH POLYMERS

[ 1 L (a) Extension (b) Shear

F i g u r e 13. R e s o n a n t Damper C o n f i g u r a t i o n s

0.2

o.i

8 o.oi

o.ooi 100

F i g u r e 14.

h 2 = 1.0 2.0

m t 1 3.0 4.0 5.0

t i t —-—_« > i f , \

o / f i A ft / / - — —

1 / - — —

/

A 1 1

Test 15"x

No. 1 Is ' E Jar

1 J

o

V V Test No. 2

18"x15"x3/8" Plate Test No. 2 18"x15"x3/8" Plate

EtelT!P!nflMateriaJ.Mass = Q 2 9 Plate Mass

Temperature =74° F

-EtelT!P!nflMateriaJ.Mass = Q 2 9 Plate Mass

Temperature =74° F

-

1 1 II II Ml 1 I I 1000 10,000

Frequency(Hz)

4

50,000

M e a s u r e d Damping P e r f o r m a n c e o f T h i c k n e s s -R e s o n a n t V i s c o e l a s t i c L a y e r (X i s t h e w a v e l e n g t h o f c o m p r e s s i o n a l waves i n t h e v i s c o e l a s t i c l a y e r ) ( A d a p t e d w i t h p e r m i s s i o n f r o m R e f . 38«Copyright 1964 The A m e r i c a n I n s t i t u t e o f P h y s i c s . )

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 23: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 339

o v e r a s i g n i f i c a n t f r e q u e n c y r a n g e f o r a t r e a t m e n t - t o - b a s e -member w e i g h t r a t i o o f 0.29.

Damping A p p l i c a t i o n s a n d T r e a t m e n t C h a r a c t e r i s t i c s

I n t h i s s e c t i o n we want t o i n d i c a t e t h e b r o a d r a n g e o f p r o b l e m s i n w h i c h damping c an be u s e f u l , a n d t o p r e s e n t a few s p e c i f i c e x a m p l e s . F u r t h e r , we l i s t some o f t h e p r i n c i p a l p r o p e r t i e s a nd c h a r a c t e r i s t i c s o f v i s c o e l a s t i c m a t e r i a l s t h a t must be c o n s i d e r e d i n s e l e c t i n g a p p r o p r i a t e c a n d i d a t e m a t e r i a l s f o r a p p l i c a t i o n s .

E x a m p l e s o f t h e A p p l i c a t i o n s o f Damping. As was p o i n t e d o u t e a r l i e r , s t r u c t u r a l damping c a n c o n t r o l " f r e e " r e s p o n s e s , i . e . , (a) r e s o n a n t r e s p o n s e a n d s p a t i a l d i s t r i b u t i o n i n s t e a d y - s t a t e r e s p o n s e , a n d (b) b o t h r i n g i n g ( t e m p o r a l d e c a y ) and s p a t i a l d e c a y i n t r a n s i e n t r e s p o n s e . U s e f u l a p p l i c a t i o n s o f damping have c o v e r e d a w i d e r a n g e o f v i b r a t i o n i s s u e s as i n d i c a t e d i n T a b l e I I . The l i s t o f p r o b l e m i s s u e s r a n g e f r o m v i b r a t i o n l e v e l s h i g h enough t o c a u s e d e s t r u c t i o n and f a i l u r e o f s t r u c t u r e a n d e q u i p m e n t , t h r o u g h i s s u e s o f p h y s i c a l harm and i n t e r f e r e n c e w i t h p e r s o n n e l p e r f o r m a n c e , t o a e s t h e t i c c o n s i d e r a t i o n s a n d t h e d i s r u p t i o n o f p r e c i s i o n p r o c e s s e s . The c o r r e s p o n d i n g r a n g e s o f v i b r a t i o n a m p l i t u d e s and f r e q u e n c i e s c o v e r many d e c a d e s .

T a b l e I I . G e n e r a l A r e a s o f A p p l i c a t i o n o f Damping i n C o n t r o l l i n g t h e E f f e c t s o f V i b r a t i o n

• S t r u c t u r a l F a t i g u e and F a i l u r e • Damage t o Equip m e n t • E q u i p m e n t M a l f u n c t i o n • V i b r a t i o n (and N o i s e ) C o n t r o l

f o r P e r s o n n e l S a f e t y a n d F u n c t i o n • C o m f o r t , A c c e p t a n c e , p r o d u c t " F e e l " • E f f e c t s on I n s t r u m e n t s , P r o c e s s e s , and

P r e c i s i o n E q u i p m e n t

I n T a b l e I I I a r e l i s t e d some i m p o r t a n t a r e a s i n w h i c h damping i s a p p l i e d . C l e a r l y , w i d e r a n g e s o f p a r a m e t e r s ( t e m p e r a t u r e , f r e q u e n c y , a m p l i t u d e , e n v i r o n m e n t , e t c . ) a r e e n c o u n t e r e d . These i s s u e s a r e d i s c u s s e d f u r t h e r i n t h e f o l l o w i n g s e c t i o n .

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 24: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

340 SOUND AND VIBRATION DAMPING WITH POLYMERS

T a b l e I I I . E x a m p l e s o f S t r u c t u r a l Damping A p p l i c a t i o n s

F i e l d

T r a n s p o r t a t i o n A u t o m o t i v e

A i r c r a f t

S h i p s

R a i l r o a d

S p a c e c r a f t

I n d u s t r y

Commerce

C o n s t r u c t i o n

Items t r e a t e d

body p a n e l s , v a l v e c o v e r , o i l p an

p a n e l s , a p pendages, t u r b i n e - e n g i n e components, f u s e l a g e s k i n p a n e l s

h u l l , d e c k s , m a c h i n e r y p i p i n g

c a r s t r u c t u r e , p a n e l s , w h e e l s

e q u i p m e n t p a n e l s s u p p o r t s , e l e c t r o n i c c i r c u i t b o a r d s , o p t i c a l e q u i p m e n t , a n t e n n a and s u p p o r t s t r u c t u r e s

m a c h i n e r y , e.g., v e h i c l e s , d r i l l i n g r o d s , g r i n d e r s c i r c u l a r - s a w b l a d e s

a p p l i a n c e s , o f f i c e m a c h i n e s , c o m p u t e r components, m e t a l c a b i n e t s , and f u r n i t u r e

b u i l d i n g p a r t i t i o n s , m u l t i l a y e r c o n c r e t e s l a b s , window p a n e s

M o t i v a t i o n

n o i s e c o n t r o l

a c o u s t i c f a t i g u e , n o i s e c o n t r o l

n o i s e c o n t r o l

n o i s e c o n t r o l , w h e e l s q u e a l

a c o u s t i c f a t i g u e , m a l f u n c t i o n , v i b r a t i o n c o n t r o l

f a t i g u e and n o i s e c o n t r o l

n o i s e a n d v i b r a t i o n c o n t r o l

n o i s e and v i b r a t i o n c o n t r o l

R e q u i r e m e n t s on M a t e r i a l s f o r Damping A p p l i c a t i o n .

O b v i o u s l y , a p o l y m e r o r o t h e r m a t e r i a l t o be u t i l i z e d i n a v i b r a t i o n damping a p p l i c a t i o n must p o s s e s s a p p r o p r i a t e p r o p e r t i e s o v e r t h e r a n g e s o f t e m p e r a t u r e , f r e q u e n c y , and s t r a i n a m p l i t u d e i n v o l v e d . I t i s a l s o a p p a r e n t t h a t

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 25: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 341

c o n s i d e r a t i o n must be g i v e n c o s t , w e i g h t , d u r a b i l i t y , s t a b i l i t y , e t c .

Some o f what we see as t h e p r i n c i p a l p r o p e r t i e s a n d c h a r a c t e r i s t i c s o f i m p o r t i n t h e d e v e l o p m e n t a n d s e l e c t i o n o f v i s c o e l a s t i c m a t e r i a l s f o r s t r u c t u r a l damping a r e l i s t e d b e l o w . T a b l e I V n o t e s " p a s s i v e " p r o p e r t i e s a nd c h a r a c t e r i s t i c s , t h a t i s , t h o s e t h a t p e r t a i n t o t h e m a t e r i a l i t s e l f a n d t o i t s p e r f o r m a n c e i n t h e s p e c i f i e d o p e r a t i n g c o n d i t i o n s . Somewhat i n c o n t r a s t , T a b l e V l i s t s " A c t i v e o r I n t e r a c t i v e " p r o p e r t i e s a nd c h a r a c t e r i s t i c s t h a t c o n c e r n t h e i n t e r a c t i o n o f t h e v i s c o e l a s t i c m a t e r i a l w i t h o t h e r m a t e r i a l s a n d w i t h t h e e n v i r o n m e n t o f t h e t r e a t m e n t . These t a b u l a t i o n s a r e s u r e l y i n c o m p l e t e , b u t a r e i n t e n d e d t o s u g g e s t t h e b r e a d t h o f c o n s i d e r a t i o n s t h a t may be i n v o l v e d i n m a t e r i a l s e l e c t i o n .

T a b l e I V . V i s c o e l a s t i c M a t e r i a l s f o r Damping. P a s s i v e P r o p e r t i e s and C h a r a c t e r i s t i c s

• A c o u s t i c a l (See T a b l e V I )

• E n v i r o n m e n t - R e l a t e d

- t e m p e r a t u r e - w e a t h e r - m o i s t u r e - r a d i a t i o n - o u t g a s s i n g

• A p p l i c a t i o n - R e l a t e d

- a p p l i c a t i o n p r o c e d u r e s and m a t e r i a l s - c u t t i n g , s h a p i n g

e.g., b e n d i n g , f o r m i n g o f l a m i n a t e s - b o n d i n g , i n c l u d i n g s e l f - a d h e s i v e p r o p e r t i e s - p o s t - a p p l i c a t i o n f a s t e n i n g , w e l d i n g - t o u g h n e s s , d u r a b i l i t y - c r e e p and s e t - a p p e a r a n c e , m a i n t a i n a b i l i t y

T a b l e V. V i s c o e l a s t i c M a t e r i a l s f o r Damping: A c t i v e - I n t e r a c t i v e P r o p e r t i e s a n d C h a r a c t e r i s t i c s

• t o x i c i t y • o d o r • f l a m m a b i l i t y • o u t g a s s i n g • c o m p a t i b i l i t y • e l e c t r i c a l a n d t h e r m a l c o n d u c t i v i t y

- c h e m i c a l - b i o - d e g r a d a t i o n - i m p a c t - f a t i g u e - c h e m i c a l c o n t a m i n a t i o n

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 26: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

342 SOUND AND VIBRATION DAMPING WITH POLYMERS

I n t h e p a r t i c u l a r c a s e o f t h e a c o u s t i c a l r e q u i r e m e n t s m e n t i o n e d i n T a b l e IV, we show i n T a b l e V I t h e t e c h n i c a l a c o u s t i c a l r e q u i r e m e n t s s p e c i f i c a l l y f o r f r e e a n d c o n s t r a i n e d v i s c o e l a s t i c l a y e r t r e a t m e n t s . T h i s t a b l e w i t h i t s n o t e s s u m m a r i z e s t h e r e q u i r e m e n t s on m a t e r i a l d y n a m i c p r o p e r t i e s t h a t were p r e s e n t e d i n t h e e a r l i e r d i s c u s s i o n o f t h e s e b r o a d l y u s e f u l t r e a t m e n t t y p e s .

T a b l e V I . T e c h n i c a l A c o u s t i c R e q u i r e m e n t s on t h e Dynamic P r o p e r t i e s o f V i s c o e l a s t i c Damping M a t e r i a l s

F r e e VE L a y e r C o n s t r a i n e d VE L a y e r

P r i n c i p a l E x t e n s i o n S h e a r D e f o r m a t i o n :

R e q u i r e m e n t s f o r L a r g e l o s s modulus • L a r g e l o s s max T| (Note 1) : E" = E fT| (Notes 2, f a c t o r , T|

3) • S p e c i f i e d s h e a r s t i f f n e s s G'/H (Note 2)

1. Maximum l o s s f a c t o r i s n o t a l w a y s t h e d e s i g n g o a l . Combined mass, s t i f f n e s s , and damping c r i t e r i a o f t e n a p p l y .

2. Good p r o p e r t i e s a r e r e q u i r e d o v e r s p e c i f i e d r a n g e s o f f r e q u e n c y and t e m p e r a t u r e .

3. N o t e t h a t a t h i g h e r l o s s f a c t o r s i n c r e a s e d T| i s more e f f e c t i v e t h a n i n c r e a s e d E f ( P e r s o n a l c o m m u n i c a t i o n , M i c h a e l D r a k e , 1989)

Summary

M a t e r i a l s t h a t a r e u s e d i n s t r u c t u r a l damping e n c o u n t e r w i d e r a n g e s o f t e m p e r a t u r e , f r e q u e n c y , a n d s t r a i n . The p e r t i n e n t d e f o r m a t i o n s may be i n e x t e n s i o n - c o m p r e s s i o n , s h e a r , d i l a t a t i o n , o r c o m b i n a t i o n s o f t h e s e . F u r t h e r , t h e m a t e r i a l s c a n be s u b j e c t t o l a r g e s t a t i c o r t r a n s i e n t l o a d s , sometimes o f s i g n i f i c a n t m a g n i t u d e , e i t h e r i n f a b r i c a t i o n o r i n s e r v i c e . T o g e t h e r w i t h t h e f a c t t h a t d amping t r e a t m e n t s c a n e n c o u n t e r demanding e n v i r o n m e n t s , t h e above c o n d i t i o n s make i t c l e a r t h a t t h e s e l e c t i o n o r d e v e l o p m e n t o f m a t e r i a l s f o r damping i s a c o m p l e x t a s k .

The g o a l o f t h i s p a p e r has been t o e s t a b l i s h t h e d e f i n i t i o n a n d m e c h a n i c a l p r i n c i p l e s o f s t r u c t u r a l damping as w e l l as t h e f u n c t i o n a l t y p e s o f a p p l i c a t i o n s i n w h i c h damping c a n be u s e f u l .

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 27: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 343

In a d d i t i o n , we have presented s e v e r a l of the important, p r a c t i c a l types of damping treatments and the q u a n t i t a t i v e r o l e of v i s c o e l a s t i c m a t e r i a l s i n such treatments. The reader should keep i n mind s e v e r a l general p r i n c i p l e s of s t r u c t u r a l damping as fo l l o w s :

1. Damping operates on free responses: • Resonances • Free waves

2. Damping does l i t t l e or nothing to reduce the amplitude of f o r c e d responses.

3. In an e f f e c t i v e damping treatment, the v i s c o e l a s t i c element(s) must p a r t i c i p a t e s i g n i f i c a n t l y i n the energy of v i b r a t i o n .

4. Damping may or may not reduce sound r a d i a t i o n .

As an example of p r i n c i p l e number 4 above, consider a l o c a l l y e x c i t e d large panel on which resonant bending waves account f o r most of the v i b r a t o r y response. However, assume that these resonant waves have a wavelength shorter than that of free waves i n the surrounding a i r . In such a case the resonant waves are poorly coupled to the a i r , and r a d i a t e very l i t t l e sound. What r a d i a t i o n there i s can be dominated by non-resonant forced motion around the d r i v e p o i n t (and at other d i s c o n t i n u i t i e s ) . As a r e s u l t , a p p l i e d damping can reduce the resonant response, but not the fo r c e d motion and the r a d i a t i o n of sound.

It i s our hope that what we have presented here w i l l be of help t o those i n the f i e l d of Polymer Science and Engineering who have an i n t e r e s t i n developing m a t e r i a l s f o r a p p l i c a t i o n i n s t r u c t u r a l damping.

Literature Cited 1. Ungar, E. E.; Kerwin, E. M., Jr. J. Acoust. Soc Am.

1962, 34, 954-57. 2. Nashif, A. D.; Jones, D. I. G.; Henderson, J. P.

Vibration Damping; John Wiley & Sons: New York, 1985. 3. Morse, P. M. Vibration and Sound (2nd ed.); McGraw­

-Hill: New York, 1948; p 229. (Reprints available from the Acoustical Society of America, New York)

4. Strutt, J. W. (Lord Rayleigh). The Theory of Sound (2nd ed.); Dover: New York, 1945; Vol. 1, p 302.

5. Cremer, L.; Heckl, M. A.; Ungar, E. E. Structure­-Borne Sound (2nd ed.); Springer Verlag: Berlin, 1988.

6. Oberst, H. Acustica 1952, 2, 181-94. 7. Oberst, H.; Becker, G. W. Acustica 1954, 4, 433-44. 8. Liénard, P. La Recherche Aeronautique 1951, 20, 11-

22. 9. Liénard, P. Annales des Telecommunications 1957, 12-

10, 359-66.

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 28: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

344 SOUND AND VIBRATION DAMPING WITH POLYMERS

10. Kerwin, E. M., Jr. In Internal Friction Damping and Cyclic Plasticity; ASTM Special Technical Publication No. 378; American Society for Testing and Materials: Philadelphia, 1965; pp 125-149.

11. Ungar, E. E. In Noise and Vibration Control; Beranek, L. L . , Ed.; McGraw-Hill: New York, 1971; Chapter 14.

12. Mead, D. J. Criteria for Comparing the Effectiveness of Damping Treatments; Report No. 125; Department of Aeronautics and Astronautics, University of Southampton: Hampshire, England, 1960.

13. Mead, D. J. Noise Control 1961, 7-3, 27-38. 14. Kerwin, E. M., Jr. J. Acoust. Soc. Am. 1959, 31, 952-

62. 15. Ross, D.; Ungar, E. E.; Kerwin, E. M., Jr. In

Structural Damping; Ruzicka, J . E., Ed.; Am. Soc. Mechanical Engrs.: New York, 1959; Section III.

16. Ruzicka, J . E. J . Engineering for Industry (Transactions of the ASME, Series B) 1961, 83-B-4, 403-24.

17. Ungar, E. E. J. Acoust. Soc. Amer. 1962, 34, 1082-89. 18. Torvik, P. J. In Damping Applications for Vibration

Control; Amer. Soc. Mechanical Engrs.: New York, 1980, AMD Vol. 38, pp. 85-112.

19. Soovere, J . ; Drake, M. L. Aerospace Structures Technology Damping Design Guide; Flight Dynamics Laboratory: Wright-Patterson Air Force Base, Ohio, 1985.

20. Kerwin, E. M., Jr. ; Smith, P. W., Jr. Vibration Damping 1984 Workshop Proceedings, 1984, pp 27-9.

21. Ungar, E. E.; Kerwin, E. M., Jr. J . Acoust. Soc. Amer. 1960, 32, 912(A).

22. Parfitt, G. G.; Lambeth, D. The Damping of Structural Vibrations, Aeronautical Research Council "A.1" Report (U); PUBLISHER: Ministry of Aviation, U.K., 1960 (also ASTIA No. AD 253216).

23. Parfitt, G. G. Proc. Fourth International Congress on Acoustics, 1962, p 21.

24. Plunkett, R.; Lee, C. T. J. Acoust. Soc. Amer. 1970, 48-1, 150-61.

25. Zeinetdinova, R. Z.; Naumkina, N. I . ; Tartakovskii, B. D. Soviet Physics-Acoustics 1978, 24-4, pp 347-8.

26. Ungar, E. E.; Ross, D. Proc. Fourth Conference on Solid Mechanics, 1959, pp 468-87.

27. Henderson, J . P. In Damping Applications for Vibration Control; Amer. Soc. Mechanical Engrs.: New York, 1980; pp. 145-158.

28. Painter, G. W. U.S. Patent 3 079 277, 1963. 29. Trapp, W. J.; Bowie, G. E. In Damping Applications

for Vibration Control; Amer. Soc. Mechanical Engrs.: New York, 1980; pp 1-26.

30. Warnaka, G. E.; Kerwin, E. M., Jr. ; Carbonell, J . R. J. Acoust. Soc. Amer. 1965, 37, 1215(A).

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.

Page 29: [ACS Symposium Series] Sound and Vibration Damping with Polymers Volume 424 || Requirements Imposed on Polymeric Materials by Structural Damping Applications

17. KERWIN AND UNGAR Structural Damping Applications 345

31. Kerwin, E. M., Jr. U.S. Patent 3 087 565, 1963. 32. Kerwin, E. M., Jr. U.S. Patent 3 087 571, 1963. 33. Kerwin, E. M., Jr. Proc. Third International Congress

on Acoustics, 1959, 1961, pp 412-15. 34. Whittier, J . S. M.S. Thesis, University of Minnesota,

1958. 35. Whittier, J . S. The Effects of Configurational

Additions Using Viscoelastic Interfaces on the Damping of a Cantilever Beam; WADC TR 58-568, ASTIA Doc. 214381, 1959.

36. Wallerstein, L. , Jr . ; Painter, G. W. U.S. Patent 3 078 971, 1963.

37. James, R. R. Progress Report No. 5, Development of Damping Treatments for Destroyer Hulls; Report No. 94-30, Rubber Laboratory: Mare Island Naval Shipyard, 1961.

38. Ungar, E. E.; Kerwin, E. M., Jr. J . Acoust. Soc. Amer. 1964, 36-2, 386-92.

RECEIVED January 24, 1990

Dow

nloa

ded

by M

ICH

IGA

N S

TA

TE

UN

IV o

n N

ovem

ber

30, 2

013

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e: M

ay 1

, 199

0 | d

oi: 1

0.10

21/b

k-19

90-0

424.

ch01

7

In Sound and Vibration Damping with Polymers; Corsaro, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1990.