[ACS Symposium Series] Inorganic and Organometallic Polymers Volume 360 (Macromolecules Containing Silicon, Phosphorus, and Other Inorganic Elements) || Cationic and Condensation Polymerization of Organometallic Monomers

Download [ACS Symposium Series] Inorganic and Organometallic Polymers Volume 360 (Macromolecules Containing Silicon, Phosphorus, and Other Inorganic Elements) || Cationic and Condensation Polymerization of Organometallic Monomers

Post on 08-Dec-2016

214 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Chapter 36 </p><p>Cationic and Condensation Polymerization of Organometallic Monomers </p><p>Kenneth E. Gonsalves 1 and Marvin D. Rausch 2 </p><p>1Department of Chemistry and Chemical Engineering, Stevens Institute o f Technology, Hoboken, NJ 07030 </p><p>2Department of Chemistry, University of Massachusetts, Amherst, MA 01003 </p><p>1,1'-Bis(-aminoethyl)ferrocene was synthesized via a 6-step process starting with ferrocene. This monomer was then copolymerized with various aromatic and aliphatic diacid chlorides as well as with diisocyanates, leading to ferrocene-containing polyamides and poly-ureas having moderately high to low viscosities. The above monomer and 1,1'-bis(-hydroxyethyl)ferrocene were also utilized as chain extenders. Three types of isopropenylmetallocene monomers were synthesized and subjected to polymerization and copolymerization by cationic initiators: (1) isopropenylferrocene, (2) (5-isopropenylcyclopentadienyl)dicarbonylnitrosyl-molybdenum; and (3) 1,1'-diisopropenylcyclopenta-dienylstannocene, and related derivatives of each. </p><p>There i s c u r r e n t l y considerable i n t e r e s t i n organometallic polymers, since polymers containing metals might be expected to possess prop e r t i e s d i f f e r e n t from those of conventional organic polymers. 1""^ Two major approaches to the formation of materials of t h i s type have involved the d e r i v a t i z a t i o n of preformed organic polymers with organometallic functions^ and the synthesis and polymerization of organometallic monomers that contain v i n y l s u b s t i t u e n t s &gt; ^ For the t r a n s i t i o n metals, condensation polymerizations have also been in v e s t i g a t e d . However, the reactions have generally been conducted at elevated temperatures, and the r e s u l t i n g products have of t e n not been w e l l c h a r a c t e r i z e d . ^ * ^ Ferrocene-Containing Polyamides and Polyureas </p><p>We now report a convenient method f o r the i n t e r f a c i a l polycondensa-t i o n of 1, 1-bis(3-aminoethyl)ferrocene (1) with a v a r i e t y of d i a c i d c h l o r i d e s and diisocyanates, leading to ferrocene-containing poly-amides and polyureas.9 In some instances, we have been able to observe f i l m formation at the i n t e r f a c e . Moreover, the polymerization reactions can be conveniently conducted at ambient temperatures i n contrast to e a r l i e r high-temperature organometallic condensation </p><p>0097-6156/88/0360-0437$07.25/0 1988 American Chemical Society </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>438 INORGANIC AND ORGANOMETALLIC POLYMERS </p><p>p o l y m e r i z a t i o n s , which f r e q u e n t l y l e d to undesirable s i d e r e a c t i o n s . We a l s o f i n d that the r e l a t e d monomer, 1,1 - b i s ( 3 - h y d r o x y e t h y l ) f e r r o cene (2) r e a c t s w i t h d i a c i d c h l o r i d e s and d i i s o c y a n a t e s to form ferrocene-containing p o l y e s t e r s and polyurethanes, r e s p e c t i v e l y . Monomers (_1) and (2) are shown i n Scheme I. </p><p>Monomers 1 and 2^ have been synthesized s t a r t i n g from ferrocene, u t i l i z i n g m o d i f i c a t i o n s of procedures o u t l i n e d p r e v i o u s l y by Sonoda and M o r i t a n i H and by Ratajczak et al.12 The intermediate d i a c i d , 1,1 f e r r o c e n e d i c a r b o x y l i c a c i d , was synthesized according to the more convenient procedure of Knobloch and RauscherA Monomer 1 was vacuum d i s t i l l e d p r i o r to use (bp 120C, 1 mm Hg). D e t a i l s of the s y n t h e t i c routes are given i n Scheme 1. I t should be emphasized that i n c o n t r a s t to previous ferrocene-containing monomers,13 and 2 p o s i t i o n the r e a c t i v e amino and hydroxyl groups two methylene u n i t s removed from the ferrocene nucleus. This feature minimizes s t e r i c e f f e c t s and a l s o enables _1 and 2_ to undergo the Schotten-Baumann r e a c t i o n r e a d i l y without the c l a s s i c a l -metallocenylcarbonium i o n e f f e c t p r o v i d i n g any constraints.14,15 Polyamide formation i s vigorous, exothermic, and instantaneous. </p><p>I n t e r f a c i a l or s o l u t i o n polycondensation, w i t h or without s t i r r i n g , was the general procedure u t i l i z e d f o r the p r e p a r a t i o n of the polyamides and polyureas,la D e t a i l s are given i n Table I . An important p o i n t to be noted i s t h a t , i n the u n s t i r r e d i n t e r f a c i a l condensation p o l y m e r i z a t i o n of 1 w i t h sebacoyl c h l o r i d e or t e r e -p h t h a l o y l c h l o r i d e i n the organic phase and t r i e t h y l a m i n e as the proton acceptor, immediate f i l m formation took place at the i n t e r face. The polyamide f i l m s were removed a f t e r 1 h, d r i e d , and u t i l i z e d f o r t a k i n g e l e c t r o n micrographs. </p><p>Attempts to o b t a i n molecular weights of these new i r o n - c o n t a i n i n g polyamides i n m-cresol s o l u t i o n have not- been s u c c e s s f u l , due to the very l i m i t e d s o l u b i l i t i e s of the m a t e r i a l s i n organic s o l v e n t s . S i m i l a r d i f f i c u l t i e s have p r e v i o u s l y been encountered i n the mole- ^ c u l a r weight dtermination of nylon 66 (polyhexamethyleneadipamide). However, the i n t r i n s i c v i s c o s i t y values greater than 1.0 f o r the polyamides obtained from 1_ and t e r e p h t h a l o y l c h l o r i d e or sebacoyl c h l o r i d e are comparable to i n t r i n s i c v i s c o s i t i e s of nylons having number average molecular weights between 10,000 and 18,000.16 -jhe low [] values obtained f o r the polyurethanes can be a t t r i b u t e d to premature p r e c i p i t a t i o n from s o l u t i o n and, i n the case of polymers obtained from _1 and TD1, to decreased r e a c t i v i t y imposed by s t e r i c e f f e c t s . 1 8 </p><p>19 The polyamides and polyureas e x h i b i t e d broad, intense N-H </p><p>s t r e t c h e s around 3300 cm~l. A very strong carbonyl s t r e t c h i n g v i b r a t i o n was present at 1630 cm~l. The amide I I band was evident near 1540 cm"!. In a d d i t i o n , sp C-H s t r e t c h e s occurred around 3100 cm"! and asymmetric and symmetric sp^ c-H s t r e t c h e s at 2950 and 2860 cm~l, r e s p e c t i v e l y . The polyurethane showed the carbonyl abs o r p t i o n near 1700 cm"l and C-0 s t r e t c h e s i n the v i c i n i t y of </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>36. GONSALVES AND RAUSCH Organometallic Monomers 439 </p><p>C H 3 C 0 C 1 , A l C l ? ^ I * 5% NaOCl N | * C H 2 C 1 2 , 3 h a</p><p> F</p><p>f</p><p>e</p><p>v 0 5 0 C , 5 h F , e </p><p>(58%) (75%) </p><p>C 0 2 C H 3 ^ ^ - 6 2 0 </p><p>CH 3 OH, H 2 S O k ^ 1 L i A l H t , , Et20 ^ ^ ^ ^ ^ C 0 2 C H 3 ' 4 ^ C H 2 0 H </p><p>(90%) (98%) </p><p> ^ ^ ^ ^ - C H 2 C N ^ ^ 3 3 ^ C H 2 C H 2 N H 2 P C 1 3 , THF KCN, H 2 0 I L i A l H H , A 1 C 1 3 ^ 1 2 5 C , 2 h ( N 2 ) Th * y C ^ r W E c2 3 h &gt; - = j = ^ </p><p>(85%) I (73%) 'NaOH </p><p>E tOH, </p><p>^ I ^ L i A l H i + , THF ^ | </p><p>H 2 C00H </p><p>H 2 CH 2 OH </p><p>H 2 CH 2 OH </p><p>2 (70%) (98%) </p><p>Scheme I . </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>440 INORGANIC AND ORGANOMETALLIC POLYMERS </p><p>Table I. Polycondenstion Reactions between 1,1f-Bis(3-amino-ethyl)ferrocene (1) and (3-hydroxyethyl)ferrocene (2) with Diacid Chlorides and Diisocyanates </p><p>monomer ( M ^ (M 2) </p><p>process (base used) </p><p>% yield dL/g e </p><p>i a terephthaloyl chloride (CI^Cl^ UI b(Et 3N) 72 1.50 i a sebacoyl chloride (CCl^) UI (Et3N) 85 O.37 i a sebacoyl chloride (CCl^) UI (NaOH) 39 O.59 i a sebacoyl chloride (CCl^) I b (Et3N) 51 1.09 i a adipoyl chloride (CCl^) UI (Et3N) 47 O.53 1 terephthaloyl chloride(CH 2C1 2) S b (Et3N) 45 O.80 2 terephthaloyl chloride </p><p>(m-xylene, reflux) S (pyridine) 51 O.16 </p><p>2 TDI (Me2S0, 115 C) S 46 O.20 i a TDI (CHC13) UI 58 O.16 1 TDI (CHC13) S 53 O.10 1 MDId S 67 f </p><p>Monomer in aqueous phase bUI, unstirred interfacial S, solution I, Stirred interfacial CTDI: tolyene 2,4-diisocyanate (80%) +2,6, isomer (20%) dMDI : methylenebis(4-phenylisocyanate) 6 Intrinsic viscosity determined in m-cresol at 3?C ^insoluble in m-cresol 1220 and 1280 cm ^. Similar absorptions were present in the poly-ester. The polyamides and polyureas are thus assessed to have structures outlined in Scheme II. Model Compounds. Further elucidation of these polymer structures was done by synthesizing model analogs. </p><p>20 It has been demonstrated by Hauser and coworkers that 3-amino-</p><p>ethylferrocene (_3) undergoes reactions typical of the amino func-tional group. </p><p>Fe </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>36. GONSALVES AND RAUSCH Organometallic Monomers 441 </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>442 INORGANIC AND ORGANOMETALLIC POLYMERS </p><p>They showed that _3 afford e d a p i c r a t e on being t r e a t e d w i t h s a t u r ated a l c h o h o l i c p i c r i c a c i d and formed N,N,N-trimethyl - 3-ferrocenyl-ethylammonium i o d i d e on being t r e a t e d w i t h methyl i o d i d e . 3-Amino-eth y l f e r r o c e n e (3) was synthesized by a m o d i f i c a t i o n of the l i t e r a ture method^O and was c h a r a c t e r i z e d by elemental a n a l y s i s , IR and -4i NMR spectroscopy. Following the procedure of Pittman et a l . , ^ 1 the methiodidide of ,-dimethylaminomethylferrocene was converted to f e r r o c e n y l a c e t o n i t r i l e by r e f l u x i n g w i t h sodium cyanide i n de-oxygenated water. The l a t t e r compound was then reduced to the amine _3 w i t h L 1 A I H 4 . In order to i s o l a t e pure _3, i n s t e a d of passing hydrogen c h l o r i d e gas i n t o an ether s o l u t i o n of 3,^ 6N H2SO4 was used. The p r e c i p i t a t e d ferrocenylammonium s u l f a t e was f i l t e r e d under n i t r o g e n and t r e a t e d w i t h aqueous sodium hydroxide to o b t a i n the f r e e amine _3 i n the organic l a y e r . Pure 3-aminoethylferrocene (3) was obta i n e d i n 70% y i e l d by d i s t i l l a t i o n under*vacuum (b.p. 120C/1 t o r r ) . </p><p>A suspension of 3-aminoethylf errocene (_3) i n deoxygenated water, c o n t a i n i n g an excess of sodium hydroxide, was found to form a yel l o w p r e c i p i t a t e immediately on being shaken v i g o r o u s l y w i t h one equival e n t of pure t e r e p h t h a l o y l c h l o r i d e i n dry benzene. Elemental analys i s and an IR spectrum i n d i c a t e d the y e l l o w p r e c i p i t a t e to have the s t r u c t u r e h_ ( y i e l d 100%) . </p><p>In _3, the amino f u n c t i o n a l group i s two methylene u n i t s removed from the ferrocene nucleus. I t appears from the instantaneous and q u a n t i t a t i v e formation of 4_ from _3 that t h i s feature minimizes s t e r i c e f f e c t s and a l s o enables _3 to undergo the Schotten-Baumann r e a c t i o n r e a d i l y without the c l a s s i c a l -metallocenylcarbenium i o n e f f e c t s p r o v i d i n g any c o n s t r a i n t s . ^ The IR spectrum of 4^ showed the c h a r a c t e r i s t i c N-H s t r e t c h at 3320 cnTMs), the amide 1 (carbonyl) s t r e t c h a t 1625 cm" 1(s), the amide I I (N-H) s t r e t c h at 1540 c m " l ( s ) , and the amide I I I band at 1310 cm~ 1(m). In a d d i t i o n , c h a r a c t e r i s t i c absorptions of the f e r r o c e n y l group were evident at 1100 and 1000 cm"l ( i n d i c a t i n g an unsu b s t i t u t e d c y c l o p e n t a d i e n y l r i n g ) and at 800 cm~l. </p><p>In a d d i t i o n to the above r e a c t i o n , 1 , l ' - b i s ( 3 - a m i n o e t h y l ) -ferrocene (3) was reacted w i t h two equivalents of benzoyl c h l o r i d e </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>36. GONSALVES AND RAUSCH Organometallic Monomers 443 </p><p>i n the presence of t r i e t h y l a m i n e . A product (5) whose i n f r a - r e d spectrum c l o s e l y resembled that of 4_ was obtained. </p><p>As before, an N-H s t r e t c h was observed at 3325 cm ( s ) , the amide I at 1650 c m _ 1 ( s ) , amide I I at 1550 c n T ^ s ) , and amide I I I at 1325 cm"l(m) . </p><p>I t i s w e l l e s t a b l i s h e d that primary amino-functional groups, p a r t i c u l a r l y a l i p h a t i c ones, react instantaneously w i t h isocyanates to form ureas at ambient temperature. Indeed t h i s was observed when -aminoethy1ferrocene (3) and f r e s h l y d i s t i l l e d phenylisocyanate were shaken v i g o r o u s l y . A yellow p r e c i p i t a t e separated out immedia t e l y . Elemental a n a l y s i s and an IR spectrum of the product i n d i c a t e t h i s compound to have the s t r u c t u r e 6^. </p><p>Fe </p><p>The c h a r a c t e r i s t i c absorptions of the urea group were evident i n the IR spectrum: -NH s t r e t c h 3320 cm~ 1(s); amide I 1625 cnT^m); amide I I 1560 cm" 1(s); amide I I I 1240 cnT^m). The y i e l d of 6^ was again q u a n t i t a t i v e . When the diamine 1 was s i m i l a r l y reacted w i t h phenylisocyanate, a y e l l o w p r e c i p i t a t e was observed immediately. The IR spectrum of t h i s product (7) was s i m i l a r to that of 6. The -NH s t r e t c h occurred at 3300 cm"~l(s) and the carbonyl absorption at 1630 cm"" 1(s). The amide I I band occurred at 1550 cm~"l(s,br) and the amide I I I at 1260 ^). </p><p>Dow</p><p>nloa</p><p>ded </p><p>by U</p><p>NIV</p><p> OF </p><p>OTT</p><p>AW</p><p>A o</p><p>n Ju</p><p>ne 1</p><p>6, 2</p><p>013 </p><p>| http:</p><p>//pubs</p><p>.acs.o</p><p>rg Pu</p><p>blic</p><p>atio</p><p>n D</p><p>ate:</p><p> Janu</p><p>ary </p><p>7, 1</p><p>988 </p><p>| doi: 1</p><p>0.1021</p><p>/bk-19</p><p>88-036</p><p>0.ch03</p><p>6</p><p>In Inorganic and Organometallic Polymers; Zeldin, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988. </p></li><li><p>444 INORGANIC AND ORGANOMETALLIC POLYMERS </p><p>Segmented Poly(ether u...</p></li></ul>