[acs symposium series] green polymer chemistry: biocatalysis and materials ii volume 1144 || subject...

7

Click here to load reader

Upload: patrick-b

Post on 15-Apr-2017

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

Subject IndexA

Aliphatic polyesters, syntheses andcharacterization, 59

ATRPases, 165

B

Biocatalysis for silicone-based copolymers1,3-bis(3-carboxypropyl)tetramethyldisiloxane, lipase(Novozym-435®) catalyzedcopolymerization, 104s

polysiloxanes, 97silicone aliphatic polyesteramides, 99silicone aliphatic polyesters, 98silicone aromatic polyamide (SAPA),lipase (Novozym-435®) catalyzedsynthesis, 102s

silicone aromatic polyesters andpolyamides, 100

silicone fluorinated aliphaticpolyesteramides, 99

silicone polycaprolactones, 102silicone polyethers, 103silicone sugar conjugates, 104stereo-selective organosiloxanes, 105

Biocatalytic atom transfer radicalpolymerization (ATRP), 163ARGET ATRP of PEGA catalyzedcys-blocked Hb, 167f

characterization of HRP, 168fhemoglobin (cys-blocked Hb) orhorseradish peroxidase (HRP), 166f

Biofuel synthesis and biological fuel cells,18

Biosilicification, 95Bisphenol polymers and copolymers, greensynthesis, 121

C

Candida antarctica lipase B (CALB), 29,73, 82

Converting polysaccharides into high-valuethermoplastic materialsmelt rheology, 409

modified starch, water-dispersiblethermoplastic materials, 410

modified starch conversion intothermoplastic modified starch, 409

tensile properties, 409tertiary water-dispersible films,water-dispersibility, 419

thermoplastic modified starch, binarypolymer blends, 411

thermoplastic modified starch blendsductility, 413fpeak stress, 412f

thermoplastic modified starch ether(TPSE)/copolyester blends, ductility,414f

water disintegration, 410water-dispersible films, waterdisintegration test results, 420t

water-dispersible films with balancedmechanical propertieseffects of copolyester level, 417tertiary blend films, 415

water-dispersible tertiary blend filmsductility, 417f, 418fmodulus, 416fpeak stress, 416f, 418f

Cottonseed isolate solubility profiles, 355

D

Direct fluorination of poly(3-hydroxybutyrate-co)-hydroxyhexanoate,291direct fluorination reactor, 297feffect of fluorination, 300evidence of fluorination, 298fluorine containing PLAs and PHAs, 294future prospective, 300neat PHA and F-PHA, XPS andATR-FTIR spectra, 299f

PHA synthesis and development, generallifecycle, 293f

PLA endcapped and enchainedfluoropolymers, 295f

using 5% F2 in N2 gas mixture, generalprocedure, 296fluorination of PHA polymers, 298typical procedure, 298

441

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 2: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

E

Enzyme-based technologies, 15antifouling coatings, 21bioactive coatings, 20conclusions and future directions, 22decontamination coatings, 21enzymes as biosensors, 19enzymes for energy, 18industrial catalysis, 16enzymes as biological catalysts,applications, 17f

layered technology, 23f

F

Food and biobased materials, applicationsof common beans, 331bean extrudates, water absorption index(WAI), 333t

common bean as filler in polymersLDPE filler, 335PLA filler, 334PVOH filler, 336

common beans, extrusion cooking, 332conversion of bean starch to ethanol, 338phenolic phytochemicals in commonbeans, 338

triglyceride oils in common beans, 337

G

Genus Thermobifida, polyester-degradingcutinases, 111assay of enzymatic activity, 113circular dichroism (CD) and differentialscanning calorimetry (DSC),measurement, 113

cloning, expression, and purification,113

crystallography of Est119, 1183D structure of Est119, 117fhomology modeling, 113mutagenesis, 116recombinant Est1 and Est119,characterization and mutationalanalysis, 115

tandem cutinase genes, 114Glandless and glanded cottonseed, proteinisolate, 343amino acid composition (g/100 gprotein), 350t

individual peptides/proteins,separation, 351f

solubility (% soluble protein) ofisolates prepared, 352t

cottonseed proteins, application andpotential use, 356

functional characterization of isolatesemulsification properties, 347foaming properties, 347solubility profiles, 346surface hydrophobicity index (So),346

water-holding capacity, 347isolate and meal characterization, 345isolate preparation, 345, 353isolate properties, 354isolate yield and composition and color,349

Green polymer chemistry, 1major pathways, 2tpathwaysBenign solvents, 6biocatalysts, 3degradable polymers and wasteminimization, 4

diverse feedstock base, 4energy generation and minimizationof use, 5

improved syntheses and processes, 6molecular design and activity, 5polymer products and catalysts,recycling, 5

H

Hydrogenated cottonseed oil, 359hydrogenation kinetics, modeling, 365Ni-catalyzed hydrogenationcomposition of stearic, oleic, TFA,and linoleic, 363f

kinetic modeling of hydrogenationdata, 366f

Pd-catalyzed hydrogenationcomposition of stearic, oleic, TFA,and linoleic, 364f

kinetic modeling of hydrogenationdata, 366f

Pt-catalyzed hydrogenationcomposition of stearic, oleic, TFA,and linoleic, 364f

kinetic modeling of hydrogenationdata, 367f

utility, 368Hydrogenation of cottonseed oil, 362

442

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 3: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

L

Laccase and linear-dendritic blockcopolymers, supramolecular complexes,121experimentalflow chart of procedures, 125sinstrumentation, 124laccase modification, 124materials, 123polymerization reactions, 124

introduction, 122bisphenol A, 127bisphenols polymerized with laccase/LDcopolymer complex, 126s

BPA and DES, copolymerization, 135BPA and DES polymerization,differences, 132

diethylstilbestrol, 131FT-IR spectra of monomer, DES, andpolymer, poly-DES, 136f

oxidized DES, molecular weight, 132fpoly-BPA, bonding, 130poly-BPA, molecular weight, 128f, 129SEC chromatograms of products, 134f

Lignin-based graft copolymers, 373alkyne functionalized lignin, preparation,377

alkyne functionalized lignin andunmodified native lignin, 385f

ATRP graft-copolymerization ofpoly(n-butyl acrylate), 383f

ATRP graft-copolymerization ofpolystyrene, 381f

azide functionalized polystyrene,preparation, 377

click chemistrygraft copolymerization of lignin andpolystyrene, 387

lignin-graft-polystyrene preparation,378

GPC characterization, 378graft copolymerization (ATRP) ofstyrene and n-butyl acrylate, 376

graft onto methodalkyne functionalized ligninpreparation, 384

azide functionalized polystyrenepreparation, 386

1H NMR characterization, 378lignin-based macroinitiator, preparation,376

lignin-based macroinitiator for ATRP,380f

lignin-graft-poly(n-butyl acrylate),preparation, 382

preparation of lignin ATRPmacroinitiator and lignin-graft-polystyrene, 379

Lipase-catalyzed synthesis, 29carbonyl carbon-13 NMR absorptions,36f

copolymerization of diesters withamino-substituted diols, 32s

diesters and amino-substituted diols,polycondensation, 31

ω-hydroxy β-amino ester EHMPP,synthesis, 38s

lactone-DES-MDEA terpolymerproperties, 37

lactone-DES-MDEA terpolymerscharacterization, 35tsynthesis, 34s

molecular weight and isolated yield ofpoly(amine-co-esters), 32t

PDL-DES-MDEA terpolymers, diaddistributions, 37t

PMPP and poly(PDL-co-MPP),enzymatic synthesis, 39s

poly(amine-co-ester) properties, 33poly(amine-co-ester) terpolymers,synthesis and structures, 33

poly(PDL-co-MPP) copolymersdiad distributions, 40tproperties, 40

poly[Ω-pentadecalactone-co-3-(4-(methylene)piperidin-1-yl)propanoate] (poly(PDL-co-MPP)),synthesis and structures, 38

product molecular weight andpolydispersity, variations, 36t

purified Poly(PDL-co-MPP),characterization, 40t

M

Microwave-assisted biocatalyticpolymerizations, 73enzymatic polymerizations, 74lipase, 74organic synthesis, 70ω-pentadecalactone, polymerization, 76tpolymer synthesis, ring openingpolymerization (ROP), 72

ROP of caprolactone, 75fMicrowave-assisted organic synthesis, 70Cannizzaro Reaction, 71Suzuki and Heck Reactions, 71

443

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 4: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

N

New lactate-based biopolymers, 175abbreviations, 193conclusions and future perspectives, 192copolymerization of other monomerswith LA, 183

Corynebacterium glutamicum,P(LA-co-3HB) production, 190

engineering of other PHA synthases, 191LA units in P(LA-co-3HB) polymers,enrichmentfurther engineering of LPE, 182use of metabolically engineered E. coliand anaerobic culture conditions,181

LA-based polymer production, 176lactate-polymerizing enzyme (LPE), 176discovery, 178discovery to drive MPF, 179

microbial plastic factory, 180polyhydroxyalkanoates (PHAs), 176propertiesLA in P(LA-co-3HB), enantiomericpurity, 186

P(LA-co-3HB)s, mechanicalproperties, 189

polymer sequence and molecularweight, 189

thermal and mechanical properties,188t

thermal properties and transparency,187

synthesis of P(96 mol%LA-co-3HB-3HV), 185

synthesis of P(LA-co-3HB-co-3HHx),184f

O

OAC. See Oil absorption capacity (OAC)Oil absorption capacity (OAC), 333

P

PEGylated antibodies and DNAconclusions and future outlook, 231genetic PEGylation, 229DNA templates, preparation, 230f

PEGylated antibody in organic media,224list of antibodies used, 225t

unmodified and PEGylated antibodies,solubility, 225t

PEGylated DNA in organic media, 226PEG–DNA–hemin complex,peroxidase activity, 228f

PEG-modified DNA sequences, 227tPHA production, types, 213tPHA synthase from marine bacteria, 218Phosphorylase-catalyzed enzymaticα-glycosylationsamylose production, 147famylose-grafted cellulose,chemoenzymatic synthesis, 155f

amylose-grafted heteropolysaccharideschemoenzymatic synthesis, 154fsynthesis, 153

amylose-grafted sodium carboxymethylcellulose (NaCMC)alkaline solution, 157fchemoenzymatic synthesis, 156f

anionic glycogen, 152fcharacteristic features, 145dissolution, re-hydrogelation, andsuppression, 150f

enzymatic glycosylation, 143fGlcA residues, 151glucose substrates, glycosylation, 142fglycosyl donor, 146fglycosyl hydrolases, 144highly branched polysaccharidematerials, preparation, 148

hydrogel formation, 149fLeloir glycosyltransferases, 144

PMMA. See Poly(methyl methacrylate)(PMMA)

Polyethylene composites, use of cotton gintrash and compatibilizers, 423effect of burr particle size, mechanicalproperties, 428

LDPE-burr-compatibilizer compositescomposition, 426teffect of filler size on elongation, 429feffect of filler size on tensile strength,429f

effect of filler size on young’smodulus, 430f

mechanical properties, 427tPoly(ethylene glycol)s under solventlessconditions, enzymatic functionalization,81acrylation product of PEG, NMRspectra, 89f

CALB-catalyzed transesterification, 83methacrylation product of PEG, 87fPEG dimethacrylate, MALDI-ToF massspectrum, 88f

444

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 5: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

PEG-dicrotonateMALDI-ToF mass spectrum, 92fNMR spectra, 91f

telechelic polymers, enzymes insynthesis, 85

transesterification of vinyl crotonatewith PEG, 90, 91s

vinyl acetate, transesterification, 84fvinyl acrylate and vinyl methacrylate,transesterification, 86

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV),biodegradable films and foam, 251average distance between PHBV nuclei,263t

characterization of PHBVadjusted foam bulk density, shrinkageof P99S1 foams, 275t

bulk density and cell density, 273fimpact of SF on PHBV foam densityand cell density, 272

overall impact of SF content, 275shrinkage, 274

crystallinity of PHBV and SF versusblend composition, 264f

degradation temperatures determinedfrom TGA, 260t

experimental materials and methodsfilm morphology characterization, 256foam characterization, 257PHBV/SF film preparation, 255PHBV/SF foam processing, 256silk fibroin aqueous solutions, 254silk gelation and powder preparation,254

thermal analysis of films, 255PHBV/SF, structure and propertydevelopmentfast cooling from melt, 266film casting, 265

PHBV/SF blend films, characterizationglass transition, 257melting and crystallization properties,259

morphology, 261second heating cycle, 258fthermal degradation, 260thermal properties, 259t

silk gelation process development,powder production, 267cycle of freezing, achieve gel, 269ffreeze-thaw cycling schemes, 270timpact of temperature, time, andcycling, 270

multiple freeze-thaw cycling for SFgelation, 268

β-sheet, 271single freeze-thaw cycle for SFgelation, 268

spherulitic formation, 262fPoly(methyl methacrylate) (PMMA), 45Poly-(R)-3 hydroxyoctanoate (PHO) andits graphene nanocomposites, 199effect of TRG loading on thermaltransitions of PHO, 205t

electrical properties, 207graphene production andcharacterization, 201

mechanical properties, 206morphology PHO-TRG nanocomposites,204

nanocomposites, fabrication andcharacterization, 201

PHO synthesis, 200PHO-TRG nanocomposites, mechanicalproperties, 206t

production and characterization of TRG,203

pseudomonas oleovorans, PHOsynthesis, 203f

purified PHO, preparation, 202thermal properties, 204

S

Silk fibroin (SF), 253Soybean biorefinery, biobased industrialproducts, 305dimer fatty acids, isocyanate-freepoly(amide-urethane)s, 320dimer acid, P1, ethylene carbonate, P2and P3, 322f

synthesis, general approach, 321fpolyols by ozonation of soybean oil, 309generalized ozonolysis reaction, 310fpolyols composition of triglycerides,311f

statistical distribution of soy polyols,312f

polyols from soymeal, 313amino acids, 316end-group analysis, 315thydroxyl-terminated urethanepre-polymers, preparation, 314f

polymeric methylene diphenyldiisocyanate (MDI), 316

properties of rigid foams, 316properties of rigid PU foams preparedfrom soymeal urethanep olyols, 318t

silylated soybean oil, coatings, 323

445

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 6: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

alkoxysilanes, 325grafting VTMS onto soy oil, 324fmoisture activated cure mechanism,326f

typical formulation of rigid foamsderived from L-arginine-polyol, 317t

typical soybean oil fatty acidcomposition, 307t

value-added industrial products, 308fStructure and thermal properties ofpoly(caffeic acid), polycondensationconditions, 237CA and PCAs, solubility, 242texperimentalinstrumentation, 240materials, 239synthesis of PCA, 239

MALDI-TOF-MS spectra of PCA1 andACA, 243f

molecular structure, solubility, andmolecular weight distribution ofPCAs, 241

optical micrographs of PCAs, 245fthermal and mechanical properties ofPCA, 244

thermal durability of PCAs, 246

T

Trimethylolpropane and adipic acid,hyperbranched polyestersbimolecular nonlinear polymerization(BMNLP) methodology, 282

copolymer of TMP and AA, 285fhyperbranched copolymer of TMP andAA, 286f

kinetic analysis, 287function of catalyst level, 288

materials and methods, 283NMR assignments, 284

U

Understand immobilized enzyme catalyzedring-opening polymerizationε-caprolactone, enzyme-catalyzedpolymerization, 48s

ε-CL ring-opening conversion, 49fenzymatic copolymerization of ε-CL andδ-VLmonomer concentration profiles, 51fmonomer fraction versus totalmonomer conversion, 52f

enzyme catalyst surface stability,evaluation, 44

microfluidic reactor, 54reaction monitoring, 50ring-opening polymerization,engineering control, 53

summary and outlook, 55two-dimensional crosslinked PMMAthin film, 46s

understanding kinetic pathways, 47

V

Vibrio sp. strain, polyhydroxyalkanoatebiosynthesis, 211accumulations using different carbonsources, 214t

accumulations using three types ofunsaturated fatty acids, 218t

fatty acids compositions of plant oil,216t

using plant oil, 215using sugars and organic acid, 213using unsaturated fatty acids, 217

X

Xylan esterification and its application, 393crystallization studies, 401GPC data of xylan esters, 397thaze measurement, 395isothermal crystallization, 395, 403materials, 394mechanical properties, 398non-isothermal crystallization, 395, 401PLLA and PLLA blendt1/2 values, effect of varying Tc values,404f

thermal data, 402tpolarized optical microscopy (POM),395

spherulite morpholgy, crystallinity, andhaze, 403

stress-strain test, 395syntheses, molecular weight, andstructure analyses, 396

syntheses of xylan ester, 394thermal and WAXD analyses, 399WAXD data of xylan ester films, 400twide-angle x-ray diffraction (WAXD),395

446

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.

Page 7: [ACS Symposium Series] Green Polymer Chemistry: Biocatalysis and Materials II Volume 1144 || Subject Index

Y

Yarrowia lipolytica lipase biocatalysis, 59experimentalα-hydroxyl-ω-(carboxylic acid)poly(ε-caprolactone), synthesis, 61

instrumentation, 60materials, 60PCL macrodiisocyanate, synthesis, 62α,ω-telechelic poly(ε-caprolactone)diols (HOPCLOH), synthesis, 61

α-hydroxyl-ω-(carboxylic acid)poly(ε-caprolactone), 62

poly(ε-caprolactone) diols,bisubstitution, monosubstitution,65t

polyester-urethanes, mechanicalproperties, 66t, 67t

synthesis of oligomer, incorporation ofe-caprolactone, 65f

synthesized poly(ε-caprolactone) diols,molecular weights, 64t

α,ω-telechelic poly(ε-caprolactone) diols(HOPCLOH), synthesis, 63

447

Dow

nloa

ded

by A

NA

DO

LU

UN

IV o

n D

ecem

ber

20, 2

014

| http

://pu

bs.a

cs.o

rg

Pub

licat

ion

Dat

e (W

eb):

Nov

embe

r 22

, 201

3 | d

oi: 1

0.10

21/b

k-20

13-1

144.

ix00

2

In Green Polymer Chemistry: Biocatalysis and Materials II; Cheng, H., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2013.