acoustic tweezing: modelling, implementation and … › conf › uffc › 2013 › download › ius...

82
Acoustic Tweezing: Modelling, Implementation and Applications Authors: Bruce W Drinkwater 1 , Charles Courtney 2 , Sandy Cochran 3 , Martyn Hill 4 Affiliations: 1 Department of Mechanical Engineering, University of Bristol, Bristol, UK, BS8 1TR, 2 Department of Mechanical Engineering, University of Bath, Bath, UK, BA2 7AY, 3 University of Dundee, 4 University of Southampton Contacts: [email protected]; [email protected]; [email protected]; [email protected] IEEE International Ultrasonics Symposium Prague, Czech Republic 21 July 2013

Upload: others

Post on 24-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Acoustic Tweezing: Modelling,

Implementation and Applications

Authors: Bruce W Drinkwater1, Charles Courtney2,

Sandy Cochran3, Martyn Hill4

Affiliations: 1Department of Mechanical Engineering, University of Bristol, Bristol, UK, BS8 1TR, 2

Department of Mechanical Engineering, University of Bath, Bath, UK, BA2 7AY, 3University of Dundee,

4University of Southampton

Contacts: [email protected]; [email protected]; [email protected];

[email protected]

IEEE International Ultrasonics Symposium

Prague, Czech Republic

21 July 2013

Page 2: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Course Content

The acoustic radiation force

(Charles Courtney, University of Bath)

Tweezing with planar resonators

(Martyn Hill, University of Southampton)

Dexterous acoustic tweezing

(Bruce Drinkwater, University of Bristol)

How to make an acoustic tweezer

(Sandy Cochran, University of Dundee)

Applications of acoustics tweezers

(Martyn Hill, University of Southampton)

Page 3: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

The authors would like to thank;

• Numerous researchers at the Universities of Bristol, Dundee,

Glasgow and Southampton for their contributions.

• Specific thanks to Christine Demore (University of Dundee) for

help preparing Lecture 4 and Peter Glynne-Jones (University of

Southampton) for help preparing Lectures 2 and 5.

• The UK Engineering and Physical Sciences Research Council

for funding.

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Acknowledgements

Page 4: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

The acoustic radiation force (Hand-out to follow)

Dr Charles Courtney

University of Bath, UK

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Page 5: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Tweezing with planar resonators (Hand-out to follow)

Professor Martyn Hill

University of Southampton, UK

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Page 6: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Applications of acoustics tweezers

(Hand-out to follow)

Professor Martyn Hill

University of Southampton, UK

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Page 7: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Dexterous Acoustic Tweezing

Professor Bruce Drinkwater

University of Bristol, UK

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Page 8: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Contents

• Introduction to array-based tweezing

• Effect of device boundaries

• Design and modelling of dexterous

devices

• High frequency beam-based tweezing

• Current capabilities and future directions

Page 9: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Examples of array devices

• Heptagon2 • 4-transducer water-backed1

• Planar array3 • Circular array4

1Courtney et al in APL 101 (23), 2012 2Bernassau et al in IEEE UFFC 58(10), 2011 3Glynne-Jones et al in IEEE UFFC 59(6), 2012 4Courtney et al in APL 102 (12), 2013

Page 10: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Array-based manipulation

Array

elements

Tweezing

task

Element

outputs

Device

Reflections

Page 11: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Questions

• How to arrange the array elements?

• What acoustic field is needed to complete

the tweezing task?

• How can this required acoustic field be

created?

• What is the influence of the device

boundaries?

Page 12: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Current devices

• Surround the region

with elements for in-

plane tweezing

• Use a plane of

elements to create a

beam for out-of-

plane tweezing

Device

boundary

These concepts could be merged for 3D manipulation

Page 13: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Effect of boundaries

0

2

4

6

0 0.5 1 1.5 20

2

4

Position, mm

|Pre

ssu

re|

u(x)=A[eikx+ e-i(kx-)]

0

2

4

6

0 0.5 1 1.5 20

2

4

Position, mm

|Pre

ssu

re|

u(x)= 2A[cos(kx)+ei/2cos(kx)]

Reflective boundaries Transparent boundaries

Page 14: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Transparent boundaries

PZ

T

Wate

r

Wa

ter

Absorb

er

R

T P

ZT

Wate

r

Absorb

er

R

T

Matching layer

Water-backed

Grinenko et al in APL 101(23), 2012

Page 15: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Transparent boundaries • Matching layer design

Transducer resonances

l/4

3l/4

5l/4

Refle

ctio

n C

oeffic

ient

Page 16: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Effect of partial reflection

0

2

4

6

0 0.5 1 1.5 20

2

4

Position, mm

|Pre

ssu

re|

2tan

1

1arctan

1

R

R

kx

2P0(1+R)

2P0(1-R)

Page 17: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

4-element array Manipulation

possible

if boundary is

transparent

• Rectangular grid pattern formed

• Grid can be translated in the plane of the device

• Applications in biology and materials

Courtney et al in Proc Roy Soc 468, 2012

Page 18: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Simulating the device

𝑃1 𝑥, 𝑦 = 𝑃0exp[𝑖(𝑘𝑥 + 𝜑1)] 𝑃2 𝑥, 𝑦 = 𝑃0exp[𝑖(−𝑘𝑥 + 𝜑2)] 𝑃3 𝑥, 𝑦 = 𝑃0exp[𝑖(𝑘𝑦 + 𝜑3)] 𝑃4 𝑥, 𝑦 = 𝑃0exp[𝑖(−𝑘𝑦 + 𝜑4)]

P1 P2

P4

P3

x

y

4 plane

waves, no

reflections

Page 19: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Acoustic Pressure

xy 2

xy

Where, 𝜑𝑥 =𝜑1+𝜑2

2, and 𝜑𝑦 =

𝜑3+𝜑4

2

-3 -2 -1 0 1 2 3

x 10-4

-3

-2

-1

0

1

2

3x 10

-4

x (m)y (

m)

-3 -2 -1 0 1 2 3

x 10-4

-3

-2

-1

0

1

2

3x 10

-4

x (m)

y (

m)

Page 20: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Acoustic radiation force

-2 -1 0 1 2

x 10-4

-2

-1

0

1

2x 10

-4

x (m)

y (

m)

Force distribution

1

2

3

4

5

6

7

8

9

x 105

• Using Gor’kov 𝑈 = 2𝜋𝑎3𝜌 𝑃2

3𝜌2𝑐2𝑓1−

𝑣2

2𝑓2

• 𝑓1 = 1 − 𝐾

𝐾0

• 𝑓2 = 2 𝜌0−𝜌

2𝜌0+𝜌

And then

• 𝐹 = −𝛻𝑈

Page 21: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Force Measurement

• Locate single particle in trap.

• Shift acoustic field by l / 2.

• Track motion with 200 fps camera.

• Fit solution for particle in sinusoidal potential well in presence of Stoke’s drag F0=30 pN

Page 22: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

10,000 trapping points

• Uniform grid of

equal traps

• Translatable in X

and Y

X

Y

l/2=150mm

10mm diameter polystyrene spheres in water, 5MHz

Page 23: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Translation of the acoustic field Video

Composite photo

Composite image of a single 6 μm

fluorescent particle maneuvered to

shape the letters ‘ST’ Four 10 μm particles

Page 24: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Alternative concepts

• Mode switching

• 𝐹𝑇𝑜𝑡𝑎𝑙 = 𝑞𝐹𝑄 + (1 − 𝑞)𝐹𝐻

Page 25: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Mode switching Varying the fraction of the quarter wavelength mode

Page 26: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Circular Array Device

10 mm

Courtney et al in APL 102(12), 2013

Page 27: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Ideal acoustic pressure field? • Arbitrary trap locations

• Arbitrary trap numbers

• Sharp spatial gradients

• Minimal interference between traps

Ideal

Real device

Page 28: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Helical* beam creates local minima

-1 -0.5 0 0.5 1

x 10-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10

-3 abs(Pressure)

x (m)

y (

m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instantaneous pressure (a=1)

*As used in optical tweezers, e.g. Grier, Nature 424, 2003

a=topological charge

Page 29: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

nth element

Trap centre

rn

nn kr

N

n )1(2a

Phase

a2 radians

around the ring

Moves trap

centre

How to generate a Helical beam

Page 30: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Effect of the number of elements

Model Schlieren

Page 31: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

• If the boundary is discretized, then,

according to sampling theorem an

inevitable aliasing appears

• Controllable area is defined by:

Performance limits and aliasing

Grinenko et al in Proc. Roy Soc. 468, 2012

Target field

Artefact

field

N=60

Page 32: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Particle positioning

Page 33: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Multiple traps

• nth element and mth trap

• Linear superposition.

)(exp0 nmnm tiVV

nmnm kr

N

n )1(2

''

1

exp nn

M

m

nmn iVVV

Page 34: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Full FE simulation of 32-element

array device

Page 35: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

2 traps moving and merging

Schlieren Video

Courtney et al in IUS Prague, 2013

Page 36: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

What does high and low frequency

mean in practice?

0.1

0.1

0.1 0.1 0.1

1

1

1

11

10

Frequency (MHz)

Pa

rtic

le d

iam

ete

r (u

m)

0 20 40 60 80 1000

50

100

150

200

Low frequency

(Rayleigh scattering)

High frequency

(Ray acoustics or

Mie scattering)

Graph of particle size/wavelength

Eukaryotic cells

Prokaryotic cells

Multi-cell

75mm

200MHz

Page 37: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Propagating Bessel beams

Islands of

attractive force

Silva et al in IEEE UFFC 60(6), 2013

-1 -0.5 0 0.5 1

x 10-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10

-3 abs(Pressure)

x (m)

y (

m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 38: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

High frequency force regime

*Lee et al (USC), IEEE UFFC, 57(10), 2010

+Lee et al (USC), Biotechnology and Bioengineering, 108(7), 2011

• a>>l (ray acoustics)

• In 2010 Lee et al trapped a125mm lipid drop using 30MHz ultrasound (l=60mm)

• In 2011 Lee et al+ trapped a Leukaemia cell (10mm) using 200MHz ultrasound (l=7.5mm)

Page 39: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

High frequency array

• 26MHz

(l=58mm), 64

element array*

• Ø 45mm PS

• Standard phased

array focussing Maylar film

*Zheng et al (USC), APL 101, 2012

mm

Page 40: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Applications • Biology (e.g. tissue engineering)

• High precision, high dexterity

• Scale fixed by cell/tissue size

• Non-destructive to cells

• Medicine (e.g. drug delivery) • Moderate precision, moderate dexterity

• Scale fixed by delivery agent

• Single sided

• Destructive?

• Materials (e.g. composites) • Moderate precision, moderate dexterity

• Large area, multi-scale

• Fast

• Flexible in terms of materials

• No living matter involved

Page 41: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Cell patterning

• Biocompatible

acoustic manipulator

printed with rapid

prototyping system

• Fits within a petri dish

• 15x15mm active area

• Easy to sterilise

• Good optical access

Page 42: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Cell patterning Uses include; • Cell-cell and cell-

chemical interaction

studies

• Forming the building

blocks of engineered

tissue

• Various new

migration and/or

adherence assays

Human Umbilical Vein Endothelial cells on

150 mm grid

MDCK Cells (Photo courtesy of Anne Bernassau,

University of Glasgow)

Page 43: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Co-culturing cells

SVP cells SVP + CPC cells

Shift

traps

Fluorescent

microscopy

CPC

SVP cells

90

mins

Page 44: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Composite manufacture

• Low viscosity photo-cure epoxy resin

• 15mm diameter, 50 mm length glass fibres

• Operated at 2MHz, so line spacing equals 325mm

Page 45: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Composite manufacture

Photo X-ray CT

Page 46: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

Concluding remarks

• Dexterous acoustic tweezing is a reality

• Various concepts are being explored and

showing significant promise

• Typically devices use wavelengths

~100mm to manipulate cells ~10 mm in

water (i.e. complimentary to optical

tweezers)

• Order of magnitude variation in these

length scales is possible

• Applications includes tissue engineering

and micro/nano fabrication

Page 47: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

How to make an acoustic tweezer

Professor Sandy Cochran

University of Dundee, UK

IEEE International Ultrasonics Symposium Prague, Czech Republic

21 July 2013

Page 48: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

2

• This part of the course focuses on Sonotweezers as arrays of individual devices

• Acoustic tweezing and sonotweezing may also refer to simpler devices

• The components of a Sonotweezer

• The tweezer itself

• Piezoelectric material

• Micromachining

• Other components

• The electronics

• Conventional multichannel excitation

• Array controllers

• Maximally simplified electronics

• Ancillary components

Course Outline

Page 49: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

3

The Components of a Sonotweezer

Page 50: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

4

Conventional Transducer Structure

• Classic single element transducer

Piezoelectric

plate

Mechanical

damping

Ultrasonic

coupling gel

Casing

Test

object

Matching

layers

0 t

Vtx-rx

Tx-Rx

Page 51: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

5

Ultrasonic Array Structure

• An array is a set of miniature transducers known as array elements

• The array elements are in fixed, known positions relative to one another

Test

object

1 2 64 ...

Mechanical

damping

Elements Casing Individual

coaxial

cables

Protective

layer

Couplant

Piezoelectric

elements

Matching

layers

Page 52: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

6

Medical Implementation

• Arrays are implemented with an integrated manufacturing process

• The array is first made with all the elements joined together, using monolithic pieces of the active material and other layers

• The elements are separated in situ

• This approach is also ultimately the only practical one for Sonotweezers

Array

elements

Protective

layer

Acoustic

damping

Wiring Casing

Page 53: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

7

Sonotweezer Arrays

• Piezoelectric elements

• Still required as a set of miniature transducers

• Individual electrical connections also a necessity

• Mechanical damping

• Acoustic tweezers are narrowband ultrasound sources

• Hence mechanical damping is not needed

• Matching layers

• Needed for some acoustic tweezers but not all

• Can be omitted for simple, exploratory devices

• Casing etc

• Designed ad hoc according to application

• Unlikely to require protective front face layer

Page 54: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

8

Examples Not to scale

Page 55: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

9

Related Design Framework D

ime

nsio

nali

ty

3D 3D array manipulator with mode switching Insightec Matrix Array

2.5D Crossed electrode

array manipulator 2D array manipulator

Dual pair matched

transducers 64-element device

2D 2D multi wave-l resonator

SAW counter

propagating device

Heptagon-on-flex

device

Octagon-on-flex

device

1.5D Linear array manipulator Single pair matched transducers

1D

Mode switched ½ l

resonator

Ring transducers

HF SAW multi-l

capillary resonator

HF multi-l capillary

resonator

Multi-l vertical

resonator

HF multi-l lateral

resonator

Acoustic Cytometer

0.5D

Transwell chamber SAW microchannel

lateral resonator

Bead sorter LNO ½ l resonator

with capillary

Thin layer resonator ½ l resonator with

capillary

½ l resonator ¼ l resonator

Resonant Chamber Devices Counterpropagating Wave Devices Progressive Wave Devices

Page 56: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

10

Related Design Framework D

ime

nsio

nali

ty

3D 3D array manipulator with mode switching Insightec Matrix Array

2.5D Crossed electrode

array manipulator 2D array manipulator

Dual pair matched

transducers 64-element device

2D 2D multi wave-l resonator

SAW counter

propagating device

Heptagon-on-flex

device

Octagon-on-flex

device

1.5D Linear array manipulator Single pair matched transducers

1D

Mode switched ½ l

resonator

Ring transducers

HF SAW multi-l

capillary resonator

HF multi-l capillary

resonator

Multi-l vertical

resonator

HF multi-l lateral

resonator

Acoustic Cytometer

0.5D

Transwell chamber SAW microchannel

lateral resonator

Bead sorter LNO ½ l resonator

with capillary

Thin layer resonator ½ l resonator with

capillary

½ l resonator ¼ l resonator

Resonant Chamber Devices Counterpropagating Wave Devices Progressive Wave Devices

Page 57: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

11

Electronics • Three choices

1. Based on commercial multichannel signal generators

• May need additional output amplification

2. A commercial ultrasound array controller

• Typically supplied for nondestructive testing

• May not have sufficient drive capability

• Alternative is system for focused ultrasound surgery

• Likely to be low frequency / high power

3. Fully custom electronics

• Field programmable gate array (FPGA) control likely to be essential

• With additional simple analogue electronics

Page 58: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

12

Ancillary Components • Some Sonotweezers may contain the working fluid

and cells within their structure

• These devices will either have to be experimental or disposable

• As an alternative, detachable components can be used to contain the working fluid

• A very wide range of glass capillaries is readily available

• These are inexpensive, mass produced items suitable as disposables

• Their dimensions can vary significantly relative to acoustic requirements

• A Sonotweezer can be designed to fit in a petri dish

• Other specific plastic or glass components could be manufactured

Page 59: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

13

The Tweezer Itself

Page 60: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

14

• Tweezers need pressure to be generated in response to an applied voltage

• Converse piezoelectric effect: When a voltage is applied to a piezoelectric material external pressure is generated

• The relevant parameter is d, the piezoelectric charge coefficient (units NC-1 or mV-1)

• Typical value d33 = 600 pmV-1

Vs = 0 v

Vs +ve

Vs -ve

Piezoelectric Material

Page 61: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

15

Possible Piezomaterials

All values are indicative only

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

VmN-1

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

Page 62: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

16

Possible Piezomaterials

All values are indicative only

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

VmN-1

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

Page 63: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

17

Possible Piezomaterials

All values are indicative only

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

VmN-1

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

LiNb03 PZT-4 PZT-5H PVDF AlN PMN-PT

Traditional single crystal

“Hard” piezoelectric

ceramic

“Soft” piezoelectric

ceramic

Piezoelectric polymer

Crystalline thin film

New, high performance single crystal

Stiffness c33D GNm

-2 251 155 159 8.52 420 135

Density kgm-3

4640 7500 7500 1760 3260 8000

Velocity v ms-1

7360 4560 4600 2200 11350 4040

Acoustic impedance Z = v MRayl 34.1 34.1 34.5 3.92 37.0 32.3

Piezoelectric strain constant

d33 pmV-1

5.88 289 593 25 5.53 1430

Piezoelectric voltage constant

g33 mvN-1

22 26 20 230 52 30

Piezoelectric figure of merit

FOM = d33.g33

pmN-1

0.129 7.51 11.9 5.75 0.287 42.8

Thickness mode coupling coefficient

kt 0.162 0.508 0.512 0.190 0.245 0.566

Length-extensional coupling coefficient

k33 0.162 0.691 0.746 0.130 0.309 0.897

Relative permittivity at constant stress

33T 29.8 1275 3430 8.4 12.0 3950

Relative permittivity at constant strain

33S 29.0 638 1470 10-12 10.7 818

Mechanical quality factor

Q Very high High Medium Low Very high Low

Page 64: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

18

Internal and External Waves

t 0

pf

t 0

pb

• Excitation voltage, VHV, is

applied, with desired

spectral content,

e.g. sine wave for burst

output

• Four distinct mechanical

waves are set up

• Two propagating in the

external media

• Two propagating within

the piezoelectric material

• The waves in the piezoelectric material are partially internally

reflected, creating an oscillating condition and resonance, with a

frequency inversely proportional to thickness

t 0 Vtx

Page 65: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

19

• Mechanical resonance is a fairly straightforward physical

effect

• Hence the frequency, fm , is easily determined

where

l = acoustic wavelength

D = thickness of piezoelectric material

v = acoustic velocity in piezoelectric material

• This ignores issues such as piezoelectric stiffening and

modification of wave propagation by component shape

v fm = ── l

l = 2D

Mechanical Resonance

Page 66: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

20

• As the piezoelectric material forms an electrical component (as

well as mechanical i.e. it is electromechanical) it also has an

electrical resonance

• There is no particularly straightforward way to calculate fe,

the electrical resonance frequency

• One way, for wide, thin plates, is to back fe out of the

expression for thickness mode coupling coefficient

• Because the elements in Sonotweezers are small, they are

likely to operate best at fe

Electrical Resonance

𝒌𝒕 =

𝝅𝒇𝒆𝟐𝒇𝒎

𝒕𝒂𝒏𝝅𝒇𝒆𝟐𝒇𝒎

Page 67: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

21

Matching Layers

• Matching layers are designed to have anti-reflective properties to

enhance energy transfer from the piezoelectric material through

the

couplant into the ultrasonic medium

• Theoretically, the thickness of a single matching layer, Tml and its

acoustic impedance, Zml, are defined as

where lml is the wavelength in the matching layer, and Zpm and Zum

are the acoustic impedances of the piezoelectric material and the

ultrasonic medium respectively

• Although a matching layer works ideally at only a single frequency,

corresponding to lml, it often increases the operating

bandwidth by reducing reverberation in the piezoelectric material

Tml = lml / 4, Zml = (ZpmZum)

Page 68: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

22

Micromachining

• Micromachining is needed to generate the

precise shapes required for the piezoelectric

material and the matching layer

• Three possible routes

• Accessing a conventional machine shop

• Problems with size of tools and machine precision

• Problems with machining piezoelecric materials

• Assembling or accessing a specialised

workshop

• Key components are dicing saw and

lapping / grinding machines

• Polymer handling / machining also required

• Utilising semiconductor / MEMS industry

fabrication processes

• Highly restricted availability

Page 69: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

23

Example: 64-element Array

Basic design layout Fabrication process diagram

• Fabrication process is an integrated one • Matches medical ultrasound approach

Page 70: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

24

Example: Thick Film Sonotweezer

Electrical interconnect

• PZT, Array electrodes and electrode tracks all screen printed on substrate

• Mask-based fabrication

Fluidic & optical interface

• Array forms base of chamber, or

• Capillary coupled to array

2D Array

Crossed-electrode array

Page 71: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

25

Example: pMUTs

• Thin film deposition for PZT, array electrodes and electrode fan-out

• Fully mask-based fabrication

• Conventional Si-based microfabrication techniques can be used

Page 72: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

26

Electronics for Sonotweezers

Page 73: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

27

Commercial Signal Generators

• Advantages

• Straightforward solution for small numbers of elements

• Likely to provide enough drive capability without additional amplification

• Offers easy flexibility

• Disadvantages

• Costly because of need for flexibility in design

• Feasible maximum number of elements limited

• Not space efficient

• Multiple cables needed: awkward and unreliable

Page 74: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

28

Commercial Array Controller

• Advantages

• Should be able to support enough channels

• Provides automatic channel phasing / synchronisation

• Disadvantages

• May be as costly as separate signal generators

• Typically not well matched to Sonotweezers application

• Will usually include unnecessary hardware for reception

• Will usually not allow CW excitation

www.verasonics.com www.diagnosticsonar.com www.olympus-ims.com

Page 75: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

29

Custom Electronics

• Advantages

• Relatively inexpensive hardware

• FPGA evaluation board

• Custom analogue drive board

• Possible to drive Sonotweezers with rectangular waveforms

• Minimal hardware cost per channel

• Automatic channel phasing / synchronisation

• Disadvantages

• Low level programming required - VHDL, or LabVIEW option

• Custom electronics design and fabrication required

• Large channel counts may need complicated solutions

Page 76: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

30

Ancillary Components

Page 77: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

31

Ancillary Components

• Translation of Sonotweezers from electronics lab curiosity to useful system requires application-specific front end

• Must work with Sonotweezers

• Likely also to have to provide additional access for observation / measurement

• Must provide access for target of manipulation

• E.g. connection to syringe driver

• Likely to be disposable for work in life sciences

• Capillary, cuvette or petri dish

PC Control

electronics Sonotweezers

hardware Application

interface

Feedback e.g. optical measurements

Page 78: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

32

Example: 1D Array System

• Optical (observation) interface

• Clear glass capillary with open window for microscope observation

• Fluidic interface

• Capillary coupled to array substrate

• Filled / flow controlled from syringe

Page 79: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

33

Example: pMUTs

• Optical (observation) from above

• Fluidic interface still to be engineered

• Basis in microscale silicon substrate will require further development

• Electronic interface achieved with a chip carrier

Page 80: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

34

Example: Thick Film Sonotweezer

Perspex gasket (with inlet and outlet)

PCB gasket

Slide switches

Spring pins

SMA connector

Glass coverslip

PCB

2D array

Page 81: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

35

Summary

Page 82: Acoustic Tweezing: Modelling, Implementation and … › conf › uffc › 2013 › download › ius › drinkwater1.pdfForce Measurement • Locate single particle in trap. • Shift

36

Summary

• Sonotweezers development is bifurcated

• Simple devices subject to ad hoc development

• Not covered here

• Multielement devices requiring specialised fabrication

• Three main components

• Sonotweezer itself

• Based on micromachined piezoelectrics

• Electronics

• Ancillary hardware

• Requires application specific development

• PC also required for control in most systems

• Many future possibilities

• Ultimate target is ultrasound equivalent of spatial light modulator in optical tweezing