acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the national institutes of health,...

49
1045 Acknowledgements A.6 Active Materials by Guruswami Ravichandran The author gratefully acknowledges the Army Re- search Office and the National Science Foundation for their support, which provided the stimulus for his research in the area of active materials. He thanks his colleague Professor K. Bhattacharya for stim- ulating discussions and continued collaboration. He also thanks his collaborators at Caltech in this area, E. Burcsu, D. Shilo, R. Zhang, C. Franck, and S. Kramer for their contributions to his understanding of the subject. A.7 Biological Soft Tissues by Jay D. Humphrey I wish to thank Professor W.N. Sharpe (Johns Hop- kins University) for inviting this review, for I feel that the experimental mechanics community has much to contribute to the continuing advancement of biome- chanics. It is also a pleasure to acknowledge a few of the many agencies that support biomechanics re- search in general and my study of this fascinating field in particular: the American Heart Association, the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker Foundation. B.12 Bonded Electrical Resistance Strain Gages by Robert B. Watson The inestimable technical contributions, editorial com- ments and suggestions, and encouragement by Dr. C. C. Perry are gratefully acknowledged. Support from Vishay Micro-Measurements with resources and kind permission for use of literature is greatly appreciated. A special thanks is extended to Dr. Felix Zandman for many spirited and helpful discussions concerning the fundamental nature of strain gage performance. An ir- redeemable debt of gratitude is owed to Dr. Daniel Post for introducing the author to strain gages, and to Mr. Jim Dorsey for mentoring the author in strain gage technol- ogy. B.14 Optical Fiber Strain Gages by Chris S. Baldwin The author would like to thank Omnisens for pro- viding permission to use graphics and information regarding Brillouin measurement techniques. The au- thor would also like to thank all the scientists and engineers pursuing fiber optic sensing. Since the writ- ing of this chapter, new fiber optic strain measurement techniques have been developed and publicized. Con- tinual improvements and developments of fiber optic sensing techniques will allow for the expanded use of the technology in many application areas in the near future. B.17 Atomic Force Microscopy in Solid Mechanics by Ioannis Chasiotis The author would like to thank his graduate students who have co-authored the referenced publications, and Mr. Scott Maclaren for providing some AFM mi- crographs for this Chapter. The support by the Air Force Office of Scientific Research (AFOSR) through grant F49620-03-1-0080 with Dr. B. L. Lee as the pro- gram manager, and by the National Science Foundation (NSF) under grant CMS-0515111 is acknowledged for part of the work of this author, which is referenced in this Chapter. C.20 Digital Image Correlation for Shape and Deformation Measurements by Michael A. Sutton The author would like to thank Dr. Hubert Schreier, Dr. Stephen R. McNeill, Dr. Junhui Yan and Dr. Do- rian Garcia for their assistance in completing this manuscript. In addition, the support of (a) Dr. Charles E. Harris, Dr. Robert S. Piascik and Dr. James C. Newman, Jr. at NASA Langley Research Center, (b) Dr. Oscar Dillon, Dr. Clifford Astill, and Dr. Albert S. Kobayashi, former NSF Solid Mechanics and Materials Program Directors, (c) Dr. Julius Dasch at NASA Headquar- ters, (d) Dr. Bruce LaMattina at the Army Research Office, (e) Dr. Kumar Jatta at the Air Force Research Laboratory, (f) Dr. Kenneth Chong through NSF CMS- 0201345, and (g) the late Dr. Bruce Fink at the Army Research Laboratory is gratefully acknowledged. Also, the support provided by Correlated Solutions, Incor- porated through granting access to their commercial software for our internal use is deeply appreciated. Through the unwavering technical and financial assis- tance of all these individuals and organizations, the potential of image correlation methods is now being Acknowl.

Upload: others

Post on 08-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1045

Acknowledgements

A.6 Active Materialsby Guruswami Ravichandran

The author gratefully acknowledges the Army Re-search Office and the National Science Foundationfor their support, which provided the stimulus for hisresearch in the area of active materials. He thankshis colleague Professor K. Bhattacharya for stim-ulating discussions and continued collaboration. Healso thanks his collaborators at Caltech in this area,E. Burcsu, D. Shilo, R. Zhang, C. Franck, and S. Kramerfor their contributions to his understanding of thesubject.

A.7 Biological Soft Tissuesby Jay D. Humphrey

I wish to thank Professor W. N. Sharpe (Johns Hop-kins University) for inviting this review, for I feel thatthe experimental mechanics community has much tocontribute to the continuing advancement of biome-chanics. It is also a pleasure to acknowledge a fewof the many agencies that support biomechanics re-search in general and my study of this fascinatingfield in particular: the American Heart Association,the National Institutes of Health, the National ScienceFoundation, the Texas Advanced Technology Program,and the Whitaker Foundation.

B.12 Bonded Electrical Resistance Strain Gagesby Robert B. Watson

The inestimable technical contributions, editorial com-ments and suggestions, and encouragement by Dr.C. C. Perry are gratefully acknowledged. Support fromVishay Micro-Measurements with resources and kindpermission for use of literature is greatly appreciated.A special thanks is extended to Dr. Felix Zandman formany spirited and helpful discussions concerning thefundamental nature of strain gage performance. An ir-redeemable debt of gratitude is owed to Dr. Daniel Postfor introducing the author to strain gages, and to Mr. JimDorsey for mentoring the author in strain gage technol-ogy.

B.14 Optical Fiber Strain Gagesby Chris S. Baldwin

The author would like to thank Omnisens for pro-viding permission to use graphics and information

regarding Brillouin measurement techniques. The au-thor would also like to thank all the scientists andengineers pursuing fiber optic sensing. Since the writ-ing of this chapter, new fiber optic strain measurementtechniques have been developed and publicized. Con-tinual improvements and developments of fiber opticsensing techniques will allow for the expanded use ofthe technology in many application areas in the nearfuture.

B.17 Atomic Force Microscopy in Solid Mechanicsby Ioannis Chasiotis

The author would like to thank his graduate studentswho have co-authored the referenced publications, andMr. Scott Maclaren for providing some AFM mi-crographs for this Chapter. The support by the AirForce Office of Scientific Research (AFOSR) throughgrant F49620-03-1-0080 with Dr. B. L. Lee as the pro-gram manager, and by the National Science Foundation(NSF) under grant CMS-0515111 is acknowledged forpart of the work of this author, which is referenced inthis Chapter.

C.20 Digital Image Correlation for Shapeand Deformation Measurementsby Michael A. Sutton

The author would like to thank Dr. Hubert Schreier,Dr. Stephen R. McNeill, Dr. Junhui Yan and Dr. Do-rian Garcia for their assistance in completing thismanuscript. In addition, the support of (a) Dr. Charles E.Harris, Dr. Robert S. Piascik and Dr. James C. Newman,Jr. at NASA Langley Research Center, (b) Dr. OscarDillon, Dr. Clifford Astill, and Dr. Albert S. Kobayashi,former NSF Solid Mechanics and Materials ProgramDirectors, (c) Dr. Julius Dasch at NASA Headquar-ters, (d) Dr. Bruce LaMattina at the Army ResearchOffice, (e) Dr. Kumar Jatta at the Air Force ResearchLaboratory, (f) Dr. Kenneth Chong through NSF CMS-0201345, and (g) the late Dr. Bruce Fink at the ArmyResearch Laboratory is gratefully acknowledged. Also,the support provided by Correlated Solutions, Incor-porated through granting access to their commercialsoftware for our internal use is deeply appreciated.Through the unwavering technical and financial assis-tance of all these individuals and organizations, thepotential of image correlation methods is now being

Acknow

l.

Page 2: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1046 Acknowledgements

realized. Finally, the support of my advisor, Prof. Emer-itus Charles E. Taylor, and his wife, Nikki Taylor, aswell as the support of my wife, Elizabeth Ann Sev-erns, and my children, Michelle Mary Katherine SuttonSpigner and Elizabeth Marie Rosalie Sutton, requirespecial mention, for it is with their continual supportover the past three decades that this work has been pos-sible.

C.21 Geometric Moiréby Bongtae Han, Daniel Post

We acknowledge and thank Prof. Peter G. Ifju for hiscontributions to [1.1, 2], and Dr. C.-W. Han for the re-search published in his Ph. D. Thesis [1.3] and relatedtechnical papers [1.13–15].

C.24 Holographyby Ryszard J. Pryputniewicz

This work was supported by the NEST Program atWPI-ME/CHSLT. The author gratefully acknowledgessupport from all sponsors and thanks them for their per-missions to present the results of their projects in thischapter.

C.25 Photoelasticityby Krishnamurthi Ramesh

The author wishes to acknowledge Macmillan Publish-ers (Fig. 25.2), Tata McGraw Hill (Fig. 25.8), Elsevierlimited (Fig. 25.13), ASME (Fig. 25.14) and Blackwellpublishing (Figs. 25.32a and b) for their consent to re-produce the figures that have been published in theirjournals/books and Stress photonics for Figs. 25.32cand d from their product brochure. Excerpts of the bookDigital photoelasticity - Advanced techniques and ap-plications are included in this chapter with the kindpermission of Springer, Berlin. The author also ac-knowledges IIT Madras for having given permissionto use selected animations developed for the e-Bookon Experimental Stress Analysis to be provided in theaccompanying CD of this Handbook.

Part of the results reported in this chapter areobtained from several projects funded by the Struc-tures Panel of Aeronautical Research and DevelopmentBoard of India while the author was a faculty at IITKanpur and the IITM-ISRO cell projects while at IITMadras. Last but not the least, the author wishes to ac-knowledge the Society for Experimental Mechanics andSpringer for having given permission to reproduce thefigures from their books and journals.

C.26 Thermoelastic Stress Analysisby Richard J. Greene, Eann A. Patterson,Robert E. Rowlands

The authors wish to thank Ms S. J. Lin and ProfessorY. M. Shkel, University of Wisconsin, Madison, WI,B. Boyce and J. Lesniak of Stress Photonics, Inc., Madi-son, WI, and Dr. S. Quinn, University of Southampton,UK for informative discussions, the US Air Force Re-search Laboratory, QinetiQ Plc., Rolls-Royce Plc., TheUniversity of Sheffield for the release of experimen-tal data, the Society of Experimental Mechanics forpermission to reproduce Table 26.1 and Elsevier forpermission to reproduce Fig. 26.6.

C.28 X-Ray Stress Analysisby Jonathan D. Almer, Robert A. Winholtz

The authors wish to gratefully acknowledge the lateProfessor Jerome B. Cohen and his significant contri-butions to their experience in this field. They furtherwish to thank Drs. D. Haeffner and J. Bernier, andProf. C. Noyan for assistance with the manuscript andhelpful discussions. One of the authors (JA) acknowl-edges support of the U.S. Department of Energy, Officeof Science, Office of Basic Energy Sciences, under con-tract DE-AC02-06CH11357.

D.32 Implantable Biomedical Devicesand Biologically Inspired Materialsby Hugh Bruck

The writing of this chapter was made possible througha Fulbright Scholar award administered by the US–Israel Educational Foundation, and the National ScienceFoundation through grant EEC0315425 and the Of-fice of Naval Research award number N000140710391.Contributions were also made by Michael Peterson ofthe University of Maine, James J. Evans of the Uni-versity of Reading, Dan Cole of the University ofMaryland, Eric Brown of Los Alamos National Labo-ratory, Jane Grande-Allen of Rice University, ArkadyVoloshin of Lehigh University, Krishnaswamy Ravi-Chandar of the University of Texas-Austin, and DebraWright-Charlesworth of Michigan Technological Uni-versity.

D.35 Structural Testing Applicationsby Ashok Kumar Ghosh

I would like to thank a team of investigators, WilliamE. Luecke, J. David McColskey, Chris McCowan, TomSiewert, Stephen Banovic, Tim Foecke, Richard Fields,

Acknow

l.

Page 3: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Acknowledgements 1047

and Frank Gayle from the National Institute of Standardand Technology (NIST), Washington, DC for contribut-ing case study 1 to this chapter on structural testing.This forensic investigation illustrates how structuraltesting can be very challenging and how the informa-tion generated from these tests can play a crucial role inthe overall goal of investigating the sequence of eventsthat caused the fall of the World Trade Center build-ings. Any structural failure is a very quick phenomenonwhere a sequence of events takes place. When a num-ber of loading environment is involved, the problemcan be very complex. William and his team have per-formed a systematic investigation to overcome thesechallenges.

I would like to thank Kenneth W. Gwinn andJames M. Nelsen of Sandia National Laboratories, Al-

buquerque, NM for Contributing Case study 3 andsharing their experience during the development ofa lightweight automobile airbag from inception throughinnovation to engineering development. This case studyalso illustrates the close ties between structural test-ing and numerical simulation and the importance ofengineering economics in the overall development ofa marketable product. They have demonstrated thepower of simulation. In the absence of standardizedtest specifications, they formulated their own test pro-cedures and validated with simulated output.

I would like to thank the reviewers and proofread-ers Dr. Maggie Griffin and Holy Chamberlin. I wouldlike to thank my wife, Pritha, for her understanding,encouragement, and patience during the preparation ofthis book chapter.

Acknow

l.

Page 4: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1049

About the Authors

Jonathan D. Almer Chapter C.28

Argonne National LaboratoryArgonne, IL, [email protected]

Jonathan Almer received the PhD degree in 1998 from Northwestern University.After a postdoc in Linkoping, Sweden, he joined the Advanced Photon Source atArgonne National Laboratory in 2000, where he is currently working as a physicist.His research interests include materials analysis using wide- and small-angle x-rayscattering, particularly performed in~situ under thermal and mechanical loads.

Archie A.T. Andonian Chapter D.29

The Goodyear Tire & Rubber Co.Akron, OH, [email protected]

Archie A.T. Andonian has received the PhD degree in Engineering Science andMechanics from Virginia Polytechnic Institute and S.U. in 1978. He joined GoodyearResearch in 1984 after teaching for 5 years at the University of Illinois. He iscurrently a Senior R & D Associate and his research interests are in the generalareas of experimental stress analysis, optical methods, fracture mechanics, compositematerials, and tire mechanics. He has published more than 250 research papers and hasnumerous trade secrets proprietary to Goodyear to his name. He teaches a graduate-level course, accredited by Akron University, at Goodyear Institute of Technology. Heis a long-time member of the Society for Experimental Mechanics. He has served thesociety as Application Committee Chair, Technical Activities Council Chair, ExecutiveBoard member, and SEM President for 2007–2008.

David F. Bahr Chapter B.16

Washington State UniversityMechanical and Materials EngineeringPullman, WA, [email protected]

Dave Bahr received the PhD degree from the University of Minnesotain 1997. He has been at Washington State University since 1997 andis currently a Professor in Mechanical and Materials Engineering. Hereceived the US Presidential Early Career Award for Scientists andEngineers in 2000 and is active in the area of nanomechanical behaviorand experimental deign and testing of micro-electromechanical systems(MEMS).

Chris S. Baldwin Chapter B.14

Aither Engineering, Inc.Lanham, MD, [email protected]

Dr. Baldwin currently serves as Technical Director with Aither Engineer-ing, Inc. He has over 10 years of experience developing and integratingfiber-optic sensors and systems for various applications. Projects includefiber-optic-based acoustic sensors, fiber-optic accelerometers, embeddedstrain sensors for composite materials, multipoint strain and temperaturesensor systems, and shape sensing systems.

Stephen M. Belkoff Chapter D.31

Johns Hopkins UniversityInternational Center for OrthopaedicAdvancement, Department ofOrthopaedic Surgery, Bayview MedicalCenterBaltimore, MD, [email protected]

Stephen Belkoff graduated from Michigan State University in Applied Mechanics(Biomechanics) under the mentorship of Roger Haut in 1990. Prior to joining thefaculty at Johns Hopkins University, he was at the University of Maryland. He hastaught mechanical engineering courses and conducted orthopaedic research witha primary focus on osteoporosis and fracture fixation for almost two decades.

Auth

ors

Page 5: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1050 About the Authors

Hugh Bruck Chapter D.32

University of MarylandDepartment of Mechanical EngineeringCollege Park, MD, [email protected]

Dr. Bruck received the PhD degree in Materials Science from the California Instituteof Technology in 1995. He is the recipient of the ONR Young Investigator Award,the Fulbright Scholar Award, and the A.J. Durelli Innovative Researcher Award fromthe SEM. He is author or co-author on over 80 technical publications on materialsprocessing and characterization involving digital image correlation, interferometry,scanning probe microscopy, functionally graded materials, bioinspired structures, andsmart structures.

Ioannis Chasiotis Chapter B.17

University of Illinois atUrbana-ChampaignAerospace EngineeringUrbana, IL, [email protected]

Ioannis Chasiotis received the PhD degree in Aeronautics from theCalifornia Institute of Technology in 2002. He is a member of the facultyat the Department of Aerospace Engineering at the University of Illinois atUrbana-Champaign. His research focuses on the experimental deformationand failure mechanics of thin films, micro- and nano-electromechanicalsystems (MEMS/NEMS), and nanostructured materials. He is a recipientof an NSF CAREER award in 2008, an ONR Young Investigator Awardin 2007, a Xerox Award for Faculty Research in 2007, and the Founder’sPrize from the American Academy of Mechanics in 2000.

Gary Cloud Chapter C.18

Michigan State UniversityMechanical Engineering DepartmentEast Lansing, MI, [email protected]

Gary Cloud is University Distinguished Professor of MechanicalEngineering and Director of the Composite Vehicle Research Center atMichigan State University. He is a Registered PE, Chartered Scientist,Chartered Physicist, Fellow of both the SEM and the Institute of Physics,and is recipient of numerous awards for teaching and research. Hisresearch involves development and applications of optical techniques inexperimental mechanics.

Wendy C. Crone Chapter A.9

University of WisconsinDepartment of Engineering PhysicsMadison, WI, [email protected]

Professor Crone is an accomplished researcher in the area of experimental mechan-ics, with expertise in improving fundamental understanding of mechanical response ofmaterials, enhancing material behavior through surface modification and nanostructur-ing, and developing new applications and devices. She is a Fellow of the Universityof Wisconsin–Madison Teaching Academy and was granted a CAREER Award by theNational Science Foundation.

James W. Dally Chapter A.11

University of MarylandKnoxville, TN, [email protected]

James W. Dally obtained the BS and MS degrees, both in Mechanical Engineering,from the Carnegie Institute of Technology. He earned a Doctoral degree in Mechanicsfrom the Illinois Institute of Technology. Currently he is a Glenn L. Martin Professorof Engineering at the University of Maryland, College Park. He is a fellow of theAmerican Society for Mechanical Engineers, Society for Experimental Mechanics,and the American Academy of Mechanics. He was appointed as an honorary memberof the Society for Experimental Mechanics in 1983 and elected to the NationalAcademy of Engineering in 1984. Professor Dally has co-authored several textbooks,has written over 200 scientific papers, and holds five patents.

James F. Doyle Chapter A.10

Purdue UniversitySchool of Aeronautics & AstronauticsWest Lafayette, IN, [email protected]

Professor James F. Doyle received the PhD degree in Theoretical andApplied Mechanics from the University of Illinois in 1977. He joinedPurdue University the same year as an Assistant Professor and is currentlya Professor of Aeronautics and Astronautics.

Auth

ors

Page 6: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

About the Authors 1051

Igor Emri Chapter A.3

University of LjubljanaCenter for Experimental MechanicsLubljana, [email protected]

Igor Emri has made major experimental and theoretical contributionsto the understanding of the effect of thermomechanical loading on thetime-dependent behavior of polymers in the nonequilibrium solid state,and in the process of their solidification. He is a Member of the RussianAcademy of Engineering (1996), the Russian Academy of NaturalSciences (1997), the Slovenian Academy of Engineering (1998), theEuropean Academy of Sciences and Arts (2006), and an AssociateMember of the Slovenian Academy of Sciences and Arts (2005).

Yimin Gan Chapter C.23

Universität GH KasselFachbereich 15 – MaschinenbauKassel, [email protected]

Yimin Gan received the BSc degree from Shanghai University of Technology andScience, China, in 1993. From 1993 to 1998 he was an engineer in the field of noise andvibration in the construction of vehicles and Diesel engines at Shanghai AutomobileIndustry Company (SAIC). In 2002 and 2007 he received the Diploma and PhD degreein Mechanical Engineering from the University of Kassel in Germany, respectively.Currently he is the leader of the Metrology and Developement Department at VibtecGmbH, Germany. Prior to joining Vibtec GmbH, he was employed in the Laboratoryfor Photoelasticity, Holography, and Shearography at the Department of MachineElements and Construction of the University of Kassel.

Ashok Kumar Ghosh Chapter D.35

New Mexico TechMechanical Engineering and CivilEngineeringSocorro, NM, [email protected]

Dr. Ashok Kumar Ghosh is an Assistant Professor in Mechanical and Civil Engineeringat New Mexico Institute of Mining and Technology. His areas of special interest includethe macro behavior of composites, biomechanics, finite element analysis, structuralhealth monitoring, restoration construction materials, and project management. He hascompleted more than 15 industry-sponsored projects of which the World Bank funded3 projects. He has been awarded two Indian patents. He has published more than 35research papers.

Richard J. Greene Chapter C.26

The University of SheffieldDepartment of Mechanical EngineeringSheffield, [email protected]

Dr. Richard John Greene received the PhD degree in experimental me-chanics from The University of Sheffield, UK, in 2003 and is currentlya lecturer in solid mechanics at the same institution. His professionalinterests include thermoelastic stress analysis, thermal nondestructiveevaluation (NDE), digital image correlation, and photoelastic stress analy-sis, with particular emphasis on their use in aerospace and biomechanicalapplications.

Bongtae Han Chapter C.22

University of MarylandMechanical Engineering DepartmentCollege Park, MD, [email protected]

Bongtae Han received the PhD degree in Engineering Mechanics fromVirginia Tech in 1991. He is currently a Professor of the Mechani-cal Engineering Department of the University of Maryland at CollegePark. His research interest is centered on design optimization of micro-electronics devices for enhanced mechanical reliability using variousexperimental techniques for full-field deformation measurements. Heis responsible for development of portable moiré systems (PEMI andSM-NT) and holds related patents. He was a recipient of the 2002 SEMBrewer Award for his contributions to experimental characterization ofmicroelectronics devices. He is a Fellow of the SEM and the ASME.

Auth

ors

Page 7: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1052 About the Authors

M. Amanul Haque Chapter D.30

Pennsylvania State UniversityDepartment of Mechanical EngineeringUniversity Park, PA, [email protected]

Aman Haque received the PhD degree in Mechanical Engineering from the Universityof Illinois at Urbana-Champaign in 2002. He then joined the Department of Mechanicaland Nuclear Engineering at Pennsylvania State University. His research interestsare in multiphysics of nanoscale materials and interfaces, nanofabrication, andminiaturization of experimental techniques. He has published over 30 journal papersin these areas.

Craig S. Hartley Chapter A.2

El Arroyo Enterprises LLCSedona, AZ, [email protected]

Dr. Hartley holds degrees in Metallurgical Engineering from Rensselaer PolytechnicInstitute and the Ohio State University. After a career in academia and government, heretired to Sedona, AZ, where he continues his professional activities as a consultantin materials research and education. Dr. Hartley is Emeritus Professor of MechanicalEngineering at Florida Atlantic University and Program Manager Emeritus in theAir Force Research Laboratory. He is a Fellow of the American Association for theAdvancement of Science, ASM International, and ASME. Dr. Hartley’s principalresearch areas are in the mechanics and mechanical behavior of metallic materials. Hehas made contributions in the areas of dislocation theory and the mechanics of metaldeformation processing.

Roger C. Haut Chapter D.31

Michigan State UniversityCollege of Osteopathic Medicine,Orthopaedic Biomechanics LaboratoriesEast Lansing, MI, [email protected]

Roger C. Haut is a University Distinguished Professor at Michigan StateUniversity in the Colleges of Engineering and Osteopathic Medicine.He is the Director of the Orthopaedic Biomechanics Laboratories in theCollege of Osteopathic Medicine. His research in soft-tissue biomechanicsdeals primarily with the mechanisms of joint trauma, and the developmentof methods of disease intervention and prevention.

Jay D. Humphrey Chapter A.7

Texas A&M UniversityDepartment of Biomedical EngineeringCollege Station, TX, [email protected]

Jay D. Humphrey received the PhD degree from The Georgia Instituteof Technology in Engineering Science and Mechanics and completeda postdoctoral fellowship in Cardiovascular Science at The Johns Hop-kins University. He is currently Professor of Biomedical Engineering atTexas A&M University. He has authored a graduate textbook (Cardio-vascular Solid Mechanics), co-authored an undergraduate textbook (AnIntroduction to Biomechanics

Peter G. Ifju Chapter A.4

University of FloridaMechanical and Aerospace EngineeringGainesville, FL, [email protected]

Dr. Peter Ifju is a Professor in the Department of Mechanical and Aerospace Engineer-ing at the University of Florida (UF). Before arriving at UF in 1993, Dr. Ifju performeda Postdoc at NASA Langley Research Center. He received the PhD degree in MaterialsEngineering Science from Virginia Polytechnic Institute and State University in 1992,the MS degree in Engineering Science and Mechanics in 1989, and the BS degree inCivil Engineering in 1987. He is an expert in the areas of experimental stress analysis,optical methods (moiré interferometry, luminescent photoelastic coatings), compositematerials, and micro air vehicles.

Auth

ors

Page 8: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

About the Authors 1053

Wolfgang G. Knauss Chapter A.3

California Institute of Technology-GALCIT105-50Pasadena, CA, [email protected]

Wolfgang G. Knauss, von Kàrmàn Professor of Aeronautics and Applied Mechanicsat the California Institute of Technology, has been on the faculty there since 1965.His mostly experimental work is devoted to understanding the mechanics of time-dependent behavior of materials and, in particular, to the fracture of polymericmaterials so as to enable prediction of the long-term failure of structures made from orincorporating time-dependent materials. Dr. Knauss has also been a Visiting Professorat several distinguished foreign universities and a consultant to many companies andagencies. Dr. Knauss received all his academic degrees, including the PhD, fromthe California Institute of Technology and is a fellow of the ASME, the Society forExperimental Mechanics, the American Academy of Mechanics, and the Institute forthe Advancement of Engineering.

Albert S. Kobayashi Chapter A.1

University of WashingtonDepartment of Mechanical EngineeringSeattle, Washington, [email protected]

Dr. Albert S. Kobayashi has been Professor Emeritus in the Departmentof Mechanical Engineering, University of Washington, since June 1997.Dr. Kobayashi received the BE degree in l947 from the University ofTokyo, the MS degree in Mechanical Engineering in l952 from theUniversity of Washington, and the PhD degree in l958 from IllinoisInstitute of Technology. He is a member of the National Academy ofEngineers, a Fellow of the ASME, Honorary Life Member of the Societyfor Experimental Mechanics, and Member of the American Academy ofMechanics. He was the President of SEM for 1989–1990. His publications,which exceed 500, cover the fields of experimental stress analysis, finiteelement analysis, and biomechanics in addition to his main interest infracture mechanics. He was elected to the Mechanical Engineering Hallof Fame of the University of Washington in 2006.

Sridhar Krishnaswamy Chapter C.27

Northwestern UniversityCenter for Quality Engineering & FailurePreventionEvanston, IL, [email protected]

Sridhar Krishnaswamy obtained the PhD degree in Aeronautics fromthe California Institute of Technology in 1989. He has been on the fac-ulty of Mechanical Engineering at Northwestern University since 1990.Professor Krishnaswamy is actively involved in the areas of nondestruc-tive materials characterization, optical metrology, and structural healthmonitoring where he and his co-workers have developed several photoa-coustic methods. He is a Fellow of the ASME and a Member of SPIE.He is currently the Director of the Center for Quality Engineering andFailure Prevention at Northwestern University.

Yuri F. Kudryavtsev Chapter B.15

Integrity Testing Laboratory Inc.PreStress Engineering DivisionMarkham, Ontario, [email protected]

Dr. Yuri F. Kudryavtsev obtained the MS degree in Mechanical Engineering fromthe National Technical University (KPI), Kiev, Ukraine in 1977 and the PhD degreefrom the Paton Welding Institute of the Ukrainian Academy of Sciences in 1984. Dr.Kudryavtsev is a recognized authority in fatigue of welded elements and residual stressanalysis. He is a Delegate of Canada for the Commission XIII "Fatigue behavior ofwelded components and structures" of the International Institute of Welding (IIW) anda member of a number of professional societies.

Pradeep Lall Chapter D.36

Auburn UniversityDepartment of Mechanical EngineeringCenter for Advanced Vehicle ElectronicsAuburn, AL, [email protected]

Pradeep Lall is the Thomas Walter Professor with the Department of Mechanical En-gineering and Associate Director of the NSF Center for Advanced Vehicle Electronicsat Auburn University. He received the MS and PhD degrees from the University ofMaryland and the MBA from Kellogg School of Management. He has published ex-tensively in the area of electronic packaging with emphasis on modeling and predictivetechniques.

Auth

ors

Page 9: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1054 About the Authors

Kenneth M. Liechti Chapter D.34

University of TexasAerospace Engineering and EngineeringMechanicsAustin, TX, [email protected]

Kenneth M. Liechti is a Professor of Aerospace Engineering and Engi-neering Mechanics at the University of Texas at Austin, where he has beensince 1982. Dr. Liechti’s research deals with the mechanics of adhesionand friction over a range of length and time scales. Applications rangefrom primary structural adhesive joints and composite materials to micro-electronics devices and micro-electromechanical systems (MEMS). He iscoauthor with Marc Bedford of the book Mechanics of Materials. He isa Fellow of the Society for Experimental Mechanics, the American So-ciety of Mechanical Engineers, the Adhesion Society, and the AmericanAcademy of Mechanics.

Hongbing Lu Chapter A.3

Oklahoma State UniversitySchool of Mechanical and AerospaceEngineeringStillwater, OK, [email protected]

Dr. Hongbing Lu is a Professor of Mechanical and Aerospace Engi-neering at Oklahoma State University. He received the MS degree inEngineering Mechanics from Tsinghua University, China in 1988, theMS degree in Solid Mechanics at Huazhong University of Science andTechnology in 1986, and the PhD degree in Aeronautics from Caltechin 1997. He is recepient of the NSF Career award in 2000. His researchis primarily on the mechanics of time-dependent materials, includingsuch materials as polymers, biomaterials, and porous nanostructuredcrosslinked aerogels.

Ian McEnteggart Chapter B.13

InstronBuckinghamshire, UK

Ian McEnteggart has a physics degree from Birmingham University and worksfor Instron in the UK. He has been involved in developing both contacting andnoncontacting extensometers for use in materials testing. He is currently responsiblefor electromechanical testing machine operations in Europe and is actively involvedwith the development of international standards for materials testing and extensometercalibration.

Dylan J. Morris Chapter B.16

National Institute of Standards andTechnologyMaterials Science and EngineeringLaboratoryGaithersburg, MD, [email protected]

Dylan Morris received the PhD degree from the University of Minnesota in 2004. Hewas at Washington State University from 2004 to 2007 working in nanomechanics andMEMS technologies. Dylan is now Project Leader for Nanoindentation Measurementsand Standards in the Materials Science and Engineering Laboratory at the NationalInstitute of Standards and Technology.

Sia Nemat-Nasser Chapter A.8

University of CaliforniaDepartment of Mechanical andAerospace EngineeringLa Jolla, CA, [email protected]

Sia Nemat-Nasser is a Distinguished Professor of Mechanics of Materialsand Director of the Center of Excellence for Advanced Materials at theUniversity of California (UC) San Diego. He is Founding Director of UCSan Diego’s Materials Science and Engineering Graduate Program andis recipient of numerous Awards and Medals. He is a Member of NAE,an Honorary Member of World Innovation Foundation, and an HonoraryMember of ASME. In 2008 the ASME Materials Division established’The Sia Nemat-Nasser Early Career Medal’ to recognize researchexcellence by young investigators. Dr. Nemat-Nasser’s current research ison multifunctional composites with tunable electromagnetic functionality,thermal management, self-healing, and self-sensing; polyelectrolytescomposites as soft actuators/sensors; shape-memory alloys; advancedmetals; ceramics; elastomers; and granular materials.

Auth

ors

Page 10: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

About the Authors 1055

Wolfgang Osten Chapter C.19

Universität StuttgartInstitut für Technische OptikStuttgart, [email protected]

Wolfgang Osten received the BS degree from the University of Jenain 1979 and the PhD degree from the Martin-Luther-University Halle–Wittenberg in 1983. In 1991 he joined the Bremen Institute of AppliedBeam Technology (BIAS) where he established and directed theDepartment of Optical 3-D Metrology. Since September 2002 he hasbeen a Full Professor at the University of Stuttgart and Director of theInstitute for Applied Optics. His research is focused on new conceptsfor industrial inspection and metrology by combining modern principlesof optical metrology, sensor technology. and image processing. Specialattention is paid to the development of resolution-enhanced technologiesfor the investigation of micro- and nanostructures.

Eann A. Patterson Chapter C.26

Michigan State UniversityDepartment of Mechanical EngineeringEast Lansing, MI, [email protected]

Dr. Patterson’s research interests include computational biomechanics, experimentalfracture mechanics, and the application of experimental mechanics in the aerospaceindustry. He was elected a Fellow of the SEM in 2007 and is a Fellow of the Institutionof Mechanical Engineers, London. He is Chair of Mechanical Engineering at MichiganState University.

Daniel Post Chapter C.22

Virginia Polytechnic Institute and StateUniversity (Virginia Tech)Department of Engineering Science andMechanicsBlacksburg, VA, [email protected]

Daniel Post received the PhD degree in Theoretical and Applied Mechanics in 1957from the University of Illinois. He served in government, industry, and academiaprior to retirement from Virginia Polytechnic Institute and State University. He wasinstrumental in the development of experimental techniques of stress and strainanalysis throughout his career, and their extensive use in solid mechanics and materialsscience. His developments spanned the fields of electrical strain gages, opticalinterferometry, photoelasticity, holography, moiré, and moiré interferometry. Hecompleted a comprehensive book (High Sensitivity Moiré) together with coauthors B.Han and P.G. Ifju.

Ryszard J. Pryputniewicz Chapter C.24

Worcester Polytechnic InstituteNEST – NanoEngineering, Science, andTechnologyCHSLT – Center for Holographic Studiesand Laser Micro-MechatronicsWorcester, MA, [email protected]

Ryszard J. (Rich) Pryputniewicz, educated both in Poland and in theUSA, is the K.G. Merriam Professor of Mechanical Engineering aswell as Professor of Electrical and Computer Engineering, and, since1978, founding Director of the Center for Holographic Studies and Lasermicro-mechaTronics (CHSLT) at Worcester Polytechnic Institute (WPI)in Worcester, MA. In his work, he emphasizes unification of analytical,computational, and experimental solutions (ACES) methodologies. He isa Registered Professional Engineer (PE), Fellow of the SPIE and the SEM,and Chairman of the Education Committee of the IEEE NanotechnologyCouncil. He has over 350 publications to his name and has organizedover 100 conferences, symposia, and workshops. Rich was appointedas a professor in several countries in Europe and Asia and has receivednumerous awards including the 2002 ASME International Award and the2004 Sigma Xi Senior Faculty Research Award.

Auth

ors

Page 11: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1056 About the Authors

Kaliat T. Ramesh Chapter D.33

Johns Hopkins UniversityDepartment of Mechanical EngineeringBaltimore, MD, [email protected]

Professor K.T. Ramesh’s research interests include nanostructuredmaterials, high-strain-rate behavior, dynamic failure of materials,biomechanics, and planetary impact. He received his doctorate fromBrown University in 1987 and did his postdoctoral fellowship at Uni-versity of California San Diego. He joined the Mechanical EngineeringFaculty at the Johns Hopkins University in 1988, was Department Chairfrom 1999–2002, and became the Director of the Center for AdvancedMetallic and Ceramic Systems in 2001.

Krishnamurthi Ramesh Chapter C.25

Indian Institute of Technology MadrasDepartment of Applied MechanicsChennai, [email protected]

Professor Ramesh is currently heading the Department of Applied Mechanics atIIT Madras. His areas of interest are digital photoelasticity, fracture mechanics,and educational technology. He has developed an e-book on Engineering FractureMechanics published by IIT Madras, which mimics the classroom environment. Heis a Fellow of the Indian National Academy of Engineering and a member of severalNational and International professional societies such as the SEM, BSSM, OSI, andISTAM.

Krishnaswamy Ravi-Chandar Chapter A.5

University of Texas at AustinAustin, TX, [email protected]

Dr. Ravi-Chandar is interested in the characterization of deformation and failureof brittle and ductile materials subjected to extreme loads in short durations. Themain objectives of this work are to develop an understanding of the mechanisms ofdeformations and to develop quantitative models for use in engineering design.

Guruswami Ravichandran Chapter A.6

California Institute of TechnologyGraduate Aeronautical LaboratoriesPasadena, CA, [email protected]

Guruswami Ravichandran is the John E. Goode, Jr. Professor of Aeronau-tics and Mechanical Engineering at the California Institute of Technology.He received the PhD degree in Solid Mechanics and Structures fromBrown University. He is a Fellow of the ASME and the recipient ofa Presidential Young Investigator award from the NSF and B.J. Lazanaward from the SEM.

Robert E. Rowlands Chapter C.26

University of WisconsinDepartment of Mechanical EngineeringMadison, WI, [email protected]

Professor Rowlands received the BASc degree in Mechanical Engineer-ing from the University of British Columbia, Vancouver, Canada and thePhD (1967) degree in Theoretical and Applied Mechanics from the Uni-versity of Illinois, Urbana, IL. He was affiliated with the IIT ResearchInstitute, Chicago, IL from 1967 to 1974 and has been at the Univer-sity of Wisconsin, Madison, WI since 1974. He has one patent and over100 publications in experimental mechanics. He is a Fellow of ASMEand the Society for Experimental Mechanics. His honors include theHetenyi (1970, 1976) and Frocht (1987) Awards of the Society for Ex-perimental Mechanics (1982). He is a Registered Professional Engineerand consults to industry, including as a legal expert witness.

Auth

ors

Page 12: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

About the Authors 1057

Taher Saif Chapter D.30

University of Illinois atUrbana-ChampaignMicro and Nanotechnology Laboratory,2101D Mechanical Engineering LaboratoryUrbana, IL, [email protected]

Taher Saif received the BS and MS degrees in Civil Engineering from BangladeshUniversity of Engineering and Technology and Washington State University, respec-tively, in 1984 and 1986. He obtained the PhD degree in Theoretical and AppliedMechanics from Cornell University in 1993. Currently, he is a Professor in the De-partment of Mechanical Science and Engineering at the University of Illinois atUrbana-Champaign. His current research includes mechanosensitivity of single livingcells, and electro-thermo-mechanical behavior of nanograined metals.

Jeffrey C. Suhling Chapter D.36

Auburn UniversityDepartment of Mechanical EngineeringAuburn, AL, [email protected]

Jeffrey C. Suhling is the Quina Distinguished Professor with the Department ofMechanical Engineering at Auburn University, where he also serves as Director of theNSF Center for Advanced Vehicle Electronics (CAVE). He received the PhD degreein Engineering Mechanics from the University of Wisconsin-Madison. His researchconcerns studies of reliability, mechanics, and materials issues for modern electronicpackaging.

Michael A. Sutton Chapter C.20

University of South CarolinaCenter for Mechanics, Materials and NDEDepartment of Mechanical EngineeringColumbia, SC, [email protected]

Michael A. Sutton is a Carolina Distinguished Professor in the Departmentof Mechanical Engineering at the University of South Carolina. A Fellowof both the Society for Experimental Mechanics and the AmericanSociety for Mechanical Engineers and a past President of SEM, Prof.Sutton has received numerous honors for both his computer visiondevelopments and applications in solid mechanics and his contributions inductile fracture mechanics. His current areas of research are experimentaland analytical fracture mechanics, 2-D and 3-D computer vision, andnumerical methods, with recent emphasis on noncontacting measurementsin biological materials.

Robert B. Watson Chapter B.12

Vishay Micro-MeasurementsSensors Engineering DepartmentRaleigh, NC, [email protected]

Robert Watson received the BS degree in Engineering Science andMechanics from Virginia Polytechnic Institute in 1980. He then joinedthe engineering department at Vishay Micro-Measurements, wherehe presently serves as Senior Manager in the Sensors EngineeringR&D. His professional career has been devoted to the development,production, and understanding of electrical resistance strain gages. Hehas served as Chairman of the SEM Technical Committee on StrainGages and of ASTM Subcommittee E28.14 on Strain Gages.

Robert A. Winholtz Chapter C.28

University of MissouriDepartment of Mechanical and AerospaceEngineeringColumbia, MO, [email protected]

Robert "Andy" Winholtz received the PhD degree in 1991 from NorthwesternUniversity. He joined the University of Missouri in 1991 where he is currently anAssociate Professor in Mechanical and Aerospace Engineering and a Senior ResearchScientist at the Research Reactor Center (MURR). Research interests include the useof neutrons and x-rays to study materials.

Auth

ors

Page 13: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1059

Detailed Contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVII

Part A Solid Mechanics Topics

1 Analytical Mechanics of SolidsAlbert S. Kobayashi, Satya N. Atluri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1 Elementary Theories of Material Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.2 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.1.3 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.1.4 Viscoplasticity and Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Boundary Value Problems in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2.1 Basic Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2.2 Plane Theory of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2.3 Basic Field Equations for the State of Plane Strain . . . . . . . . . 121.2.4 Basic Field Equations for the State of Plane Stress . . . . . . . . . 121.2.5 Infinite Plate with a Circular Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.2.6 Point Load on a Semi-Infinite Plate . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Materials Science for the Experimental MechanistCraig S. Hartley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1 Structure of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Atomic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.2 Classification of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.3 Atomic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.1.4 Equilibrium and Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.1.5 Observation and Characterization of Structure . . . . . . . . . . . . . . 31

2.2 Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.2.1 The Continuum Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.2.2 Equilibrium Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.2.3 Dissipative Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.2.4 Transport Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432.2.5 Measurement Principles for Material Properties . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Mechanics of Polymers: ViscoelasticityWolfgang G. Knauss, Igor Emri, Hongbing Lu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 The Building Blocks of the Theory of Viscoelasticity . . . . . . . . 50

Detailed

Cont.

Page 14: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1060 Detailed Contents

3.2 Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.2.1 A Simple Linear Concept:

Response to a Step-Function Input . . . . . . . . . . . . . . . . . . . . . . . . . . 513.2.2 Specific Constitutive Responses (Isotropic Solids) . . . . . . . . . . . 533.2.3 Mathematical Representation of the Relaxation

and Creep Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.2.4 General Constitutive Law for Linear and Isotropic Solid:

Poisson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.2.5 Spectral and Functional Representations . . . . . . . . . . . . . . . . . . . . 553.2.6 Special Stress or Strain Histories Related

to Material Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.2.7 Dissipation Under Cyclical Deformation . . . . . . . . . . . . . . . . . . . . . . 633.2.8 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633.2.9 The Effect of Pressure on Viscoelastic Behavior

of Rubbery Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.2.10 The Effect of Moisture and Solvents

on Viscoelastic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.3 Measurements and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Laboratory Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.3.2 Volumetric (Bulk) Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713.3.3 The CEM Measuring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743.3.4 Nano/Microindentation for Measurements

of Viscoelastic Properties of Small Amounts of Material . . . . 763.3.5 Photoviscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Nonlinearly Viscoelastic Material Characterization . . . . . . . . . . . . . . . . . . . . 843.4.1 Visual Assessment of Nonlinear Behavior . . . . . . . . . . . . . . . . . . . 853.4.2 Characterization of Nonlinearly Viscoelastic Behavior

Under Biaxial Stress States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893.6 Recognizing Viscoelastic Solutions if the Elastic Solution is Known . . 90

3.6.1 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Composite MaterialsPeter G. Ifju . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974.1 Strain Gage Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.1 Transverse Sensitivity Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984.1.2 Error Due to Gage Misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994.1.3 Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.1.4 Self-Heating Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014.1.5 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Material Property Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024.2.1 Tension Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.2.2 Compression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034.2.3 Shear Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054.2.4 Single-Geometry Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Detailed

Cont.

Page 15: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1061

4.3 Micromechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.3.1 In Situ Strain Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.3.2 Fiber–Matrix Interface Characterization . . . . . . . . . . . . . . . . . . . . . 1084.3.3 Nanoscale Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094.3.4 Self-Healing Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Interlaminar Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.4.1 Mode I Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.4.2 Mode II Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134.4.3 Edge Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Textile Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144.5.1 Documentation of Surface Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144.5.2 Strain Gage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164.5.3 Edge Effects in Textile Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Residual Stresses in Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174.6.1 Composite Sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184.6.2 Hole-Drilling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184.6.3 Strain Gage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.6.4 Laminate Warpage Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204.6.5 The Cure Reference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Fracture MechanicsKrishnaswamy Ravi-Chandar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255.1 Fracture Mechanics Based on Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . 1265.2 Linearly Elastic Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Asymptotic Analysis of the Elastic Crack Tip Stress Field . . . . 1285.2.2 Irwin’s Plastic Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295.2.3 Relationship Between Stress Analysis and Energy Balance

– The J-Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305.2.4 Fracture Criterion in LEFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 Elastic–Plastic Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325.3.1 Dugdale–Barenblatt Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325.3.2 Elastic–Plastic Crack Tip Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345.3.3 Fracture Criterion in EPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355.3.4 General Cohesive Zone Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.3.5 Damage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Dynamic Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375.4.1 Dynamic Crack Initiation Toughness . . . . . . . . . . . . . . . . . . . . . . . . . 1385.4.2 Dynamic Crack Growth Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395.4.3 Dynamic Crack Arrest Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Subcritical Crack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6.1 Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415.6.2 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435.6.3 Lateral Shearing Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475.6.4 Strain Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Detailed

Cont.

Page 16: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1062 Detailed Contents

5.6.5 Method of Caustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1525.6.6 Measurement of Crack Opening Displacement . . . . . . . . . . . . . . 1535.6.7 Measurement of Crack Position and Speed . . . . . . . . . . . . . . . . . . 155

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Active MaterialsGuruswami Ravichandran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1 Mechanisms of Active Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606.1.2 Mechanics in the Analysis, Design, and Testing

of Active Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606.2 Piezoelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616.3 Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3.1 Electrostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1626.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636.3.3 Domain Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636.3.4 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666.4.2 Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7 Biological Soft TissuesJay D. Humphrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1697.1 Constitutive Formulations – Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717.2 Traditional Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1727.2.2 Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1767.2.3 Poroelasticity and Mixture Descriptions . . . . . . . . . . . . . . . . . . . . . 1767.2.4 Muscle Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777.2.5 Thermomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Growth and Remodeling – A New Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1787.3.1 Early Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1787.3.2 Kinematic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797.3.3 Constrained Mixture Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1827.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Electrochemomechanics of Ionic Polymer–Metal CompositesSia Nemat-Nasser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1878.1 Microstructure and Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1.1 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1888.1.2 Cluster Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1898.1.3 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Detailed

Cont.

Page 17: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1063

8.2 Stiffness Versus Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1918.2.1 The Stress Field in the Backbone Polymer . . . . . . . . . . . . . . . . . . . 1918.2.2 Pressure in Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1928.2.3 Membrane Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1928.2.4 IPMC Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3 Voltage-Induced Cation Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1938.3.1 Equilibrium Cation Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.4 Nanomechanics of Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1958.4.1 Cluster Pressure Change Due to Cation Migration . . . . . . . . . . . 1958.4.2 Cluster Solvent Uptake Due to Cation Migration . . . . . . . . . . . . . 1968.4.3 Voltage-Induced Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.5 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1978.5.1 Evaluation of Basic Physical Properties . . . . . . . . . . . . . . . . . . . . . . 1978.5.2 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.6 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9 A Brief Introduction to MEMS and NEMSWendy C. Crone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039.2 MEMS/NEMS Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2069.3 Common MEMS/NEMS Materials and Their Properties . . . . . . . . . . . . . . . . . . 206

9.3.1 Silicon-Based Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2079.3.2 Other Hard Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089.3.3 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089.3.4 Polymeric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089.3.5 Active Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2099.3.6 Nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2099.3.7 Micromachining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2109.3.8 Hard Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.3.9 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.3.10 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.3.11 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.4 Bulk Micromachining versus Surface Micromachining . . . . . . . . . . . . . . . . 2139.5 Wafer Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2149.6 Soft Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.6.1 Other NEMS Fabrication Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159.6.2 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9.7 Experimental Mechanics Applied to MEMS/NEMS . . . . . . . . . . . . . . . . . . . . . . 2179.8 The Influence of Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.8.1 Basic Device Characterization Techniques . . . . . . . . . . . . . . . . . . . 2189.8.2 Residual Stresses in Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2199.8.3 Wafer Bond Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2209.8.4 Adhesion and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

9.9 Mechanics Issues in MEMS/NEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2219.9.1 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Detailed

Cont.

Page 18: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1064 Detailed Contents

9.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10 Hybrid MethodsJames F. Doyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22910.1 Basic Theory of Inverse Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1.1 Partially Specified Problems and Experimental Mechanics 23110.1.2 Origin of Ill-Conditioning in Inverse Problems . . . . . . . . . . . . . . 23210.1.3 Minimizing Principle with Regularization . . . . . . . . . . . . . . . . . . . 234

10.2 Parameter Identification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23510.2.1 Sensitivity Response Method (SRM) . . . . . . . . . . . . . . . . . . . . . . . . . . 23510.2.2 Experimental Data Study I: Measuring Dynamic Properties 23710.2.3 Experimental Data Study II: Measuring Effective BCs . . . . . . . 23910.2.4 Synthetic Data Study I: Dynamic Crack Propagation . . . . . . . . 240

10.3 Force Identification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24010.3.1 Sensitivity Response Method for Static Problems . . . . . . . . . . . 24110.3.2 Generalization for Transient Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 24210.3.3 Experimental Data Study I: Double-Exposure Holography . 24310.3.4 Experimental Data Study II: One-Sided Hopkinson Bar . . . . 244

10.4 Some Nonlinear Force Identification Problems . . . . . . . . . . . . . . . . . . . . . . . . 24610.4.1 Nonlinear Data Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24610.4.2 Nonlinear Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24710.4.3 Nonlinear Space–Time Deconvolution . . . . . . . . . . . . . . . . . . . . . . . 24810.4.4 Experimental Data Study I: Stress Analysis Around a Hole 25010.4.5 Experimental Data Study II: Photoelastic Analysis of Cracks 25110.4.6 Synthetic Data Study I: Elastic–Plastic Projectile Impact . . . 25210.4.7 Synthetic Data Study II: Multiple Loads on a Truss Structure 25310.4.8 Experimental Data Study III: Dynamic Photoelasticity . . . . . . 254

10.5 Discussion of Parameterizing the Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . 25510.5.1 Parameterized Loadings and Subdomains . . . . . . . . . . . . . . . . . . 25510.5.2 Unknowns Parameterized Through a Second Model . . . . . . . . 25610.5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

11 Statistical Analysis of Experimental DataJames W. Dally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25911.1 Characterizing Statistical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

11.1.1 Graphical Representations of the Distribution . . . . . . . . . . . . . . 26011.1.2 Measures of Central Tendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26111.1.3 Measures of Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

11.2 Statistical Distribution Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26311.2.1 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26311.2.2 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

11.3 Confidence Intervals for Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26711.4 Comparison of Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27011.5 Statistical Safety Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27111.6 Statistical Conditioning of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Detailed

Cont.

Page 19: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1065

11.7 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27211.7.1 Linear Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27211.7.2 Multivariate Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27411.7.3 Field Applications of Least-Square Methods . . . . . . . . . . . . . . . . 275

11.8 Chi-Square Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27711.9 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Part B Contact Methods

12 Bonded Electrical Resistance Strain GagesRobert B. Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28312.1 Standardized Strain-Gage Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28412.2 Strain and Its Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28412.3 Strain-Gage Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

12.3.1 Elementary Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28512.3.2 The Potentiometer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28612.3.3 The Wheatstone Bridge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12.4 The Bonded Foil Strain Gage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29112.4.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29112.4.2 Gage Factor – A Practical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29212.4.3 Strains from Every Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29412.4.4 Gage Factor – The Manufacturer’s Value . . . . . . . . . . . . . . . . . . . . 29512.4.5 Transverse Sensitivity Error – Numerical Examples . . . . . . . . . 29612.4.6 The Influence of Temperature Changes . . . . . . . . . . . . . . . . . . . . . . 29712.4.7 Control of Foil Strain Gage Thermal Output . . . . . . . . . . . . . . . . . . 30212.4.8 Foil Strain Gages and the Wheatstone Bridge . . . . . . . . . . . . . . . 30312.4.9 Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30612.4.10 Gage Selection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31012.4.11 Specific Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

12.5 Semiconductor Strain Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32512.5.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32512.5.2 Strain Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32712.5.3 Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32812.5.4 Special Circuit Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33112.5.5 Installation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

13 ExtensometersIan McEnteggart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33513.1 General Characteristics of Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

13.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33613.1.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33613.1.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33613.1.4 Temperature Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33613.1.5 Operating Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Detailed

Cont.

Page 20: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1066 Detailed Contents

13.1.6 Contact Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.1.7 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.1.8 Response Time/Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.1.9 Kinematics and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

13.2 Transducer Types and Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.2.1 Strain-Gaged Flexures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.2.2 LVDTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33713.2.3 Potentiometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33813.2.4 Capacitance Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33813.2.5 Linear Incremental Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33813.2.6 Electronics and Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . 338

13.3 Ambient-Temperature Contacting Extensometers . . . . . . . . . . . . . . . . . . . . . 33813.3.1 Clip-On Axial Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33813.3.2 Other Types of Clip-On Extensometers . . . . . . . . . . . . . . . . . . . . . . . 34013.3.3 Long-Travel (Elastomeric) Extensometers . . . . . . . . . . . . . . . . . . . . 34013.3.4 Automatic Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

13.4 High-Temperature Contacting Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . 34113.4.1 Longitudinal-Type High-Temperature Extensometers . . . . . . 34113.4.2 Side-Loading High-Temperature Extensometers . . . . . . . . . . . 341

13.5 Noncontact Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34313.5.1 Optical Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34313.5.2 Servo Follower Type Optical Extensometers . . . . . . . . . . . . . . . . . 34413.5.3 Scanning Laser Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34413.5.4 Video Extensometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34413.5.5 Other Noncontact Optical Extensometers . . . . . . . . . . . . . . . . . . . . 34413.5.6 Noncontact Extensometers for High-Temperature Testing . 345

13.6 Contacting versus Noncontacting Extensometers . . . . . . . . . . . . . . . . . . . . . . 34513.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

14 Optical Fiber Strain GagesChris S. Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34714.1 Optical Fiber Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

14.1.1 Guiding Principals for Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . 34814.1.2 Types of Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

14.2 General Fiber Optic Sensing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35114.2.1 Strain Sensing System Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35114.2.2 Basic Fiber Optic Sensing Definitions . . . . . . . . . . . . . . . . . . . . . . . . 35114.2.3 Advantages of Fiber Optic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35214.2.4 Limitations of Fiber Optic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35314.2.5 Thermal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35414.2.6 Introduction to Strain–Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

14.3 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35414.3.1 Two-Beam Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35514.3.2 Strain–Optic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35514.3.3 Optical Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35614.3.4 Mach–Zehnder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Detailed

Cont.

Page 21: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1067

14.3.5 Michelson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35714.3.6 Fabry–Pérot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35714.3.7 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35814.3.8 Interrogation of Interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

14.4 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35914.4.1 Brillouin Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35914.4.2 Strain Sensing Using Brillouin Scattering . . . . . . . . . . . . . . . . . . . . 359

14.5 Fiber Bragg Grating Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36114.5.1 Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36114.5.2 Fiber Bragg Grating Optical Response . . . . . . . . . . . . . . . . . . . . . . . . 36214.5.3 Strain Sensing Using FBG Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36314.5.4 Serial Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36414.5.5 Interrogation of FBG Sensors, Wavelength Detection . . . . . . . 36614.5.6 Other Grating Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

14.6 Applications of Fiber Optic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36714.6.1 Marine Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36714.6.2 Oil and Gas Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36714.6.3 Wind Power Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36814.6.4 Civil Structural Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

15 Residual StressYuri F. Kudryavtsev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37115.1 Importance of Residual Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

15.1.1 Definition of Residual Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37215.1.2 Origin of Residual Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37215.1.3 Residual Stress Management: Measurement,

Fatigue Analysis, and Beneficial Redistribution . . . . . . . . . . . . 37315.2 Residual Stress Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

15.2.1 Destructive Techniques for Residual Stress Measurement . . 37315.2.2 Nondestructive Techniques

for Residual Stress Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37515.2.3 Ultrasonic Method for Residual Stress Measurement . . . . . . . 377

15.3 Residual Stress in Fatigue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38115.4 Residual Stress Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38315.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

16 Nanoindentation: Localized Probes of Mechanical Behaviorof MaterialsDavid F. Bahr, Dylan J. Morris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38916.1 Hardness Testing: Macroscopic Beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

16.1.1 Spherical Impression Tests: Brinell and Meyers . . . . . . . . . . . . . 39016.1.2 Measurements of Depth to Extract Rockwell Hardness . . . . . 39016.1.3 Pyramidal Geometries for Smaller Scales: Vickers Hardness 391

Detailed

Cont.

Page 22: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1068 Detailed Contents

16.2 Extraction of Basic Materials Propertiesfrom Instrumented Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39216.2.1 General Behavior of Depth Sensing Indentation . . . . . . . . . . . . 39216.2.2 Area Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39416.2.3 Assessment of Properties

During the Entire Loading Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 39516.3 Plastic Deformation at Indentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

16.3.1 The Spherical Cavity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39716.3.2 Analysis of Slip Around Indentations . . . . . . . . . . . . . . . . . . . . . . . . 398

16.4 Measurement of Fracture Using Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39916.4.1 Fracture Around Vickers Impressions . . . . . . . . . . . . . . . . . . . . . . . . . 39916.4.2 Fracture Observations During Instrumented Indentation . . 400

16.5 Probing Small Volumesto Determine Fundamental Deformation Mechanisms . . . . . . . . . . . . . . . . 402

16.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

17 Atomic Force Microscopy in Solid MechanicsIoannis Chasiotis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40917.1 Tip–Sample Force Interactions in Scanning Force Microscopy . . . . . . . . 41117.2 Instrumentation for Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 412

17.2.1 AFM Cantilever and Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41417.2.2 Calibration of Cantilever Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41517.2.3 Tip Imaging Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41717.2.4 Piezoelectric Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41917.2.5 PZT Actuator Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

17.3 Imaging Modes by an Atomic Force Microscope . . . . . . . . . . . . . . . . . . . . . . . 42317.3.1 Contact AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42317.3.2 Non-Contact and Intermittent Contact AFM . . . . . . . . . . . . . . . . . 42517.3.3 Phase Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43017.3.4 Atomic Resolution by an AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

17.4 Quantitative Measurements in Solid Mechanics with an AFM . . . . . . . . 43217.4.1 Force-Displacement Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43217.4.2 Full Field Strain Measurements by an AFM . . . . . . . . . . . . . . . . . . 434

17.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43817.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Part C Noncontact Methods

18 Basics of OpticsGary Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44718.1 Nature and Description of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

18.1.1 What Is Light? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44818.1.2 How Is Light Described? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44818.1.3 The Quantum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

Detailed

Cont.

Page 23: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1069

18.1.4 Electromagnetic Wave Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44818.1.5 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44918.1.6 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44918.1.7 The Harmonic Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

18.2 Interference of Light Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44918.2.1 The Problem and the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45018.2.2 Collinear Interference of Two Waves . . . . . . . . . . . . . . . . . . . . . . . . . 45018.2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

18.3 Path Length and the Generic Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . 45118.3.1 Index of Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45118.3.2 Optical Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45218.3.3 Path Length Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45218.3.4 A Generic Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45218.3.5 A Few Important Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45318.3.6 Whole-Field Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45318.3.7 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

18.4 Oblique Interference and Fringe Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45318.4.1 Oblique Interference of Two Beams . . . . . . . . . . . . . . . . . . . . . . . . . . 45318.4.2 Fringes, Fringe Orders, and Fringe Patterns . . . . . . . . . . . . . . . . . 454

18.5 Classical Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45518.5.1 Lloyd’s Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45518.5.2 Newton’s Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45618.5.3 Young’s Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45818.5.4 Michelson Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

18.6 Colored Interferometry Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46118.6.1 A Thought Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

18.7 Optical Doppler Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46418.7.1 The Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46418.7.2 Theory of the Doppler Frequency Shift . . . . . . . . . . . . . . . . . . . . . . . 46518.7.3 Measurement of Doppler Frequency Shift . . . . . . . . . . . . . . . . . . . 46618.7.4 The Moving Fringe Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46718.7.5 Bias Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46718.7.6 Doppler Shift for Reflected Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46718.7.7 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

18.8 The Diffraction Problem and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46818.8.1 Examples of Diffraction of Light Waves . . . . . . . . . . . . . . . . . . . . . . 46818.8.2 The Diffraction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47018.8.3 History of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

18.9 Complex Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47018.9.1 Wave Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47118.9.2 Scalar Complex Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47118.9.3 Intensity or Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

18.10 Fraunhofer Solution of the Diffraction Problem . . . . . . . . . . . . . . . . . . . . . . . 47218.10.1 Solution of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47218.10.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Detailed

Cont.

Page 24: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1070 Detailed Contents

18.11 Diffraction at a Clear Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47418.11.1 Problem and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47418.11.2 Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47518.11.3 Numerical Examples and Observations . . . . . . . . . . . . . . . . . . . . . . 476

18.12 Fourier Optical Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47618.12.1 The Transform Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47618.12.2 Optical Fourier Processing or Spatial Filtering . . . . . . . . . . . . . . . 47718.12.3 Illustrative Thought Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47818.12.4 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

18.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

19 Digital Image Processing for Optical MetrologyWolfgang Osten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48119.1 Basics of Digital Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

19.1.1 Components and Processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 48319.1.2 Basic Methods of Digital Image Processing . . . . . . . . . . . . . . . . . . 484

19.2 Techniques for the Quantitative Evaluation of Image Datain Optical Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48519.2.1 Intensity Models in Optical Metrology . . . . . . . . . . . . . . . . . . . . . . . 48519.2.2 Modeling of the Image Formation Process

in Holographic Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48719.2.3 Computer Simulation of Holographic Fringe Patterns . . . . . . 49119.2.4 Techniques for the Digital Reconstruction

of Phase Distributions from Fringe Patterns . . . . . . . . . . . . . . . . . 49219.3 Techniques for the Qualitative Evaluation of Image Data

in Optical Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54519.3.1 The Technology of Optical Nondestructive Testing (ONDT) . . 54719.3.2 Direct and Indirect Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54919.3.3 Fault Detection in HNDT

Using an Active Recognition Strategy . . . . . . . . . . . . . . . . . . . . . . . . 551References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

20 Digital Image Correlation for Shapeand Deformation MeasurementsMichael A. Sutton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56520.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

20.1.1 Two-Dimensional Digital Image Correlation (2-D DIC) . . . . . . 56720.1.2 Three-Dimensional Digital Image Correlation (3-D DIC) . . . . 568

20.2 Essential Concepts in Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . 56820.3 Pinhole Projection Imaging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

20.3.1 Image Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57120.3.2 Camera Calibration

for Pinhole Model Parameter Estimation . . . . . . . . . . . . . . . . . . . . 57220.3.3 Image-Based Objective Function for Camera Calibration . . 572

20.4 Image Digitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57320.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Detailed

Cont.

Page 25: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1071

20.5 Intensity Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57320.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

20.6 Subset-Based Image Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57520.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

20.7 Pattern Development and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57720.7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

20.8 Two-Dimensional Image Correlation (2-D DIC) . . . . . . . . . . . . . . . . . . . . . . . . . 57920.8.1 2-D Camera Calibration with Image-Based Optimization . . 58020.8.2 Object Displacement and Strain Measurements . . . . . . . . . . . . . 58020.8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

20.9 Three-Dimensional Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 58120.9.1 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58120.9.2 Image Correlation for Cross-Camera Matching . . . . . . . . . . . . . . 58220.9.3 3-D Position Measurement

with Unconstrained Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58320.9.4 3-D Position Measurement with Constrained

Cross-Camera Image Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58320.9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

20.10 Two-Dimensional Application:Heterogeneous Material Property Measurements . . . . . . . . . . . . . . . . . . . . . . 58520.10.1 Experimental Setup and Specimen Geometry . . . . . . . . . . . . . . . 58520.10.2 Single-Camera Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58620.10.3 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58720.10.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58720.10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

20.11 Three-Dimensional Application:Tension Torsion Loading of Flawed Specimen . . . . . . . . . . . . . . . . . . . . . . . . . 58820.11.1 Experimental Setup with 3-D Imaging System . . . . . . . . . . . . . . 58920.11.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58920.11.3 Calibration of Camera System

for Tension–Torsion Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59020.11.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59120.11.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

20.12 Three-Dimensional Measurements – Impact Tension TorsionLoading of Single-Edge-Cracked Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59320.12.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59320.12.2 3-D High-Speed Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59420.12.3 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59420.12.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59520.12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

20.13 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59720.14 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Detailed

Cont.

Page 26: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1072 Detailed Contents

21 Geometric MoiréBongtae Han, Daniel Post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60121.1 Basic Features of Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

21.1.1 Gratings, Fringes, and Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60221.1.2 Intensity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60221.1.3 Multiplicative and Additive Intensities . . . . . . . . . . . . . . . . . . . . . . 60321.1.4 Moiré Fringes as Parametric Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 605

21.2 In-Plane Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60721.2.1 Fringe Formation by Pure Rotation and Extension . . . . . . . . . 60721.2.2 Physical Concepts: Absolute Displacements . . . . . . . . . . . . . . . . . 60721.2.3 Experimental Demonstration: Relative Displacements . . . . . 60921.2.4 Fringe Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

21.3 Out-Of-Plane Displacements: Shadow Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . 61121.3.1 Shadow Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61121.3.2 Projection Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61521.3.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

21.4 Shadow Moiré Using the Nonzero Talbot Distance (SM-NT) . . . . . . . . . . . 61721.4.1 The Talbot Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61721.4.2 Fringe Contrast Versus Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61821.4.3 Dynamic Range and Talbot Distance . . . . . . . . . . . . . . . . . . . . . . . . . 61921.4.4 Parameters for High-Sensitivity Measurements . . . . . . . . . . . . . 62021.4.5 Implementation of SM-NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

21.5 Increased Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62321.5.1 Optical/Digital Fringe Multiplication (O/DFM) . . . . . . . . . . . . . . . . 62421.5.2 The Phase-Stepping (or Quasiheterodyne) Method . . . . . . . . . 624

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

22 Moiré InterferometryDaniel Post, Bongtae Han . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62722.1 Current Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

22.1.1 Specimen Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63022.1.2 Optical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63222.1.3 The Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63222.1.4 Fringe Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63322.1.5 Strain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

22.2 Important Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63422.2.1 Physical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63422.2.2 Theoretical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63522.2.3 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63522.2.4 Insensitivity to Out-of-Plane Deformation . . . . . . . . . . . . . . . . . . 63522.2.5 Accidental Rigid-Body Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63722.2.6 Carrier Fringes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63722.2.7 Loading: Mechanical, Thermal, etc. . . . . . . . . . . . . . . . . . . . . . . . . . . 63822.2.8 Bithermal Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63822.2.9 Curved Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64022.2.10 Data Enhancement/Phase Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . 64022.2.11 Microscopic Moiré Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Detailed

Cont.

Page 27: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1073

22.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64422.3.1 Strain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64422.3.2 Replication of Deformed Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

22.4 Characterization of Moiré Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64522.5 Moiré Interferometry in the Microelectronics Industry . . . . . . . . . . . . . . . . 646

22.5.1 Temperature-Dependent Deformation . . . . . . . . . . . . . . . . . . . . . . 64622.5.2 Hygroscopic Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64822.5.3 Standard Qualification Test of Optoelectronics Package . . . . 65022.5.4 Micromechanics Studies

by Microscopic Moiré Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 651References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

23 Speckle MethodsYimin Gan, Wolfgang Steinchen (deceased) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65523.1 Laser Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

23.1.1 Laser Speckle Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65523.1.2 Some Properties of Speckles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

23.2 Speckle Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65823.2.1 Speckle Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65823.2.2 Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66023.2.3 Shearography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66223.2.4 Quantitative Evaluation (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

23.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66823.3.1 NDT/NDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66823.3.2 Strain Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

23.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

24 HolographyRyszard J. Pryputniewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67524.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676

24.1.1 Hologram Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67624.2 Fundamentals of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

24.2.1 Recording of Holograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67724.2.2 Reconstructing a Hologram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67824.2.3 Properties of Holograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

24.3 Techniques of Hologram Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67924.3.1 Optoelectronic Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68124.3.2 Quantitative Interpretation of Holograms . . . . . . . . . . . . . . . . . . . 683

24.4 Representative Applications of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68524.4.1 Determination of the Absolute Shape of Objects . . . . . . . . . . . . 68524.4.2 Determination of Time-Dependent Thermomechanical

Deformation Due to Operational Loads . . . . . . . . . . . . . . . . . . . . . . 68724.4.3 Determination of the Operational Characteristics of MEMS 688

24.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

Detailed

Cont.

Page 28: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1074 Detailed Contents

25 PhotoelasticityKrishnamurthi Ramesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70125.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

25.1.1 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70425.1.2 Birefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70425.1.3 Retardation Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

25.2 Transmission Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70525.2.1 Physical Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70525.2.2 Stress–Optic Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70625.2.3 Fringe Contours in a Plane Polariscope . . . . . . . . . . . . . . . . . . . . . . 70625.2.4 Jones Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70725.2.5 Ordering of Isoclinics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70825.2.6 Ordering of Isochromatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70925.2.7 Calibration of Model Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

25.3 Variants of Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71025.3.1 Three-Dimensional Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 71025.3.2 Dynamic Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71425.3.3 Reflection Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71525.3.4 Photo-orthotropic Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71725.3.5 Photoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

25.4 Digital Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71925.4.1 Fringe Multiplication and Fringe Thinning . . . . . . . . . . . . . . . . . . 71925.4.2 Phase Shifting in Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72025.4.3 Ambiguity in Phase Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72325.4.4 Evaluation of Isoclinics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72525.4.5 Unwrapping Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72725.4.6 Color Image Processing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 72925.4.7 Digital Polariscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

25.5 Fusion of Digital Photoelasticity Rapid Prototypingand Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

25.6 Interpretation of Photoelasticity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73425.7 Stress Separation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

25.7.1 Shear Difference Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73525.7.2 Three-Dimensional Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 73625.7.3 Reflection Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

25.8 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73725.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73725.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

26 Thermoelastic Stress AnalysisRichard J. Greene, Eann A. Patterson, Robert E. Rowlands . . . . . . . . . . . . . . . . . . . 74326.1 History and Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74426.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74526.3 Test Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74726.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

Detailed

Cont.

Page 29: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1075

26.5 Experimental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74926.5.1 Background Infrared Radiation Shielding . . . . . . . . . . . . . . . . . . . 74926.5.2 Edge Effects and Motion Compensation . . . . . . . . . . . . . . . . . . . . . 75026.5.3 Specimen Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75126.5.4 Reference Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75126.5.5 Infrared Image Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75126.5.6 Adiabaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75226.5.7 Thermoelastic Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75226.5.8 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

26.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75326.6.1 Isotropic Structural Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75326.6.2 Orthotropic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75326.6.3 Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75526.6.4 Experimental Stress Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75626.6.5 Residual Stress Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75726.6.6 Vibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75726.6.7 Elevated Temperature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75826.6.8 Variable-Amplitude Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

26.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75926.A Analytical Foundation of Thermoelastic Stress Analysis . . . . . . . . . . . . . . . 76026.B List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

27 Photoacoustic Characterization of MaterialsSridhar Krishnaswamy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76927.1 Elastic Wave Propagation in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

27.1.1 Plane Waves in Unbounded Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 77127.1.2 Elastic Waves on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77227.1.3 Guided Elastic Waves in Layered Media . . . . . . . . . . . . . . . . . . . . . . 77427.1.4 Material Parameters Characterizable Using Elastic Waves . . 776

27.2 Photoacoustic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77727.2.1 Photoacoustic Generation: Some Experimental Results . . . . 77727.2.2 Photoacoustic Generation: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 78027.2.3 Practical Considerations:

Lasers for Photoacoustic Generation . . . . . . . . . . . . . . . . . . . . . . . . . 78327.3 Optical Detection of Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

27.3.1 Ultrasonic Modulation of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78327.3.2 Optical Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78527.3.3 Practical Considerations: Systems for Optical Detection

of Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78927.4 Applications of Photoacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

27.4.1 Photoacoustic Methods for Nondestructive Imagingof Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

27.4.2 Photoacoustic Methods for Materials Characterization . . . . . 79327.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798

Detailed

Cont.

Page 30: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1076 Detailed Contents

28 X-Ray Stress AnalysisJonathan D. Almer, Robert A. Winholtz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80128.1 Relevant Properties of X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

28.1.1 X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80228.1.2 X-Ray Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80228.1.3 Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

28.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80428.2.1 Measurement Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80528.2.2 Biaxial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80528.2.3 Triaxial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80528.2.4 Determination of Diffraction Peak Positions . . . . . . . . . . . . . . . . 806

28.3 Micromechanics of Multiphase Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80728.3.1 Macrostresses and Microstresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80728.3.2 Equilibrium Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80828.3.3 Diffraction Elastic Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808

28.4 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80928.4.1 Conventional X-Ray Diffractometers . . . . . . . . . . . . . . . . . . . . . . . . . 80928.4.2 Special-Purpose Stress Diffractometers . . . . . . . . . . . . . . . . . . . . . . 81028.4.3 X-Ray Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81028.4.4 Synchrotron and Neutron Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . 810

28.5 Experimental Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81028.5.1 Random Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81128.5.2 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81128.5.3 Sample-Related Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812

28.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81328.6.1 Biaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81328.6.2 Triaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81428.6.3 Oscillatory Data Not Applicable to the Classic Model . . . . . . . . 81528.6.4 Synchrotron Example:

Nondestructive, Depth-Resolved Stress . . . . . . . . . . . . . . . . . . . . . . 81528.6.5 Emerging Techniques and Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

28.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81728.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Part D Applications

29 Optical MethodsArchie A.T. Andonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82329.1 Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824

29.1.1 Transmission Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82429.1.2 Reflection Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

29.2 Electronic Speckle Pattern Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82829.2.1 Calculation of Hole-Drilling Residual Stresses . . . . . . . . . . . . . . . 82829.2.2 Quantification of Dynamic 3-D Deformations

and Brake Squeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

Detailed

Cont.

Page 31: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1077

29.3 Shearography and Digital Shearography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83029.4 Point Laser Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83129.5 Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

29.5.1 Measurement of Strains at High Temperature . . . . . . . . . . . . . . . 83229.5.2 High-Speed Spin Pit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83229.5.3 Measurement of Deformations

in Microelectronics Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83329.6 Laser Doppler Vibrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

29.6.1 Laser Doppler Vibrometry in the Automotive Industry . . . . . . 83429.6.2 Vibration Analysis

of Electron Projection Lithography Masks . . . . . . . . . . . . . . . . . . . 83429.7 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83529.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836

30 Mechanical Testing at the Micro/NanoscaleM. Amanul Haque, Taher Saif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83930.1 Evolution of Micro/Nanomechanical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 84030.2 Novel Materials and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84130.3 Micro/Nanomechanical Testing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

30.3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84230.3.2 Challenges in Micro/Nanomechanical Testing . . . . . . . . . . . . . . . 84330.3.3 Micro/Nanomechanical Testing Tools . . . . . . . . . . . . . . . . . . . . . . . . . 84430.3.4 Nontraditional (MEMS) Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84730.3.5 AFM-Based Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85130.3.6 Nanoindentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85330.3.7 Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856

30.4 Biomaterial Testing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85630.5 Discussions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85930.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

31 Experimental Methods in Biological Tissue TestingStephen M. Belkoff, Roger C. Haut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87131.1 General Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87131.2 Connective Tissue Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87231.3 Experimental Methods on Ligaments and Tendons . . . . . . . . . . . . . . . . . . . 873

31.3.1 Measurement of Cross-Sectional Area . . . . . . . . . . . . . . . . . . . . . . . 87331.3.2 Determination of Initial Lengths

and Strain Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . 87331.3.3 Gripping Issues in the Mechanical Testing

of Ligaments and Tendons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87431.3.4 Preconditioning of Ligaments and Tendons . . . . . . . . . . . . . . . . . 87431.3.5 Temperature and Hydration Effects on the Mechanical

Properties of Ligaments and Tendons . . . . . . . . . . . . . . . . . . . . . . . 87531.3.6 Rate of Loading and Viscoelastic Considerations . . . . . . . . . . . . 875

Detailed

Cont.

Page 32: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1078 Detailed Contents

31.4 Experimental Methods in the Mechanical Testingof Articular Cartilage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87631.4.1 Articular Cartilage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87631.4.2 Tensile Testing of Articular Cartilage . . . . . . . . . . . . . . . . . . . . . . . . . 87631.4.3 Confined Compression Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87631.4.4 Unconfined Compression Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87731.4.5 Indentation Tests of Articular Cartilage . . . . . . . . . . . . . . . . . . . . . . 877

31.5 Bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87831.5.1 Bone Specimen Preparation and Testing Considerations . . . 87831.5.2 Whole Bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87931.5.3 Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88031.5.4 Testing Surrogates for Bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88031.5.5 Outcome Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

31.6 Skin Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88331.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88331.6.2 In Vivo Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88331.6.3 In Vitro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

32 Implantable Biomedical Devicesand Biologically Inspired MaterialsHugh Bruck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891

32.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89232.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89232.1.2 Experimental Mechanics Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 893

32.2 Implantable Biomedical Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89932.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89932.2.2 Brief Description of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89932.2.3 Prosthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90032.2.4 Biomechanical Fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90432.2.5 Deployable Stents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907

32.3 Biologically Inspired Materials and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 90932.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90932.3.2 Brief Description of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91032.3.3 Functionally Graded Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91132.3.4 Self-Healing Polymers/ Polymer Composites . . . . . . . . . . . . . . . . 91532.3.5 Active Materials and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91732.3.6 Biologically Inspired Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921

32.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92332.4.1 State-of-the-Art for Experimental Mechanics . . . . . . . . . . . . . . 92332.4.2 Future Experimental Mechanics Research Issues . . . . . . . . . . . . 924

32.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924

Detailed

Cont.

Page 33: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1079

33 High Rates and Impact ExperimentsKaliat T. Ramesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

33.1 High Strain Rate Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93033.1.1 Split-Hopkinson or Kolsky Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93133.1.2 Extensions and Modifications of Kolsky Bars . . . . . . . . . . . . . . . . 93733.1.3 The Miniaturized Kolsky Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94133.1.4 High Strain Rate Pressure-Shear Plate Impact . . . . . . . . . . . . . . 942

33.2 Wave Propagation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94533.2.1 Plate Impact Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946

33.3 Taylor Impact Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

33.4 Dynamic Failure Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94933.4.1 Void Growth and Spallation Experiments . . . . . . . . . . . . . . . . . . . 95033.4.2 Shear Band Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95233.4.3 Expanding Ring Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95233.4.4 Dynamic Fracture Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95333.4.5 Charpy Impact Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953

33.5 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954

34 Delamination MechanicsKenneth M. Liechti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

34.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96234.1.1 Interface Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96234.1.2 Crack Growth Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96334.1.3 Delamination in Sandwiched Layers . . . . . . . . . . . . . . . . . . . . . . . . . 96434.1.4 Crack Nucleation from Bimaterial Corners . . . . . . . . . . . . . . . . . . . 96634.1.5 Nonlinear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

34.2 Delamination Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96834.2.1 Dynamic Interface Fractureand Coherent Gradient Sensing 96934.2.2 Dynamic Interface Fracture and Photoelasticity . . . . . . . . . . . . 96934.2.3 Dynamic Matrix Cracking and Coherent Gradient Sensing . 97034.2.4 Quasistatic Interface Fracture and Photoelasticity . . . . . . . . . . 97034.2.5 Quasistatic Interface Fracture

and Crack Opening Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 97134.2.6 Quasistatic Interface Fracture and Moiré Interferometry . . . 97734.2.7 Crack Nucleation from Bimaterial Corners

and Moiré Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97734.2.8 Bimaterial Corner Singularities and Photoelasticity . . . . . . . . 97834.2.9 Crack Growth in Bonded Joints and Speckle . . . . . . . . . . . . . . . . 97834.2.10 Thin-Film Delamination and Out-of-Plane Displacements 979

34.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980

Detailed

Cont.

Page 34: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1080 Detailed Contents

35 Structural Testing ApplicationsAshok Kumar Ghosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98535.1 Past, Present, and Future of Structural Testing . . . . . . . . . . . . . . . . . . . . . . . . 98735.2 Management Approach to Structural Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 990

35.2.1 Phase 1 – Planning and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99035.2.2 Phase 2 – Test Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99335.2.3 Phase 3 – Execution and Documentation . . . . . . . . . . . . . . . . . . . 996

35.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99735.3.1 Models for High-Rate and High-Temperature Steel

Behavior in the NIST World Trade Center Investigation . . . . . 99735.3.2 Testing of Concrete Highway Bridges –

A World Bank Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100235.3.3 A New Design for a Lightweight Automotive Airbag . . . . . . . . 1009

35.4 Future Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013

36 Electronic Packaging ApplicationsJeffrey C. Suhling, Pradeep Lall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101536.1 Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017

36.1.1 Packaging of Electronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101736.1.2 Electronic Packaging Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 1018

36.2 Experimental Mechanics in the Field of Electronic Packaging . . . . . . . . 101936.2.1 Role of Experimental Mechanics and Challenges

for the Experimentalist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101936.2.2 Key Application Areas and Scope of Chapter . . . . . . . . . . . . . . . . 1020

36.3 Detection of Delaminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102236.3.1 Acoustic Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

36.4 Stress Measurements in Silicon Chips and Wafers . . . . . . . . . . . . . . . . . . . . . 102436.4.1 Piezoresistive Stress Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102436.4.2 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102736.4.3 Infrared Photoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102936.4.4 Coherent Gradient Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

36.5 Solder Joint Deformations and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103136.5.1 Moiré Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103236.5.2 Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

36.6 Warpage and Flatness Measurementsfor Substrates, Components, and MEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103636.6.1 Holographic Interferometry

and Twyman–Green Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 103636.6.2 Shadow Moiré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103736.6.3 Infrared Fizeau Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

36.7 Transient Behavior of Electronics During Shock/Drop . . . . . . . . . . . . . . . . . . 103936.7.1 Reference Points with High-Speed Video . . . . . . . . . . . . . . . . . . . 103936.7.2 Strain Gages and Digital Image Correlation . . . . . . . . . . . . . . . . . 1040

36.8 Mechanical Characterization of Packaging Materials . . . . . . . . . . . . . . . . . . 1041References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042

Detailed

Cont.

Page 35: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Detailed Contents 1081

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049Detailed Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083

Detailed

Cont.

Page 36: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1083

Subject Index

2-hydroxyethyl methacrylate(HEMA) 209

3-D digital image correlation 589

A

absolute phase measurement 495,532

absolute shape 682AC measurement 413accelerated life testing (ALT) 1016accelerometer 693accident 1009accuracy and resolution 990accurate clear epoxy solid (ACES)

733active material 209additive intensity 603, 604additive moiré 605adhesion 220, 221, 961– measurement technique 220– prevention of 220adhesive fracture 961, 962adiabatic response 747adiabatic shear band 952adiabaticity 752advanced photon source (APS) 810advancing side 586AFM– /DIC method 436– /DIC strain measurement 435– cantilever 411, 414– contact 411, 413, 423– instrumentation 409– metrology 411– probe 412, 414Airy disc 475aluminum 208ambiguity 708, 724American Association of State

Highway Transportation Officials(AASHTO) 991

American Bureau of Shipping (ABS)367

American Institute of SteelConstruction (AISC) 991

American Railway EngineeringAssociation (AREA) 991

American Society for Testing andMaterials (ASTM) 102, 284, 991,998, 1001

amorphous material 817amorphous silicon 207amplification 610amplitude 708amplitude grating 601amplitude modulation 427analog camera 567analog-to-digital converter 412analytical, computational, and

experimental solutions (ACES)688

analyzer 706, 712animation of experimental data 688anisotropic 97anisotropy– elastic 804aperture effect 618, 619applied strain 293articulated truck 1002assembly stress 704assembly stress/residual stress 703Association Française de National

(AFNOR) 102atomic force microscopy (AFM)

216, 220, 397, 409–411, 846atomic resolution 412, 424, 431atomic structure 18, 40attractive force 412automotive airbag 987

B

background intensity 491, 515backing 292balanced mode 290ball grid array (BGA) 1022ballast gage 287ballast resistor 286ballistic impact 929basic fringe pattern 552beam-splitter (BS) 678beam-splitter (DBS)– directional 683beat frequency 466bending moment 1006Bessel fringe– J0 fringe 681biaxial analysis 805biaxial loading 295biaxial stress measurement 813bilinear 574

bimaterial constant 962bimaterial corner 966, 977, 978binomial 263biological– beam 1012– material 438– sample 410biomaterial 817biomechanics– definition 182– history 169biomolecular recognition device

222birefringence 702, 704, 973black body 748, 751blast and explosive load

994blister 980bloodborne pathogens 871body force 734body-centered cubic (bcc) 24Bogen tripod 586Boltzmann’s constant 745bonded joint 978bottom-up strategy 551boule 325boundary condition 734boundary layer 194, 199boundary, initial, and loading (BIL)

682box-kernel 498Bragg grating (FBG)– fiber 361, 906Bragg wavelength 363branch cut algorithm 727bridge 1002bright field 708Brillouin frequency shift 359Brillouin scattering 359Brinell hardness number (BHN)

390British Standards Institute (BSI)

102bromoundecyltrichlorosilane

(BrUTS) 974buckyball 210bulge 980bulk wave– flaw imaging 789bundle adjustment 573burst pressure 1009

Subject

Ind

ex

Page 37: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1084 Subject Index

C

calcium-fluoride-coated window758

calculation of the form 278calibration 748, 996– of a photoelastic material 709– of cantilever stiffness 415– of the coating material 716camera calibration 572, 594camera calibration procedure 572camera coordinate system 569cantilever– dynamics 411– oscillation amplitude 429– spring constant 414– thermal fluctuation 416– tip 417– tip artifact 411capacitance 194, 199capacitive coupling 286capillary adhesion 433capillary force 212, 433carbon nanotube (CNT) 107, 210,

920carrier-frequency method 492, 512cast polyimide 311cedip 746celanese compression fixture 104cell 438, 439central tendency 260ceramic ball grid array (CBGA)

646, 1032ceramic matrix composite (CMC)

22, 909challenge 1002characteristic– function 485– parameter 713– relation 932– retardation 712– rotation 712charge density 194charge-coupled device (CCD) 567,

745, 752Charpy impact 953Chauvenet’s method 272chemical shrinkage 117chemical vapor deposition (CVD)

208, 210, 211, 214chemical–mechanical polishing

(CMP) 1031chirped grating 367chi-square (χ2) 263– statistic 277– test 277

Christoffel equation 771chromium 208circular polariscope 708circularly polarized 704civil structural monitoring 368classification of structural testing

991cleveland method 415closed-loop system 995C-mode scanning acoustic

microscopy (CSAM) 1023coating 751, 782coating and thin film 809coefficient of hygroscopic swelling

(CHS) 648coefficient of thermal expansion

(CTE) 117, 622, 757, 1016, 1018coefficient of variation 263coherent gradient sensing (CGS)

150, 969, 970, 1030, 1031coherent imaging 487coherent optical data processing

478cohesive fracture 961cohesive zone model 968cohesive-volumetric finite elements

(CVFE) 914cold contact time 938collinear interference 450collision avoidance radar (CAR)

687color code 709, 729color stepping 725colored interference fringe 462common-path interferometer 461compact disc (CD) 417compatibility condition 734complementary metal–oxide

semiconductor (CMOS) 567complementary pattern 624complex amplitude 470, 471complex stress intensity factor 962compliance 127composite– laminate 753, 755, 756– material 97Composite Materials Technical

Division (CMTD) 98compression testing 103compressor blade 759computer-aided design (CAD) 685computer-aided engineering (CAE)

685computer-aided manufacturing

(CAM) 685concentrated load 275

concrete 1002concurrent engineering 685condition experimental data

272conductive– polymer (CP) 920confidence interval 268confidence level 268constant stress 293constantan 291constant-voltage excitation

285constitutive formulation 171constitutive response 934constrained matching 585contact 961– AFM 413, 423– stress 275, 704continuous stiffness 396continuous stiffness module (CSM)

81, 82continuous time-average hologram

interferometry 680continuous wave (CW) 680continuum concept 569contour 702– map 601contourable plastics 715contours of displacement/strain/stress

701convolution kernel 498coordinate measuring machines

(CMMs) 685coordinate system 569coordinates 580copper–nickel alloy 291core testing 1006correction factor 716correlation 273correlation coefficient 273, 274corrosion test 1006cosinusoidal fringe 680cost-effective 1009covariance matrix 543cover test 1005crack 1007– closure 755– growth 437, 438– growth criteria 963– initiation 438– nucleation 966, 977– opening displacement (COD)

145, 972– opening interferometry (COI)

145, 971–973– propagation 113, 438

Subject

Ind

ex

Page 38: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1085

crack path– selection 964– separation 965– stability 965crack tip 275– deformation 438– opening displacement (CTOD)

133cracking 112Cranz Schardin camera 714creep 221, 930, 1001– crack growth 140critical– energy release rate 112– point 555– stress intensity factor 131cross-camera matching 582, 583– constrained 582– unconstrained 582cross-coupling 421cross-product term 274cross-sectional area 873crystal structure 17, 23–25, 27, 32,

33, 45crystallographic texture 812cubic spline 574cumulative frequency 261– diagram 261cure reference method 120current sensitive 288cyanoacrylate 307cyclic– plasticity 745cytoskeleton (CSK) 170

D

damage 930, 1003dark field 708data– acquisition 996– correlation 753– filtering 753– format 753– transmission 996DC measurement 413dead load 993deep reactive-ion etching (DRIE)

210, 213, 848deflection prediction 1006deformation– elastic 292deformation measurement 566,

586, 589deformed image 572, 586degree of freedom 268, 277

delamination 108, 111, 112, 961,979

delta rosette 322Deltatherm 746dependent 274dependent variable 272deployment 1009Derjaguin–Muller–Toporov (DMT)

429description of light 448desktop Kolsky bar 941destructive/failure test 991detector– infrared 745Deutsches Institut für Normung

(DIN) 102deviation ratio 272diametric loading 364diamond 208– method 287– pyramid hardness (DPH) 391diamond-like carbon (DLC) 436,

795dicyclopentadiene (DCPD) 111difference between two means

270diffraction– at aperture 474– by aperture 469– by grid 469– elastic constant (DEC) 805, 808– problem 468– theory 473– theory history 470digital– photoelasticity 737– speckle correlation (DSC) 658– speckle pattern shearing

interferometry (DSPSI) 830– speckle photography (DSP) 658– speckle-pattern interferometry

(DSPI) 517digital fringe multiplication 719digital fringe thinning 719digital holography 517digital image– correlation (DIC) 141, 220, 434,

566, 660, 845, 1034– processing (DIP) 719digital micromirror device (DMD)

221– and adhesion 221– and creep 221digital photoelasticity 704dilatometry 316dipole 199

dip-pen nanolithography (DPN)216

direct impact 930direct problem 549direction of illumination and

observation 681directional– beam-splitter (DBS) 683directional coupler (DC)

681directional filter 502disaster 997dislocation cross-slip

398dispersion 273, 935displacement 489displacement vector 536dissipative 34, 38, 39, 43distance to neutral point (DNP)

646, 1032distributed temperature sensing

(DTS) 367distribution 260distribution function 263division of quantity 278dodecyltrichlorosilane (DTS)

974Doppler– effect 464– interferometry 466– picture velocimetry (DPV) 468– shift 465– shift for reflected light 467Doppler–Fizeau 464double cantilever beam (DCB) 111,

126, 240double refraction 704double-exposure hologram

interferometry 680dropweight 931Dugdale–Barenblatt model

132dummy compensation 101dummy gage 301dynamic 1009– energy release rate 138– failure 930– fracture 953– interface fracture 969– matrix cracking 970– mechanical analysis (DMA) 84– photoelasticity 703, 735– range 619, 620, 623– stress intensity factor 138dynamic/vibration load 994Dynatup 593

Subject

Ind

ex

Page 39: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1086 Subject Index

E

edge effect 750eigenvalues 967elastic– anisotropy 804– deformation 292– precursor 946– strain 801elasticity 21, 36, 37– tensor 770elastic–plastic fracture mechanics

(EPFM) 132elastodynamics 770electric discharge machining (EDM)

383electric vector 449electrical analogy 735electric-discharge machining (EDM)

210, 213electroactive– polymer (EAP) 917, 920electromagnetic interference (EMI)

1016electron beam– moiré 108electron-beam projection lithography

(EPL) 834electronic– structure 27electronic noise 495electronic packaging 688electronic speckle pattern

interferometry (ESPI) 661, 824,828, 830, 979

electroplating 211electrostatic force microscopy 410electrostatically stricted– polymer (ESSP) 921elementary circuit 285elevated temperature analysis 758elliptically polarized 704elongation 307emerging technique 816emerging technology (ET) 675emissivity 751end-notched flexure (EFN) 113energy 968– critical release rate 112energy release rate 963engineering strain 284epipolar constraint equation 583equilibrium 28, 30, 31, 34, 35, 37,

38, 40, 43, 44, 46, 933– condition 808– equation 735

– metastable 29– phase 17– unstable 29equivalent weight (EW) 189, 197error factor 544error in x-ray measurement 811error propagation 278estimating error 279etching 212– dry 212– focused ion-beam, FIB 213– plasma 213– stiction 212– wet 212ethylene copolymer (ECO) 914ethylenediamine pyrochatechol

(EDP) 212Euler angle 571European Structural Integrity Society

(ESIS) 999excursion 402expanding ring 953experimental technique 986expert system (ES) 378extension 603, 607extracellular matrix (ECM) 170extraordinary 704extrinsic– Fabry–Pérot interferometer (EFPI)

357extrinsic parameter 571

F

fabrication technique 361Fabry–Pérot interferometer (EFPI)– extrinsic 357face slap 1009face-centered cubic (fcc) 24failure– dynamic 930fast axis 705fast Fourier transform (FFT) 659,

747fatigue 745– analysis 382– crack 756– crack growth 140– life 306, 371fault 970fiber– Bragg grating (FBG) 361, 906fiber optic sensor 351– advantages 352– cumulative 351– discrete 351

– distributed 351– extrinsic sensor 351– intrinsic sensor 351– limitation 353– multiplexing 352field analysis of data 275field of view (FoV) 344field test 1004fill direction 1010Fillers–Moonan–Tschoegl (FMT)

equation 69film fracture 401film polyimide 311filter cascade 498finite element (FE) 732– analysis 1010– method (FEM) modeling 696fire 998, 1001Fizeau interferometry 605Flemion 188flip-chip ball grid array (FC-BGA)

1033flip-chip plastic ball grid array

621floor truss 999flow visualization 220– technique 221fluorescence 803focal adhesion complex (FAC) 170,

842focal length 567, 584focal-plane array 746, 755focused ion beam (FIB) 210, 213,

219, 220, 851, 852, 861foil technology 291folded spring 693force measurement 416force modulation microscopy (FMM)

431force spectroscopy 410, 411, 432force-displacement curve 411, 416,

432forensic test 992forward problem 231Fourier transform method (FTE)

473, 492, 494, 510fractional retardation 721, 724, 725,

732fracture 745– behavior 436– dynamic 953– mechanics 755, 961– process zone 135– resistance 127– toughness 131frame compliance 394

Subject

Ind

ex

Page 40: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1087

Fraunhofer 472– approximation 473– limitation 476free edge effect 114free filament 332freestanding test film 435frequency 602, 607–610, 614–616,

705– distribution 260, 261– domain 719– modulation (FM) 427, 467friction 220, 935– measurement technique 220friction stir welds (FSWs) 585fringe 706– color sequence 463– contour 733, 736– contrast 491, 515, 618– counting 463– direction map 502, 521– interpolation 973– localization 684– multiplication factor 624– numbering 525– order 455, 463, 605, 606, 609,

610, 612, 615, 624, 625, 709– pattern 454– shifting 610– thinning 720– vector 684fringe-counting problem 522fringe-locus function 681fringe-tracking 492, 509fringe-vector theory 684frozen fringe 680frozen stress photoelasticity

702full bridge 303full field of view (FFV) 697fullerene 210full-field– strain measurement 432– technique 996full-scale test 991full-wave plate 705fully specified problem 231, 232,

255function– characteristic 485functional operation 688functionally graded material (FGM)

910, 911functions of operating condition

692fused deposition modeling (FDM)

732

G

gage– length 311– misalignment 99– selection 310gage factor 293– calibration 293Galileo 986galliumarsenide 208gas turbine engine 753Gaussian or normal distribution

function 263Gaussian-kernel 498generic interferometer 451, 452geometric filter 503geometry matrix 536giant magneto resistance (GMR)

209– material 209glass 208glass-fiber-reinforced epoxy 311glass-reinforced plastic (GRP) 22global positioning sensing (GPS)

691gold 208governing equation 276gradient 813grain statistics 812graphical 709grating pitch 361grey-field polariscope (IR-GFP)– infrared 971group velocity 772growth and remodeling (G&R) 180growth factor (GF) 170Guide of Uncertainty Measurement

(GUM) 535guided elastic wave 774guided wave– in isotropic plate 775– in multilayered structure 776Gumbel 263Gurson–Tvergaard–Needleman

model 136

H

half-fringe photoelasticity (HFP)704, 719

half-wave plate (HWP) 705, 787Hamaker constant 412Hamiltonian system 555hard material 208hardness 390harmonic oscillator 425, 426

harmonic plane wave 449heat transfer 754heat-affected zone (HAZ)

585, 688Hertzian elastic model 403heterogeneous 97hexagonal close-packed (hcp)

24high accuracy and precision 691high density interconnect (HDI)

1038high modulation 721high rotational speed 688high speed imaging 594high strain rate 930, 987, 998high strain rate pressure-shear

(HSRPS) 942high stress gradient 747high temperature 998high temperature testing 938higher-order 274high-frequency 759high-speed imaging 597high-speed photography 949high-speed video 1009high-temperature 987, 999high-temperature storage (HTS)

650histogram 261, 579hole-drilling method 118hologram– interferometry 680– recording setup 678holographic nondestructive

evaluation (HNDE) 483holographic nondestructive testing

(HNDT) 547homogeneous dislocation nucleation

403homomorphic filtering 502, 505Hooke’s law 989hoop stress 321Hugoniot 947Hutchinson–Rice–Rosengreen (HRR)

field 134Huygens’ principle 458, 470hydrogel 209hydrophilic– surface 432hydrophobic– surface 432hypergeometric 263hypervelocity impact 929hypothesis 278– rejected region 278hysteresis 420, 433

Subject

Ind

ex

Page 41: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1088 Subject Index

I

I-beam cantilever 414identification problems 550IITRI compression fixture 104ill-conditioned problem 231, 233,

234ill-posed 531image 569– based optimization 580– center 597– digitization 565– distortion 571, 579, 585– processing (IP) 681, 682imaging 817– artifact 410, 420– model 565, 573impact 929, 998, 1000, 1004impact hammer 1004impulsive loading force 689impulsive stimulated thermal

scattering (ISTS) 795in situ AFM/DIC method 438in situ mechanical testing 434incremental hole drilling 119indentation fracture 399indentation size effect 402independent camera calibration for

stereo-system 582independent variable 273, 274index of refraction 451indicated strain 294inertial effect 936inertial measurement unit (IMU)

691inertial sensor 691infrared– detector 745– grey-field polariscope (IR-GFP)

971– radiometer 743in-plane displacement 607input/output (I/O) 1016instrumentation 996integrated circuit (IC) 688, 1018integrated photoelasticity 703, 735intensity 451, 472– interpolation 573intercept 272interface crack 962interface fracture 977– dynamic 969interfacial– force microscope (IFM) 980– fracture 961– toughness 964

interference 449– fringe 455– fringe cycle 455interferometer 354, 451, 681– confocal Fabry–Pérot 785– dynamic holographic 786– Fabry–Pérot 357– Mach–Zehnder 354, 357– Michelson 354, 357, 785, 786– photorefractive two-wave mixing

787– polarization 358– reference-beam 785interferometric measurement

413interferometric strain/displacement

gage (ISDG) 154, 844interferometry 143– by amplitude division 457– by wavefront division 456interlaminar 97, 111– compression 114– fracture 111intermittent contact AFM 425intermittent contact mode 431International Building Code (IBC)

993International Organization for

Standardization (ISO) 131interphase 108interrogation of FBG sensors

366intrinsic 582– calibration parameter 582– camera parameter 582– unknown 582inverse hole problem 436inverse method 231inverse problem 231, 240, 531, 549– in mechanics 436inverse transform 477ion exchange capacity (IEC) 188ionic polymer gel (IPG) 920ionomeric polymer–metal composite

(IPMC) 187, 920Iosipescu 105– specimen 105– strain gage 106irradiance 451, 472isochromatic 255, 702, 707, 717– fringe 142– isoclinic interaction 720isoclinic 702, 707, 717, 725isoelastic 310isopachic 744isotropic point 709

J

Japanese Industrial Standard (JIS)103

J-integral 112, 755, 964Jones calculus 707Jones matrix 712

K

kaleidoscope 731Kalthoff experiment 953Karma 291K-dominant zone 962kinetics 28kink band formation 108Kolsky bar 931

L

Lagrangian large strain 591Lamb wave 775– tomographic imaging 791laminate– composite 753, 755, 756– warpage 120large-aperture diffraction 476laser Doppler velocimetry (LDV)

464, 468laser Doppler vibrometer (LDV)

468, 834laser occlusive radius detector

(LORD) 939laser ultrasonic 769laser-based corneal reshaping

(LASIK) 177lateral force AFM 410lead lanthanum zirconate titanate

(PLZT) 161lead zirconate titanate (PZT) 209leadwire– attenuation 305– system 301least– square 709least-squares– method 272– minimization process 276left-handedly polarized 705Lennard–Jones– force 429– potential 412lens 589Leonardo da Vinci 986level of significance 271Levenberg–Marquardt 573, 576

Subject

Ind

ex

Page 42: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1089

light-emitting diode (LED) 359,881

lightweight automotive airbag 1009limiting crack speed 138linear elastic fracture mechanics

(LEFM) 126linear regression analysis 272linear variable differential

transformer (LVDT) 76, 337, 989linearity error 290linearization of the PZT actuator

422linearizing governing equation 276linearly elastic fracture mechanics

(LEFM) 131linearly or plane polarized 704liquid crystal elastomer (LCE) 920lithography 211– e-beam 212– galvanoforming molding (LIGA)

214– ion beam 212– mask 212– optical 212– photoresist 212– soft lithography 215– x-ray 212live fringe pattern 680Lloyd mirror technique 362Lloyd’s mirror 455load– stepping 724, 725– test 991, 1006– testing 1003loading– equipment 995– frequency 752– on structure 993– systems 995local area networks (LANs) 348local deformation 434local heating 379local least squares smoothing 587lock-in analyzer 746, 747longitudinal wave 771long-period grating (LPG) 367long-range force 411long-working-distance microscope

(LMO) 683low pressure CVD (LPCVD) 211low-frequency cutoff value 286

M

Mach–Zehnder interferometer 362macrostress 807

magnetic force microscopy (MFM)410, 431

management approach 990manufacturer’s gage factor 296marine application 367material– characterization 770– composite 97– fault 546– model 1002– property characterization 97– stress fringe value 706, 709, 714– test 992MATLAB 276matrix– algebra 275– method 275matrix cracking– dynamic 970maximum error 279maximum tangential stress criterion

132Maxwell’s equations 449mean deviation 262mean stress effect 757measurement error 264, 272measurement geometry 803measurement technique 219– bending 219– buckling 219– bulge test 219– focused ion beam (FIB) 220– optical interferometry 219– resonant frequency 219measures of central tendency 262measures of dispersion are 262mechanical analysis (DMA)– dynamic 84mechanical behavior 435mechanical propertie– measurement 436– of material 690– of MEMS 435mechanical strain measurement 439median 262median filter 499median filtering 529MEMS 435, 436– application 204– biological 205– commercialization 205– definition 204– fabrication 206– market 204– material 206– microfluidic 205

MEMS/NEMS– adhesion 220– device characterization 218– experimental mechanics 217– fabrication 211, 215– flow visualization 220– friction 220– influence of scale 217– mechanics issue 221– microcantilever sensor 222– micromachining 210– packaging 216– residual stress 219MEMS/NEMS device 221– adhesion 220– biomolecular recognition 222– Digital Micromirror DeviceTM

(DMD) 221– flow visualization 220– friction 220– residual stress 219– thermomechanical data storage

223– wafer bonding 220MEMS/NEMS fabrication– deposition 211– die-attach process 217– dip-pen lithography 216– electron-beam lithography 216– etching 212– lithography 211– microcontact printing 215– nanolithography 216– nanomachining 216– packaging 216– scanning tunneling microscope

216– self-assembly 215– soft lithography 215– strategies for NEMS 215– wafer bonding 214MEMS/NEMS material– active material 209– amorphous silicon 207– buckyball 210– carbon nanotube 210– ceramics 206– diamond 208– fullerene 210– gallium arsenide 208– giant-magnetoresistive material

209– glass 208– hydrogel 209– lead zirconate titanate 209– metal 208

Subject

Ind

ex

Page 43: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1090 Subject Index

– nanomaterial 209– nanowire 210– NiTi 209– permalloy 209– photoresist 208– piezoelectric material 209– polydimethylsiloxane 209– polymer 208– polysilicon 207– quantum material 210– quartz 208– shape-memory material 209– silicon 207– silicon carbide 208– silicon dioxide 208– silicon nitride 208– silicon on insulator 208metal matrix composite (MMC) 22method of computing 279method of least squares 274Michelson interferometry 459micro alloyed 1001microcantilever sensor 222microcracking 108micro-electromechanical system

(MEMS) 111, 160, 203, 434,675, 840, 918, 961

microencapsulated healing agent111

microengine 688microfluidic device 205– application 205microgyroscope 691micromachining 210– bulk micromachining 213– chemical vapor deposition (CVD)

211– deposition 211– electroplating 211– etching 212– LIGA 214– lithography 211– physical vapor deposition (PVD)

211– sol gel deposition 211– spin casting 211– surface micromachining 214micromagnetics 166micromechanics 97, 107micro-optoelectromechanical system

(MOEMS) 688microparticle image velocimetry

(μPIV) 221microscale 217– and continuum mechanics 218microscale tension specimen 436

microscope objective (MO) 681microstress 807microstructure 17, 18, 21, 28, 29,

32, 45, 46Miller indices 325milling machine 611Millipede 223, 438– memory 411Ministry of International Trade and

Industry (MITI) 103misalignment error 319mismatch of Poisson’s ratio 716,

734mismatch of quarter wave plate 722mixed-mode fracture 276, 436, 962mixed-mode loading 132mode 262– I fracture 436– I interlaminar fracture toughness

111– II fracture toughness 113– mix 963model-based simulation (MBS) 987modeling 985modified total internal reflection

(M-TIR) 350modified Wyoming shear test fixture

106modulation 721Mohr’s circle 314moiré– electron beam 108moiré interferometry 114, 977moiré pattern 308monochrome fringe 462monolithic integration 688morphotropic phase boundary (MPB)

166most probable characteristics strength

(MPCS) 1005motion compensation 750motion measurement 568, 577moving fringe 467multifunction nanotubes 1013multiple-wavelength optical

contouring 682multiplication of quantities 278multiplicative intensities 603multipoint overdeterministic method

(MPODM) 755multivariate regression 274multiwalled carbon nanotube

(MWCNT) 110, 850multiwalled nanotube (MWNT)

841muscle 188

muscle activation 177

N

Nafion 187, 188, 198, 199nail test 706nanocomposite 109nanocrystalline (NC) 841nano-electromechanical system

(NEMS) 203nano-electromechanical system

NEMS– application 204, 205– biologcal 205– commercialization 205– definition 204– fabrication 206– market 204– material 206nanofiber 109nanoindentation 411nanolithography 216, 410, 438nanomachining 216nanomaterial 209nanometer accuracy 690nanometer spatial resolution 434nanometer-scale mechanical

deformation 435nanoparticle 109, 798nanoscale 217– and continuum mechanics 218– mechanical measurement 435nanotube 109, 841nanowire 210National Environmental Policy Act

(NEPA) 990National Highways Development

Project (NHDP) 1002National Institute of Standard and

Technology (NIST) 987National Science Foundation (NSF)

986natural light 704nature of light 448Navier 988NC-AFM 426, 431NC-AFM imaging 413near-field scanning optical

microscopy (NSOM) 409Newton’s fringes 456Newton–Raphson 573, 576nickel 208nickel–chrome alloy 291Nikon 589Nikon lens 586NiTi 209

Subject

Ind

ex

Page 44: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1091

noise detection 290non-adiabacity 744, 751non-contact AFM (NC-AFM) 411,

412, 425non-coplanar surface 622nondestructive inspection 546nondestructive testing (NDT/NDI)

655, 668, 676non-destructive testing or evaluation

(NDT/NDE) 668nondissipative 39nonlinear 968– code Abaqus 1010– filter 499– least-squares method 275– optimization 573nonlinearity 289non-standard data 815normal crack opening displacement

(NCOD) 971normal distribution 267normal matrix 536normal projection 683normal strain 313normal velocity interferometer (NVI)

943normalization 504normalized cross-correlation 576,

577notch filter 759n-type 326nulled 290numerical aperture (NA) 349

O

object 683– beam 678– coordinate system 569objective function 572oblique– incidence 735, 736– interference 453– projection 683Occupational Safety and Health

Administration (OSHA) 990offset yield 999Ohm’s law 285ohm-meter 285oil and gas application 367one-sided Hopkinson bar (OSHB)

245open system 995open-hole tension specimen 107operations per second (OPS) 986optic axis 704

optical coherence 356optical computers 702optical detection of ultrasound– practical consideration 789optical Doppler interferometry 464optical equivalence 712, 713optical fiber 348– cladding 348– core 348– cutoff wavelength 349– multimode 350– singlemode 348– V number 349optical fiber coupler 352optical Fourier processing 478optical Fourier transform 473optical frequency-domain

reflectometry (OFDR) 364, 366optical indicatrix 356, 363optical interferometry 785optical nondestructive testing

(ONDT) 547optical path length 452optical response 362optical spectrum analyzer 477optical transform lens 476optical/digital fringe multiplication

(O/DFM) 624optimal pattern 579optimization 573, 575, 576optimized interferometer 538optoacoustic 769optoelectronic fringe interpolation

684optoelectronic holography (OEH)

675, 681optoelectronic laser interferometric

microscope (OELIM) 675, 682orbit 555organic matrix composite (OMC)

22Organisation Internationale de

Metrologie Legale (OIML) 284orientation distribution function

(ODF) 35orientation imaging microscopy

(OIM) 33, 398orthotropic material 745, 749, 753out-of-plane displacement 979overdeterministic set of linear

equations 275

P

packaging 216, 691paper gage 291

parallax 679parameter– characteristic 713partial load test 991partially destructive 1002, 1006partially specified problem 231particle image velocimetry (PIV)

221patching/stitching of tiles 686path length (PL) 451, 471– difference (PLD) 355, 452, 454,

457, 460, 471pattern matching 565Pb(MgxNb1−x)O3 (PMN) 162peak position determination 806,

807penetration depth 804, 805periodic excitation 684permalloy 209perturbation theory of linear equation

systems 538phantom 594phase 485– ambiguity 359– angle 471– derivative variance 728– detection 358– difference 489, 705, 752– imaging 430– information 753– mask 362– matching condition 362– measurement interferometry 495– retrieval 492, 507– retrieval technique 506– sampling method 514– shift 753– shifting 720, 725– shifting method 492– shifting/polarization stepping 725– stepping 624–626– unwrapping 723– velocity scanning (PVS) 795phosphate-buffered saline (PBS)

875photoacoustic 769– application of 789– biomedical 798– in multilayered structure 779– Lamb wave generation 779– longitudinal and shear wave

generation 777– nondestructive imaging of structure

789– Rayleigh wave generation 778– spectroscopy 798

Subject

Ind

ex

Page 45: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1092 Subject Index

photoacoustic generation 777– bulk-wave 782– guided-wave 780– model 780– practical consideration 783photoacoustic method– for materials characterization 793– material anisotropy 793– mechanical properties of coating

795– mechanical properties of thin film

796photodetector 413– responsivity 746photodiode 413photoelastic coating 703photoelastic constant 356, 363photoelasticity 756, 969–971, 978– digital 737– dynamic 703, 735photon detector 744, 746photonic-bandgap fiber (PBG) 350photonic-crystal fiber (PCF) 350photo-orthotropic elasticity 703photoplasticity 703, 735photopolymer 733photorefractive crystal (PRC) 787photoresists 208, 212photosensitivity 361physical vapor deposition (PVD)

210, 211picosecond ultrasonic 782piezoelectric 411– actuator 419– effect 420– material 209– scanner 412– sensing 414– transducer (PZT) 666piezoresistance 325pinhole 618, 619– camera 469– model parameter estimation 572– projection 573– projection imaging model 569– projection model 571pixel 569Planck’s law 745plane polariscope 706, 707plane wave 449– unbounded anisotropic media 772– unbounded isotropic media 771– unbounded media 771planning and control 993plasma-enhanced chemical vapor

deposition (PECVD) 210, 211

plastic deformation 293, 801plastic quad flat package (PQFP)

648plastic zone 129, 397plasticity 39, 40– cyclic 745plate 292plated-through-holes (PTH) 652point of observation 683point source of illumination 683point spread function (PSF) 657point techniques 996point-spread function 488Poisson ratio 98, 263, 295, 436, 980polariscope 705, 730polarization 704– maintaining (PM) 358– maintaining fiber (PM fiber) 350polarized light 704polarizer 712polarizing beam splitter (PBS) 788poleidoscope 731polycarbonate (PC) 84, 756polycrystalline lead zirconate titanate

(PZT) 419polycrystalline silicon 435polydimethylsiloxane (PDMS) 206,

209polylactic acid (PLA) 906polymer– conductive (CP) 920– electrostatically stricted (ESSP)

921polymer (EAP)– electroactive 917, 920polymer matrix composite (PMC)

22polymeric material 438polymethyl methacrylate (PMMA)

84, 146, 223polysilicon 207, 435, 436– fracture 438polyvinyl chloride (PVC) 752polyvinylidene fluoride (PVDF)

209pop in 402position vector 678positive definite 234postprocessing of fringe patterns

521post-yield 307potential drop method 155potential energy release 127potentiometer circuit 286power density 308power meter (PM) 682

power-law constitutive model 134precursor– elastic 946pressure– shear 942– transducer 1009– vessel 321prestressed concrete longitudinal

girders 1004primary characteristic direction 712principal strain 295principal stress 295– difference 702– orientation 702printed circuit board (PCB) 1018probabilistic load 994probability 264– distribution function 259, 279– of failure 267, 271process simulation 685projected grating 979projected quantity 278projection matrix 683projection moiré 611property 739– dissipative 17– equilibrium 17– of MEMS 435– transport 17proportional damping 238proportional-integral-derivative (PID)

controller 430p-type 326pulse velocity 1005pulsed beam of light 680pulse-echo (PE) 1022pure shear strain 312PVDF (polyvinylidene fluoride)

161PZT (lead zirconate titanate) 161– actuator 418– actuator nonlinearity 420– nonlinearity 422– scanner 419– scanner creep 421

Q

quad flat pack (QFP) 1022quality– control 685– factor 426– map 728– measure 728quantum material 210quarter bridge 290

Subject

Ind

ex

Page 46: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1093

quarter-wave plate 705– mismatch 723quartz 208quasistatic 930, 1009, 1010– interface fracture 970

R

radiofrequency (RF) switch 694radiometer– infrared 743random loading 759random noise 727random variation 271, 274range 262– dynamic 619, 620, 623rank deficient matrix 234rank filter 499rapid prototyping (RP) 685, 704,

732, 734, 737rapid tooling (RT) 732, 734rating analysis 1007Rayleigh wave 714, 772– on anisotropic crystals 774– on isotropic media 773RC circuit 286reactive-ion enhanced etching (RIE)

210real-time hologram interferometry

680recognition by synthesis 550reconstruction of a hologram 678rectangular rosette 322reference– beam 678– frequency 747– image 576– signal 751, 752refined TFP (RTFP) 730reflection artefact 750reflection photoelasticity 715, 735refractive index 451regression analysis 272regularization 550regularized phase tracking (RPT)

509reinforced cement concrete (RCC)

1005relation– characteristic 932reliability 271replamineform inspired bone

structure (RIBS) 923representative volume element (RVE)

42, 435repulsive force 412

residual birefringence 710residual stress (RS) 117, 372, 692,

704, 712, 731, 733, 745, 757, 801– and failure 219– in films 219– management (RSM) 373– measurement 97, 372– modification 383resistive grid method 155resistivity 292resonance frequency 425Resource Conservation and Recovery

Act (RCRA) 990response diagram 934retardation– characteristic 712retardation matrix 707retarder 704, 707, 712retreating side 586reverse engineering 685RGB photoelasticity (RGBP) 463,

727, 730right-handedly polarized 705rigid body 582ring-down method 426rolling contact fatigue (RCF) 815room temperature 1001rotation 603, 604, 607– characteristic 712– matrix 707rotational speed 688rotator 712

S

sacrificial surface micromachining(SSM) 688

saddle point 709safety 990– factor 271sample mean 262sample size 270sampled linear least squares method

709sample-related error 812sampling frequency 529Sandia National Laboratories (SNL)

688, 986Sandia’s Ultraplanar MEMS

Multilevel Technology(SUMMiT R©) 688

sandwich 964scale parameter 266scaled/model test 991scaling law 217scanner nonlinearity 435

scanning acoustic microscopy (SAM)1022

scanning electron microscope (SEM)108, 220, 410, 845, 979

scanning electron microscopy (SEM)31, 1035

scanning force microscopy 411scanning laser source (SLS) 793– imaging of surface-breaking flaws

792scanning near field optical

microscopy (NSOM) 431scanning probe microscopy (SPM)

409, 1035scanning thermal microscopy

410scanning tunneling microscopy

(STM) 216, 409, 410scattered light photoelasticity 703,

735scientific database 1003secondary principal stress 710seed point 727segmentation of fringe patterns 521self heating 101self-assembled monolayer (SAM)

210, 215, 974self-assembly 215self-healing polymer 111self-heating 286, 308self-temperature compensation

(S-T-C) 101, 300semiconductor gage 325sensitivity 748, 755– response 241, 242– response method (SRM) 232,

235, 236– vector 681sensor 569– coordinate system 569– wavelength overlap 365separate-path interferometer

461serial multiplexing 364shading correction 504shadow moiré 611, 612, 614–619,

621, 623, 624, 626, 980shape measurement 583, 584shape memory material 209shape-memory alloy (SMA) 209,

224, 900, 909, 910, 918shear– band 952– difference 735– testing 105– wave 771

Subject

Ind

ex

Page 47: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1094 Subject Index

shearography or speckle patternshearing interferometry (SPSI)830

shear-web transducer 316shock wave 946short-range force 411signal conditioning 997signal-to-noise ratio (SNR) 429,

435, 484, 496, 751, 753, 758silicon 207– carbide 208– dioxide 208– nitride 208– on insulator (SOI) 208simulation 985, 995sinc function 475single-crystal silicon 325single-grain studies 816single-plane rosette 311single-walled carbon nanotube

(SWCNT) 850single-walled nanotube (SWNT)

841singular matrix 232singular point 709singular stress 966singularity 967, 975, 976, 978sink 709sinusoid fitting 514skeleton method 509skeletonizing 504skew factor 570slicing plan 712slip 970slope 272– parameter 267– parameter (modulus) 266slow axis 705small section– tile 686small-scale yielding

130Sn-Ag-Cu (SAC) 1036snap-in instability 432snap-off instability 433Snell’s law 704Society for Experimental Mechanics

(SEM) 284, 371sol gel deposition 211solderability 310source 709space–bandwidth product (SPB)

484spall strength 951spallation 951SPATE 744, 745, 748, 755, 758

spatial– domain 719– filtering 478, 497– frequency 473, 477– phase shifting (SPS) 667– resolution 434, 748– signal 477specifications 991specified reliability 269speckle 496, 978– correlation (SC) 658, 660– digital correlation (DSC) 658– digital pattern interferometry

(DSPI) 517– digital pattern shearing

interferometry (DSPSI) 830– digital photography (DSP) 658– effect 489– interferometry (SI) 660– pattern shearing interferometry

(SPSI) 662– photography (SP) 658– size 490, 579speed imaging 594spherical cavity model 397spin casting 211split-Hopkinson pressure bar (SHPB)

109, 931stable configuration 692stacked rosette 311staircase yielding 403standard 1009standard deviation (SD) 262, 278,

1005standard error 268, 279staring arrays 746state-of-the-art (SOTA) 676statistical error analysis 542STC mismatch 301Stefan–Boltzmann constant

746stereo rig 581, 582, 590stereolithography (STL)

733stiffness 198, 1010stitched composite 112stitching 1012strain 684, 873– elastic 801– field 411– gage 98, 151, 245– measurement 434, 580– of the indentation 390– rate 929, 987– rate sensitivity 1000– tensor 770

strain–optic– effect 355– law 715, 717, 718– tensor 356, 363strain-optic– coefficient 715streamline fillet 702strength 271stress 271– assisted corrosion 140– concentration factor (SCF) 702,

712, 716– contact 275, 704– critical intensity factor 131– dynamic intensity factor 138– freezing 710– gradient 747– intensity factor (SIF) 129, 438,

702, 712, 755, 974– intensity factor separation 965– optic coefficient 706– optic law 706, 712, 714, 717– pattern analysis (by measurement

of) thermal emission (SPATE)744

– separation 735, 756– tensor 770– wave 769– wave or shock wave 929stroboscopic illumination 689stroboscopic time-average hologram

interferometry 680structural system 985structural test (ST) 985structure– electronic 27structure data file (SDF) 237Student’s t– distribution 263, 268subcritical crack growth 438subpixel 565subset shape function 587subset-based image correlation 575subset-level pattern matching 587sub-slice 736subtractive moiré 605superimposed load 993superlattice 798supersensitivity 306supply voltage 288support bracket 753surface– center of expansion (SCOE) 781– coating 748– curvature 301– hydrophilic 432

Subject

Ind

ex

Page 48: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

Subject Index 1095

– hydrophobic 432– roughness 435– wave 772, 1005surface acoustic wave (SAW) 784,

795– flaw imaging 789synchrotron 815– and neutron facilities 810synthetic-aperture radar (SAR) 497systematic errors 811

T

Talbot distance 604, 617–621, 623Talbot effect 617–619Taylor impact 949Taylor series expansion 276Tb0.3Dy0.7Fe2 (Terfenol-D) 166TC of gage factor 298tee rosette 322temperature– change 744, 745– coefficient of expansion 297– coefficient of gage factor 297– coefficient of resistance 297– compensation 100– testing 938temporal filtering 497temporal phase shifting 516temporal phase shifting (TPS)

666temporal phase unwrapping 532tendon 1004tension Kolsky bar 938tension testing 103tension–torsion 565, 588, 590terminology 284test control 996test preparation 993tetrabutylammonium, TBA+ 187tetramethylammonium hydroxide

(TMAH) 212textile composite 97, 114TFE (tetrafluoroethylene) 161theoretical background 962theoretical mechanics 988thermal– apparent strain 354– barrier coating (TBC) 909– evaluation for residual stress

analysis (TERSA) 757– interface material (TIM) 1020,

1041– load 993– management 688, 692– output 298

thermally induced apparent strain298

thermocouple effect 290thermodynamic 37, 43– principle 743thermoelastic effect 744thermoelastic stress analysis (TSA)

743thermoelasticity 744thermoelectric cooler (TEC) 650thermomechanical (TM) 687thermomechanical data storage

device 223thin film 782, 979– residual stress 219three-dimensional 975, 976– photoelasticity 703, 710three-fringe photoelasticity (TFP)

727, 730threshold 720– strength 267through scan (TS) 1022time division multiplexing (TDM)

364, 365time-average hologram

interferometry 680tip imaging artifacts 417tip shape convolution 418tip shape deconvolution 418tissue– elasticity 172– growth and remodeling 178– poroelasticity 176– viscoelasticity 176top-down strategy 551torsional Kolsky bar 940torsional spring constant 414total internal reflection (TIR)

348traction–separation laws 974trade-off curve 234traffic survey 1004transform lens 477transient deformations 687transient heating 687transmission electron microscope

(TEM) 410, 846transmission electron microscopy

(TEM) 31, 33transmission photoelasticity 705transport 27, 34, 43–45transpose of a matrix 681transverse– displacement interferometer (TDI)

943– load 364

– sensitivity 294– sensitivity correction 98Tresca 703TrFE (trifluoroethylene) 161triaxial analysis 805triaxial stress measurement 814tricolor light 732tripod 567true arithmetic mean 262TSA stress gage 756T-stress 966tunneling 413– current 409– electron microscope (TEM) 111twisting of the transverse girder

1004two-beam interferometer 144two-dimensional 572two-way shape memory effect

(TWSME) 918Twyman–Green interferometer 460

U

ULE titanium silicate 317ultra-high vacuum (UHV) 424, 427,

431ultrasonic– computerized complex (UCC)

378– (hammer) peening (UP) 383– method 377– peening (UP) 376– test 1005ultrasound– laser generation of 770– optical detection of 770, 783ultraviolet 212unbalanced mode 290uncertainty 690uniaxial– optical crystal 148– strain 294– stress 294unidirectional composite 100uniformly distributed load (UDL)

995, 1004unit 238universal precaution 871unwrapping 526, 727

V

van der Waals 411– forces 428– interaction 428

Subject

Ind

ex

Page 49: Acknowledgements - link.springer.com978-0-387-30877-7/1.pdf · the National Institutes of Health, the National Science Foundation, the Texas Advanced Technology Program, and the Whitaker

1096 Subject Index

variable-amplitude loading 759variance 262vector loop equations (VLE)

684velocity interferometer system for

any reflector (VISAR) 949vibration analysis 757Vickers hardness 391video dimension analysis (VDA)

874virtual crack closure (VCCT) 251VISAR 948viscoelasticity 39viscoplasticity 40visibility 602, 604, 605, 613, 616,

620, 622visual assessment 1003v-notch (Iosipescu) specimen

316voltage injection 290voltage-sensitive deflection-bridge

circuit 288von Mises 703, 712V-shaped cantilever 414, 415

W

wafer bonding 214– integrity 220warp direction 1010

warpage– laminate 120wave 239– equation 449– interference 450– plate 705– theory 448wavefront division 456, 459wavelength division multiplexing

365wavelength meter (WM)

682wavelength-domain multiplexing

(WDM) 364wavenumber 471wavepropagation 930, 932Weibull 263– distribution 265– distribution function 265– parameter 266, 267welded element 371welding residual stress 371well-posedness 550Wheatstone bridge circuit 287white light interference 463whole-field interferometry 453Wiener filtering 499Williams, Landel, and Ferry 67wind load 994wind power application 368

windowed Fourier transform (WFT)503

wire-wound resistor291

WLF equation 67world coordinate system (WCS)

569World Trade Center (WTC) 985,

987, 997

X

x-ray 801– attenuation 802–804– detector 810– diffractometer 809

Y

yield strain 757yield strength 997, 999Young’s fringes 458Young’s modulus 237, 251, 436

Z

zero drift 302zero shift 306zero strength 266zeroth order fringe 709

Subject

Ind

ex