acetona-ciclohexano articulo

23
FIuid Phase Equilibria, 65 (1991) 111-133 Elsevier Science Publishers B.V., Amsterdam 111 Simultaneous representation of excess enthalpy and vapor-liquid equilibrium data by the NRTL and UNIQUAC models Ya$ar Demirel and Hatice Gecegiirmez Faculty of Art and Sciences, University of Cukurova 01330 Adana (Turkey) (Received May 29, 1990; accepted in final form February 6, 1991) ABSTRACT Demirel, Y. and Gecegijrmez, H., 1991. Simultaneous representation of excess enthalpy and vapor-liquid equilibrium data by the NRTL and UNIQUAC models. Fluid Phase Equilibria, 65: 111-133. Using data for excess Gibbs energy, g”, and enthalpy of mixing, hE, temperature-depen- dent parameters of the NRTL and UNIQUAC models have been estimated for 44 systems of binary mixtures. Thirty-three of them include data for gE and hE at more than one different isotherm. The estimated parameters were later tested by predicting the total pressure, vapor-phase compositions and gE and hE data simultaneously and representing the effect of temperature on such data. System-dependency of the models, non-uniqueness in the parame- ters and the possibility of predicting partial miscibility for completely miscible non-ideal mixtures have been investigated. INTRODUCTION The NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 1975) models have found extensive use in the correlation and prediction of fluid phase equilibria and chemical process calculations, such as distillation. They can predict the partial miscibility and are easily ex- tendable to multicomponent mixtures using the parameters obtained from binary data alone. In a recent study, Cairns and Furzer (1988) pointed out that the limitations of these models must be considered in the design and retrofit of distillation columns, although there would appear to be a major difficulty in selecting the best model, since the choice may be system-depen- dent. This aspect needs to be investigated further in order to gain a critical and lasting evaluation on the behavior of the models. 037%3812/91/$03.50 Q 1991 Elsevier Science Publishers B.V.

Upload: yli-sc

Post on 16-Sep-2015

227 views

Category:

Documents


0 download

DESCRIPTION

Articulo Experimental

TRANSCRIPT

  • FIuid Phase Equilibria, 65 (1991) 111-133 Elsevier Science Publishers B.V., Amsterdam

    111

    Simultaneous representation of excess enthalpy and vapor-liquid equilibrium data by the NRTL and UNIQUAC models

    Ya$ar Demirel and Hatice Gecegiirmez

    Faculty of Art and Sciences, University of Cukurova 01330 Adana (Turkey)

    (Received May 29, 1990; accepted in final form February 6, 1991)

    ABSTRACT

    Demirel, Y. and Gecegijrmez, H., 1991. Simultaneous representation of excess enthalpy and vapor-liquid equilibrium data by the NRTL and UNIQUAC models. Fluid Phase Equilibria, 65: 111-133.

    Using data for excess Gibbs energy, g, and enthalpy of mixing, hE, temperature-depen- dent parameters of the NRTL and UNIQUAC models have been estimated for 44 systems of binary mixtures. Thirty-three of them include data for gE and hE at more than one different isotherm. The estimated parameters were later tested by predicting the total pressure, vapor-phase compositions and gE and hE data simultaneously and representing the effect of temperature on such data. System-dependency of the models, non-uniqueness in the parame- ters and the possibility of predicting partial miscibility for completely miscible non-ideal mixtures have been investigated.

    INTRODUCTION

    The NRTL (Renon and Prausnitz, 1968) and UNIQUAC (Abrams and Prausnitz, 1975) models have found extensive use in the correlation and prediction of fluid phase equilibria and chemical process calculations, such as distillation. They can predict the partial miscibility and are easily ex- tendable to multicomponent mixtures using the parameters obtained from binary data alone. In a recent study, Cairns and Furzer (1988) pointed out that the limitations of these models must be considered in the design and retrofit of distillation columns, although there would appear to be a major difficulty in selecting the best model, since the choice may be system-depen- dent. This aspect needs to be investigated further in order to gain a critical and lasting evaluation on the behavior of the models.

    037%3812/91/$03.50 Q 1991 Elsevier Science Publishers B.V.

  • 112

    Renon and Prausnitz (1969) provided charts for estimating the binary adjustable energy parameters of the NRTL model from limiting activity coefficient data and from mutual solubilities. They suggested that, depend- ing on the chemical nature of a mixture, a value of aij must be chosen. But as Tassios (1976) points out, the selection of proper values of clljj is ambiguous and difficult to apply, and the NRTL model performs best when the value of Y;~ is obtained by regression of the available experimental data. Flemr (1976) and McDermott and Ashton (1977) pointed out the theoretical inconsistency of the NRTL and UNIQUAC models and concluded that they should be treated only as empirical. Later Panayiotou and Vera (1981) and Iwai and Arai (1982) have discussed the statistical thermodynamic deriva- tion of the UNIQUAC model.

    Tassios (1979) showed that multiple roots are possible for positive devia- tions from Raoults law for the NRTL model. However, he concluded that when (Y~, is allowed to vary, the multiplicity does not seem to represent a problem.

    Hanks et al. (1978) have performed a parametric analysis of the NRTL model to determine appropriate limits to its ability to represent gE and hE data simultaneously. This analysis showed that the NRTL model is not capable of correlating both gE and hE data for any system in which the value of hE exceeds a certain limit, A similar study performed by Demirel and Gecegiirmez (1989) indicates that the UNIQUAC model has a similar property. This limitation can be overcome by treating the parameters of the models as functions of temperature and using experimental heats of mixing along with vapor-liquid equilibrium (VLE) data (Murthy and Zudkevitch, 1979; Demirel and Gecegbrmez, 1989).

    The NRTL and UNIQUAC models have a moderate built-in temperature dependence. However, Murthy and Zudkevitch (1979) suggest that relying on the NRTL model for representing the effect of temperature on the activity coefficients can be unreliable. Both of the models perform better when the parameters vary with temperature as suggested in the literature (Anderson and Prausnitz, 1978; Demirel and McDermott, 1984). Pablo and Prausnitz (1988) suggest that for the NRTL model a strong temperature dependence is required to describe the coexistence curve in the critical region.

    In this study, temperature-dependent parameters for the NRTL and UNIQUAC models were estimated using gE and hE data simultaneously, and the accuracy in predicting gE, VLE and hE data by the equations has been investigated for various types of mixture including alcohols, carboxylic acids, water and esters.

  • 113

    HEAT OF MIXING

    The rate of change of excess Gibbs energy, and hence the activity coefficients, y,, with respect to temperature is proportional to the excess enthalpy and is given by the Gibbs-Helmholtz equation

    hE ahEm -=- T2 [ 1 aT P,x 0)

    Nagata and Yamada (1973) and Nagata et al. (1973) have shown that the NRTL model whose parameters are assumed to be expressed by a linear function of temperature is capable of representing both VLE and hE data with a single set of parameters. Renon and Prausnitz (1968) also assume that the NRTL parameters change with temperature in a linear way.

    g,, - g,, = ci + c2( T - 273.15) (2)

    g,, - g,, = c3 + c,( T - 273.15) (3) ai2 = c5 + cg( T - 273.15) (4) With the NRTL parameters given in eqns. (2)-(4) the enthalpy of mixing becomes

    hE = (x,x2Gd (Xl + X2G2, >

    1 _ (hxl) (XI + x2G21)

    (c1 _ 273 15~ ) + r,:X,C,RT2 . 2

    Xl + XzG21 1 +(

    (XlX2GlZ I

    x2 + w,2)

    where

    G2, = exp( - a12721)

    Gl2 = exP( - y12712)

    721 = (g21 - &J/RT

    l- (12712X2 >

    (x2 + +I,) ( cg - 273.15~~) + $2y;,,2

    1 12 1 (5)

    712 = (g,, - g22VRT

    Abrams and Prausnitz (1975) state that when both VLE and liquid-liquid equilibrium (LLE) data are used to obtain the UNIQUAC parameters, they appear to be a smooth function of temperature. However, this is not the case for mixtures containing hydrogen bonding, such as water and alcohols (Anderson and Prausnitz, 1978; Murthy and Zudkevitch, 1979). In the present study, the effect of temperature on the characteristic energies is expressed as

    azl = d, + d/T (6) al2 = d, + d,/T (7)

  • 114

    These are the expressions also used by Anderson and the UNIQUAC parameters given in eqns. (6) and (7), becomes

    Prausnitz (1978). With the enthalpy of mixing

    where

    72; = exp( -%1/T)

    G = exp( - +/T)

    8j = Xjqi/Cxiqi

    The UNIQUAC model contains pure-component structural parameters r and q. Anderson and Prausnitz (1978) modified the UNIQUAC equation slightly and introduced new values of surface parameters, q, for alcohols and water to be used in the residual part of the equation.

    ESTIMATION OF PARAMETERS

    In estimating the temperature-dependent parameters, data for gE and hE were used simultaneously. The following objective function, which was also used by Nagata and Yamada (1973), was minimized:

    where n and m are, respectively, the number of experimental gE and hE data points at a specified isothermal temperature. N is the number of isothermal system temperatures for the gE data and M is that for the hE data. For minimizing the function F, a package program called MINUIT (James, 1978) was used. The MINUIT program performs minimization and analysis of the shape of a multiparameter function, and incorporates the Fletcher and Simplex techniques. Nagata and Yamada (1973) suggest that the Simplex method is one of the most effective parameter seeking methods. Each technique may be used alone or in combination with the others, according to the behaviour of the function and the requirements of the user. Some global logic is built into the program so that, if one of the techniques fails another technique is automatically called to make another attempt.

  • 115

    An analytical method due to Tassios (1976) is used to determine the ability of the estimated parameters to predict the phase splitting. This consists of the following steps:

    (1)

    (2)

    (3)

    (4)

    Regress the gE and hE data to obtain the temperature-dependent parameters of the models. Introduce these values into the following expression for G:

    T.P

    Determine the value of xi = x0 for which G assumes its minimum value, by solving the following equation:

    /

    G 1,, = 0

    T,P (11)

    Insert the value of x1 into eqn. (10) and determine the value of G. If G > 0, no partial miscibility will be predicted for the estimated values of the parameters. If G < 0, partial miscibility will be predicted.

    RESULTS AND DISCUSSION

    Using data for gE and hE, temperature-dependent parameters of the NRTL and UNIQUAC models were estimated for 44 binary systems. These mixtures include hydrocarbon, ester, alcohol, ketone, carboxylic acid and aqueous components in various combinations. Only the values of the param- eters c5 and cs, in the NRTL model, are forced to change between 0.1 and 0.7, and - 0.1 and 0.2, respectively. The estimated parameters for the NRTL and UNIQUAC models and variances of the fit, u, are given in Tables 1 and 2, respectively. The variance of the fit is obtained from

    u=

    (ffni ) NP 1

    + Ii4

    (WNP) 02)

    Here CNni and Cmi are the total number of data points for gE and hE, respectively, while NP is the number of parameters. The value of (I provides a measure of how well gE and hE data are represented simultaneously by the NRTL and UNIQUAC models. Temperature-dependent UNIQUAC parameters for the first 24 systems were given elsewhere (Demirel and Gecegormez, 1989).

  • TA

    BL

    E

    1

    Tem

    per

    atu

    re-d

    epen

    den

    t p

    aram

    eter

    s of

    th

    e N

    RT

    L

    mod

    el a

    nd

    th

    e va

    riat

    ion

    of

    th

    e fi

    t

    Sys

    tem

    T

    win

    - T

    &w

    . (

    C)

    CI

    (cal

    mol

    -)

    ::a1

    mol

    - K

    -)

    C3

    (cal

    mol

    -)

    (cal

    mol

    - K

    -)

    C5

    g-1,

    0V2

    (K-

    )

    Ref

    eren

    ces

    1. M

    eth

    yl a

    ceta

    te(l

    )-

    ben

    zen

    e(2)

    2. M

    eth

    yl a

    ceta

    te(l

    )-

    cycl

    ohex

    ane(

    2)

    3. M

    eth

    anol

    (l)-

    et

    hyl

    ace

    tate

    (2)

    4. E

    than

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    ) 5.

    2-P

    rop

    anol

    ( l)

    - et

    hyl

    ace

    tate

    (2)

    6. l

    -Pro

    pan

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    ) 7.

    Eth

    yl f

    orm

    ate(

    m

    eth

    anol

    (2)

    8. E

    thyl

    for

    mat

    e(l)

    - et

    han

    ol(2

    ) 9.

    Eth

    yl f

    orm

    ate(

    l)-

    1-p

    rop

    anol

    (2)

    10.

    Eth

    yl f

    orm

    ate(

    l)-

    2-p

    rop

    anol

    (2)

    25-5

    0

    25-4

    5

    25-5

    5

    25-5

    5

    25-5

    5

    25-5

    5

    25-4

    5

    25-4

    5

    25-5

    0

    25-4

    5

    - 12

    4.44

    38

    6.82

    0.

    1507

    1.

    84

    - 2.

    36

    0.58

    00

    - 46

    7.26

    76

    6.33

    0.

    0762

    -

    11.7

    5 12

    .72

    - 0.

    4730

    71

    7.79

    73

    8.33

    0.

    4704

    -

    3.26

    -

    1.93

    0.

    1582

    70

    5.93

    78

    8.27

    0.

    5027

    3.

    47

    - 1.

    84

    0.21

    06

    568.

    81

    355.

    10

    0.59

    31

    - 2.

    14

    -0.9

    8 -0

    .118

    5 61

    7.11

    37

    8.16

    0.

    5999

    -

    2.52

    -

    2.28

    -

    0.12

    43

    166.

    92

    523.

    00

    0.25

    38

    - 4.

    70

    1.25

    0.

    2909

    30

    9.02

    46

    5.68

    0.

    1608

    -

    4.07

    1.

    22

    0.19

    86

    357.

    15

    563.

    42

    0.51

    73

    - 1.

    55

    - 0.

    62

    -0.3

    895

    405.

    62

    644.

    69

    0.56

    85

    - 2.

    27

    - 1.

    45

    -0.1

    994

    383.

    90

    565.

    59

    0.53

    07

    - 3.

    30

    - 1.

    16

    - 0.

    2120

    44

    0.42

    61

    5.92

    0.

    5998

    -

    3.86

    -

    1.55

    0.

    3554

    0.25

    49

    10-2

    a 1o

    -2

    0.04

    38

    1O-2

    a 1O

    -2

    0.06

    78

    1o-2

    0.

    0718

    1o

    -2

    0.44

    00

    10-Z

    0.

    1249

    1o

    -2

    0.04

    11

    10-2

    0.

    0534

    1O

    -2

    0.11

    30

    10-2

    0.

    0898

    10

    -3

    Nag

    ata

    and

    Yam

    ada

    (197

    3)

    Nag

    ata

    and

    Yam

    ada

    (197

    3)

    Nag

    ata

    et a

    l. (1

    975)

    Nag

    ata

    et a

    l. (1

    975)

    Nag

    ata

    et a

    l. (1

    975)

    Nag

    ata

    et a

    l. (1

    975)

    Nag

    ata

    et a

    l. (1

    976)

    Nag

    ata

    et a

    l. (1

    976)

    Nag

    ata

    et a

    l. (1

    976)

    Nag

    ata

    et a

    l. (1

    976)

  • 11.

    Met

    hyl

    ace

    tate

    (l)-

    m

    eth

    anol

    (2)

    12.

    Met

    hyl

    ace

    tate

    (l)-

    et

    han

    ol(2

    )

    13.

    Eth

    anol

    (l)-

    to

    luen

    e(2)

    14

    .2-P

    ropa

    nol

    (l)-

    n

    -hep

    tan

    e(2)

    15

    . n

    -Pen

    tan

    ol(l

    )-

    n-h

    exan

    e(2)

    16

    . n

    -Pen

    tan

    ol(l

    )-

    2,3-

    dim

    eth

    yIbu

    tan

    e(2)

    17

    . n

    -Pen

    tan

    ol(l

    )-

    2_m

    eth

    ylpe

    nta

    ne(

    2)

    18.

    Isop

    enta

    noI

    (l)-

    n

    -hex

    ane(

    2)

    19.

    n-P

    enta

    nol

    (l)-

    3-

    met

    hyl

    pen

    tan

    e(2)

    20.

    n-P

    enta

    nol

    (l)-

    2,

    2_di

    met

    hyl

    buta

    ne(

    2)

    21.

    Ace

    ton

    itri

    le(l

    )-

    ben

    zen

    e(2)

    22

    . B

    enze

    ne(

    l)-

    n-h

    epta

    ne(

    2)

    23.

    Ace

    ton

    itri

    le(l

    )-

    n-h

    epta

    ne(

    2)

    25-4

    5

    25-5

    5

    25-6

    0

    30-6

    0

    25-4

    5

    25

    25

    25

    25

    25

    45-7

    0

    25-5

    0

    45

    463.

    88

    444.

    03

    0.59

    28

    0.69

    -

    2.94

    0.

    3566

    49

    3.99

    48

    8.52

    0.

    6556

    0.

    27

    - 2.

    91

    0.20

    30

    26.3

    6 76

    7.46

    0.

    1516

    -

    1.28

    -

    2.08

    -

    0.49

    45

    478.

    63

    577.

    71

    0.57

    23

    -1.4

    6 -

    3.25

    0.

    4540

    14

    59.6

    0 59

    1.59

    0.

    4808

    -

    5.97

    0.

    09

    0.20

    46

    1829

    .80

    864.

    35

    0.48

    74

    - 8.

    35

    - 0.

    69

    0.94

    53

    1466

    .90

    319.

    91

    0.45

    92

    -1.4

    0 -

    1.39

    0.

    8791

    17

    27.1

    0 54

    4.81

    0.

    5589

    -0

    .85

    1.65

    0.

    1410

    17

    41.6

    0 52

    9.40

    0.

    5448

    -

    0.02

    1.

    57

    0.12

    97

    1369

    .50

    184.

    05

    0.33

    90

    1.65

    -

    1.97

    -

    0.10

    72

    1447

    .90

    85.2

    9 0.

    3182

    2.

    88

    - 2.

    74

    - 0.

    1198

    18

    01.3

    0 63

    6.60

    0.

    5565

    -

    0.36

    1.

    80

    0.14

    59

    1760

    .50

    557.

    93

    0.55

    22

    - 0.

    72

    1.65

    0.

    1362

    22

    9.62

    48

    7.52

    0.

    6402

    1.

    18

    - 2.

    88

    - 0.

    1085

    -

    172.

    11

    771.

    67

    0.36

    39

    -4.5

    8 3.

    81

    -0.1

    181

    1233

    .60

    979.

    36

    0.23

    58

    - 17

    .63

    10.8

    1 -

    0.25

    96

    0.08

    11

    to-3

    1o-3

    0.

    2000

    ;0

    -3

    10-s

    0.

    0878

    10

    -4

    0.15

    83

    10-3

    0.

    0316

    10

    -s

    0.08

    75

    1o-2

    0.

    1068

    d

    1o-2

    0.

    1737

    10

    -2

    0.16

    78

    1o-2

    0.

    0991

    d

    10-2

    0.

    0806

    10

    -2

    0.08

    73

    10-l

    0.

    1612

    10

    -r

    0.18

    05

    10-2

    Nag

    ata

    et a

    l. (1

    972)

    Nag

    ata

    et a

    l. (1

    972)

    Van

    Nes

    s et

    al.

    (196

    7)

    Van

    Nes

    s et

    al.

    (196

    7)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5a)

    Say

    egh

    an

    d R

    atcl

    iff

    (197

    6)

    Pal

    mer

    an

    d S

    mit

    h (

    1972

    ) M

    onfo

    rt

    (198

    3)

    Pal

    mer

    an

    d S

    mit

    h (

    1972

    ) L

    un

    dber

    g (1

    964)

    P

    alm

    er a

    nd

    Sm

    ith

    (19

    72)

  • TA

    BL

    E

    1 (c

    onti

    nu

    ed)

    Sys

    tem

    =

    ti,

    - =

    k,

    cl

    c3

    c5

    er/r

    R

    efer

    ence

    s

    (C

    ) (C

    al m

    ol-)

    (c

    al m

    ol-

    )

    c2

    c4

    (cal

    mol

    - K

    -l)

    ( ca

    mol

    - K

    -l)

    g-l)

    1

    (K-l

    )

    24.

    Eth

    anol

    (l)-

    cy

    cloh

    exan

    e(2)

    25

    . W

    ater

    (l)-

    bu

    tyl

    glyc

    ol(2

    ) 26

    . n

    -Bu

    tan

    ol(l

    )-

    n-h

    epta

    ne(

    2)

    27.

    n-B

    uta

    nol

    (l)-

    n

    -hex

    ane(

    2)

    28.1

    ,4-D

    ioxa

    ne(

    l)-

    acet

    onit

    rile

    (2)

    29.

    Car

    bon

    te

    trac

    hlo

    ride

    (l)-

    di

    eth

    yl s

    ulf

    ide(

    2)

    30.

    Ch

    loro

    form

    (l)-

    di

    eth

    yl s

    ulf

    ide(

    2)

    31.

    Tol

    uen

    e(l)

    - 1-

    chlo

    roh

    exan

    e(2)

    32

    .1~

    Ch

    loro

    hex

    ane(

    l)-

    eth

    ylbe

    nze

    ne(

    2)

    5-65

    5-85

    15-9

    0

    15-5

    9

    40

    25

    25

    15-7

    0

    15-7

    0

    1772

    .50

    956.

    01

    0.45

    46

    0.08

    12 d

    S

    catc

    har

    d an

    d -

    1.19

    -

    0.50

    0.

    5746

    1o

    -3

    802.

    63

    654.

    50

    0.10

    00

    0.42

    8

    3.73

    1.

    81

    0.42

    69

    1O-2

    11

    47.1

    0 48

    7.05

    0.

    4339

    0.

    2441

    -

    1.67

    -

    1.99

    -0

    .260

    5 1O

    -2

    787.

    47

    335.

    69

    0.52

    25

    -

    2.56

    -0

    .14

    0.21

    10

    1o-3

    15

    36.0

    0 60

    5.00

    0.

    5381

    0.

    0808

    0.

    53

    1.55

    0.

    8901

    1o

    -3

    739.

    85

    302.

    15

    0.51

    31

    c 1.

    23

    0.05

    0.

    3400

    1o

    -3

    - 15

    1.06

    63

    5.70

    0.

    6960

    0.

    2173

    0.

    10

    0.92

    0.

    8171

    1O

    -3

    - 14

    8.28

    -

    11.6

    1 0.

    4380

    0.

    2978

    0.

    11

    6.35

    0.

    5900

    10

    -l

    - 57

    6.05

    33

    .45

    0.15

    70

    0.13

    95

    7.68

    -

    4.98

    -0

    .556

    4 1O

    -3

    - 21

    3.03

    15

    6.20

    0.

    1890

    0.

    1405

    0.

    27

    1.80

    0.

    2100

    10

    -r

    - 11

    2.53

    66

    .18

    0.64

    99

    0.19

    57

    0.53

    0.

    03

    0.29

    36

    10 -

    Sat

    kie

    wit

    cz (

    1964

    ) S

    catc

    har

    d an

    d W

    ilso

    n

    (196

    4)

    Sav

    ini

    et a

    l. (1

    965)

    ; B

    erro

    an

    d P

    enel

    oux

    (198

    4)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5b)

    Ngu

    yen

    an

    d R

    atcl

    iff

    (197

    5b)

    Ber

    ro e

    t al

    . (1

    982)

    Fra

    nce

    scon

    i an

    d C

    omm

    elh

    (1

    988)

    G

    ray

    et a

    l. (1

    988a

    ) G

    ray

    et a

    l. (1

    988b

    ) G

    ray

    et a

    l. (1

    988a

    ) G

    ray

    et a

    l. (1

    988b

    ) P

    aul

    et a

    l. (1

    988)

    Pau

    l et

    al.

    (198

    8)

  • 33.

    l-C

    hlo

    roh

    exan

    e(l)

    - n

    -pro

    pylb

    enze

    ne(

    2)

    34.

    1,3-

    Dio

    xola

    ne(

    l)-

    met

    hyl

    cycl

    ohex

    ane

    35.1

    -Ch

    loro

    pen

    tan

    e(l)

    - di

    -n-b

    uty

    l et

    her

    (2)

    36.

    1,2-

    Dic

    hlo

    roet

    han

    e(l)

    - di

    -n-b

    uty

    l et

    her

    (2)

    37.

    l,l,l-

    Tri

    chlo

    reth

    ane(

    l)-

    di-n

    -bu

    tyl

    eth

    er(2

    ) 38

    . E

    than

    ol(l

    )-

    acet

    one(

    2)

    39.

    Ace

    ton

    e(l)

    - w

    ater

    (2)

    40.

    Cyc

    loh

    exan

    e(l)

    - m

    eth

    yl m

    eth

    acty

    late

    (2)

    41.

    Isob

    uty

    ric

    acid

    (l)-

    cy

    cloh

    exan

    e(2)

    42

    . T

    rim

    eth

    ylac

    etic

    aci

    d(l)

    - cy

    cloh

    exan

    e(2)

    43

    . Is

    obu

    tyri

    c ac

    id(l

    )-

    n-h

    epta

    ne(

    2)

    44.

    Tri

    met

    hyl

    acet

    ic a

    cid(

    l)-

    n-h

    epta

    ne(

    2)

    25-9

    0

    40 5-50

    5-77

    10-7

    0

    25-1

    50

    50-2

    00

    25-7

    5

    25-4

    5

    25-4

    5

    25-4

    5

    25-4

    5

    - 87

    .55

    40.7

    7 0.

    95

    - 0.

    56

    878.

    00

    1034

    .30

    - 0.

    54

    - 0.

    84

    - 22

    .39

    69.1

    8 -

    1.34

    1.

    52

    - 11

    8.84

    57

    6.79

    -

    1.11

    0.

    22

    464.

    84

    - 49

    6.65

    2.

    31

    - 1.

    59

    260.

    36

    398.

    08

    - 4.

    07

    1.61

    65

    3.56

    65

    7.75

    9.

    27

    - 1.

    71

    227.

    63

    600.

    09

    - 1.

    83

    - 1.

    48

    914.

    38

    417.

    11

    2.76

    0.

    51

    566.

    26

    255.

    71

    1.31

    1.

    11

    1109

    .80

    508.

    12

    3.34

    0.

    83

    558.

    93

    277.

    79

    1.19

    1.

    24

    0.10

    00

    0.43

    25

    - 0.

    9886

    10

    -z

    0.59

    12

    0.09

    15

    0.54

    90

    10-z

    0.

    1001

    0.

    2266

    0.

    3295

    10

    -2

    0.64

    96

    0.18

    93

    0.60

    90

    10-s

    0.

    1072

    0.

    2507

    0.

    9571

    10

    -s

    0.41

    99

    0.04

    54

    - 0.

    2058

    10

    -2

    0.67

    25

    0.14

    95

    - 0.

    8256

    10

    -s

    0.44

    54

    0.03

    58

    - 0.

    8637

    10

    -s

    0.55

    90

    0.06

    61

    0.10

    42

    10-a

    0.

    4235

    0.

    0868

    0.

    1868

    10

    -2

    0.67

    58

    0.02

    52

    0.93

    79

    10-s

    0.

    3111

    0.

    0370

    0.

    2009

    10

    -2

    Pau

    l et

    al.

    (198

    8)

    Cas

    tell

    ari

    et a

    l. (1

    988)

    Pau

    l et

    al.

    (198

    6)

    Pau

    l et

    al.

    (198

    6)

    Pau

    l et

    al.

    (198

    8)

    Nic

    olai

    des

    and

    Eck

    ert

    (197

    8)

    Cam

    pbel

    l et

    al.

    (198

    7)

    Vil

    lam

    anan

    an

    d V

    an N

    ess

    (198

    4)

    Gri

    swol

    d an

    d W

    ong

    (194

    9)

    Lu

    o et

    al.

    (198

    7)

    Hu

    ll a

    nd

    Lu

    (19

    84)

    Lar

    k e

    t al

    . (1

    987)

    Lar

    k e

    t al

    . (1

    987)

    Lar

    k e

    t al

    . (1

    987)

    Lar

    k e

    t al

    . (1

    987)

    a P

    aram

    eter

    s ob

    tain

    ed

    by N

    agat

    a an

    d Y

    amad

    a (1

    973)

    by

    usi

    ng

    hE

    dat

    a an

    d is

    oth

    erm

    al V

    LE

    da

    ta.

    b P

    aram

    eter

    s ob

    tain

    ed

    by N

    agat

    a et

    al.

    (197

    2)

    by u

    sin

    g h

    E d

    ata

    and

    isot

    her

    mal

    V

    LE

    da

    ta.

    P

    aram

    eter

    s ob

    tain

    ed

    by B

    erro

    et

    al.

    (198

    2) b

    y u

    sin

    g h

    E d

    ata

    and

    isot

    her

    mal

    VL

    E

    data

    . d

    Par

    amet

    ers

    wh

    ich

    sh

    ow p

    arti

    al m

    isci

    bili

    ty.

    i P

    aram

    eter

    s w

    hic

    h s

    how

    com

    plet

    e m

    isci

    bili

    ty.

    Par

    amet

    ers

    obta

    ined

    by

    Ber

    ro a

    nd

    Pen

    elou

    x (1

    984)

    by

    usi

    ng

    hE

    dat

    a an

    d is

    oth

    erm

    al V

    LE

    dat

    a.

  • 120

    TABLE 2

    Temperature-dependent parameters of the UNIQUAC model and the variation of the fit

    System Twin- Max do d, et/2 (C) (K) (K)

    d, d, (K2) (K)

    25. Water(l)- butyl gfycol(2)

    26. n-Butanol(l)- n-heptane(2)

    27. n-Butanol(l)- n-hexane(2)

    28. 1,4-Dioxane(l)- acetonitrile(2)

    29. Carbon tetrachloride(l)- diethyl sulfide(2)

    30. Chloroform(l)- diethyl sulfide(2)

    31. Toluene(l)- 1 -chlorohexane( 2)

    32. l-Chlorohexane(l)- ethylbenzene( 2)

    33. l-Chlorohexane(l)- n-propylbenzene(2)

    34. 1,3-Dioxalane(l)- methylcyclohexane(2)

    35. l-Chloropentane(l)- di-n-butyl ether(2)

    36. 1,2-Dichloroethane(l)- di-n-butyl ether(2)

    37. l,l,l-Trichloroethane(l)- di-n-butyl ether(2)

    38. Ethanol(l)- acetone(2)

    39. Acetone(l)- water(2)

    40. Cyclohexane(l)- methyl methacrylate(2)

    41. Isobutyric acid(l)- cyclohexane(2)

    42. Trimethylacetic acid(l)- cyclohexane(2)

    43. Isobutyric acid(l)- n-heptane(2)

    44. Trimethylacetic acid(l)- n-heptane(2)

    5-85

    15-90

    15-59

    40

    25

    25

    15-70

    15-70

    25-90

    40

    5-50

    5-77

    10-70

    25-150

    50-200

    25-75

    25-45

    25-45

    25-45

    25-45

    377.68 426.31 - 49434.0 - 89183.0

    - 940.63 - 389.75 767180.0 62225.0

    1196.8 - 347.83 2048.2 52997.0

    - 358.85 781.02 50510.0 - 106120.0 -614.33 770.32

    167990.0 - 219510.0 737.21 - 487.55

    - 204310.0 109680.0 38.61 - 58.47

    19241.0 - 12424.0 - 155.44 173.15 21241.0 - 26767.0

    - 32.27 29.03 - 2524.3 995.45

    240.83 - 175.56 771.0 53095.0 56.77 -41.30

    652.8 - 1115.6 33.91 - 19.95

    - 7744.9 4126.3 - 102.18 107.72

    - 2312.1 8799.0 156.34 - 277.82

    69392.0 52280.0 712.49 - 461.03

    - 228200.0 252910.0 - 64.94 6.36

    15894.0 24213.0 429.29 - 161.10

    - 75521.0 42030.0 316.51 - 126.18

    - 54611.0 29692.0 682.23 - 284.38

    - 105450.0 50801.0 184.01 - 18.96

    - 24171.0 5405.33

    0.2017

    0.2651

    0.0943

    0.2748

    0.2668

    0.1098

    0.1592

    0.2105

    0.3107

    0.1485

    0.3055

    0.3046

    0.2368

    0.1053

    0.1638

    0.0439

    0.0620

    0.0817

    0.0666

    0.0572

  • 121

    The NRTL model gives multiple roots for the systems 1, 2, 11, 12 and 19, as may be seen from Table 1. The NRTL parameters for the systems n-pentanol-2-methyl pentane and ethanol-cyclohexane predict partial mis- cibility, which is not, however, predicted by the UNIQUAC model. Also, although the system water-butyl glycol shows phase splitting, the NRTL parameters predict complete miscibility, whereas the UNIQUAC model predicts partial miscibility. Multiple roots also result when the UNIQUAC model is used. The parameters that yield the best variation of the fit have been tabulated. For the system acetonitrile-n-heptane, which shows phase splitting, the parameters of both equations predict partial miscibility. Tas- sios (1976) claims that by changing the initial values of parameters it may be possible to obtain the correct values for some systems, as is seen for the system n-pentanol-3-methylpentane, which is a highly non-ideal mixture.

    Simultaneous predictions of vapor-phase composition, P, gE and hE, by the models are shown in Table 3. The volume and surface area parameters of the UNIQUAC model are given in Table 4. The average absolute error, S, for gE, P and hE were calculated using

    The root mean square deviation (RMSD) in predicting the vapor phase compositions was calculated from the following equation

    The values of S( gE), S(P) and RMSD were calculated at each isotherm for gE. Pure-component vapor pressures were obtained from the Antoine equa- tion and the necessary parameters were taken from Reid et al. (1977). The value of S( hE) was calculated at each isotherm for the hE data. The results indicate the sensitivity of the NRTL and UNIQUAC equations in repre- senting gE, VLE and hE data simultaneously at various isotherms, and also show that the models are system-dependent. For a total of 947 data points for gE, the average absolute errors for gE and p calculations from the NRTL model are 7.4% and 3.3%, respectively, while the corresponding values from the UNIQUAC model are 7.2% and 2.9%. The values of RMSD for the NRTL and UNIQUAC models are 1.9% and 1.6%, respectively. For

  • TA

    BL

    E

    3

    Sim

    ult

    aneo

    us

    rep

    rese

    nta

    tion

    of

    h

    E

    and

    is

    oth

    erm

    al

    VL

    E

    dat

    a by

    th

    e N

    RT

    L

    and

    U

    NIQ

    UA

    C

    mod

    els

    usi

    ng

    the

    tem

    per

    atu

    re-d

    epen

    den

    t p

    aram

    eter

    s

    Sys

    tem

    A

    vera

    ge a

    bso

    lute

    err

    or,

    S x

    100

    an

    d R

    MS

    D x

    100

    NR

    TL

    U

    NIQ

    UA

    C

    T(g

    E>

    n

    T(h

    E)

    ((3

    (

    Cl

    Met

    hyl

    ace

    tate

    (l)-

    b

    enze

    ne(

    2)

    Met

    hyl

    ace

    tate

    (l)-

    cy

    cloh

    exan

    e(2)

    Met

    han

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    ) E

    than

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    ) 2-

    Pro

    pan

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    ) l-

    Pro

    pan

    ol(l

    )-

    eth

    yl a

    ceta

    te(2

    )

    Eth

    yl f

    orm

    ate(

    l)-

    met

    han

    ol(2

    )

    Eth

    yl f

    orm

    ate(

    l)-

    eth

    anol

    (2)

    Eth

    yl f

    orm

    ate(

    l)-

    1-p

    rop

    anol

    (2)

    Eth

    yl f

    orm

    ate(

    l)-

    2-p

    rop

    anol

    (2)

    30

    40

    50

    35

    40

    55

    55

    55

    55

    45

    45

    50

    45

    12

    25

    9 35

    11

    8 25

    9

    35

    45

    11

    25

    35

    10

    25

    35

    10

    25

    35

    11

    25

    35

    45

    12

    25

    35

    45

    12

    25

    35

    45

    8 25

    35

    45

    11

    25

    35

    45

    M

    S(g

    E)

    S(h

    E)

    S(P

    ) R

    MS

    D

    S(g

    E)

    S(h

    E)

    S(P

    ) R

    MS

    D

    13

    12

    2.96

    8.

    73

    5.22

    6.

    58

    11

    11 9 12

    12

    12

    16

    13

    18

    11

    20 9 8 11 9 6 13 9 8 13 9 13

    12

    11

    19.8

    8 13

    .01

    11.3

    6 0.

    70

    3.28

    20.0

    5 11

    .66

    14.5

    0 1.

    98

    3.21

    0.37

    1.

    13

    0.48

    2.

    01

    1.88

    1.22

    1.

    23

    1.52

    3.07

    2.

    61

    1.32

    22.7

    5

    1.48

    0.59

    0.

    46

    1.16

    4.

    07

    4.10

    1.

    75

    3.10

    3.

    79

    4.70

    3.

    15

    3.42

    1.

    86

    1.85

    3.

    14

    1.46

    2.

    93

    3.54

    1.

    68

    0.84

    5 2.

    36

    2.66

    1.

    04

    1.29

    1.

    75

    0.34

    0.

    76

    1.06

    0.

    38

    0.41

    0.

    58

    2.50

    2.

    10

    2.25

    2.

    71

    1.56

    1.

    28

    1.34

    3.

    96

    6.21

    5.

    14

    1.33

    0.

    62

    1.08

    0.

    70

    4.64

    6.

    06

    22.7

    6

    6.62

    6.

    63

    6.23

    1.35

    0.71

    0.

    40

    0.51

    2.

    31

    2.86

    0.48

    0.90

    23.4

    3

    0.98

    1.68

    0.

    48

    2.17

    2.

    58

    5.16

    1.

    59

    2.41

    5.

    26

    4.71

    1.

    83

    2.67

    4.

    48

    4.75

    3.

    82

    4.36

    4.

    53

    5.22

    4.

    06

    4.04

    3.

    25

    4.59

    3.

    36

    2.13

    2.

    42

    10.4

    2 4.

    71

    7.82

    10

    .54

    4.59

    7.

    85

    10.0

    4 3.

    10

    8.35

    8.

    09

    1.43

    8.

    46

    1.15

    4.79

    1.39

    15.8

    3

    0.31

    1.00

    8.43

    - -

    _.

    _.

    - ._

    -

    ..-

    -

  • Met

    hyl

    ace

    tate

    (l)-

    35

    m

    eth

    anol

    (2)

    45

    13

    25

    14

    4.89

    13

    35

    16

    4.

    15

    45

    10

    10

    25

    11

    8.78

    13

    35

    12

    12

    .88

    45

    7 18

    25

    26

    1.

    48

    18

    45

    23

    1.18

    17

    60

    26

    1.

    01

    17

    30

    24

    2.57

    17

    45

    22

    2.

    25

    16

    60

    21

    1.87

    9

    25

    9 2.

    26

    1.54

    0.

    93

    1.92

    3.

    80

    3.71

    3.

    41

    9.06

    5.

    91

    5.05

    14

    .67

    11.6

    5 10

    .63

    15.3

    0 15

    .59

    15.6

    6 2.

    76

    0.75

    0.

    38

    4.94

    1.

    17

    0.68

    4.

    07

    3.58

    1.

    25

    4.02

    6.

    54

    2.55

    6.

    26

    10.4

    3 6.

    20

    8.20

    11

    .95

    9.14

    13

    .86

    3.30

    0.77

    0.

    41

    1.14

    0.

    71

    2.63

    1.

    17

    9.13

    3.

    04

    1.44

    12

    .90

    2.79

    1.

    17

    3.02

    1.

    37

    1.32

    0.

    91

    1.27

    0.

    78

    1.33

    0.

    80

    3.89

    2.

    30

    2.98

    2.

    11

    2.22

    2.

    08

    5.52

    0.

    20

    Met

    hyl

    ace

    tate

    (l)-

    45

    et

    han

    ol(2

    ) 55

    1.67

    1.

    34

    1.97

    1.

    08

    0.87

    2.

    41

    0.70

    0.

    69

    2.78

    2.

    29

    2.18

    3.

    23

    1.30

    1.

    46

    3.16

    0.

    76

    1.05

    2.

    95

    2.06

    0.

    03

    2.14

    Eth

    anol

    (l)-

    to

    luen

    e(2)

    30

    45

    60

    30

    45

    60

    25

    30

    45

    25

    2-P

    ropa

    nol

    (l)-

    n

    -hep

    tan

    e(2)

    n-P

    enta

    nol

    (l)-

    n

    -hex

    ane(

    2)

    8 25

    9

    2.75

    2.

    52

    0.09

    2.

    69

    4.21

    2.

    31

    0.08

    n

    -Pen

    tan

    ol(l

    )-

    2,3-

    dim

    eth

    yl-

    buta

    ne(

    2)

    n-P

    enta

    nol

    (l)-

    2_

    met

    hyl

    pen

    tan

    e(2)

    Is

    open

    tan

    ol(l

    )-

    n-h

    exan

    e(2)

    n

    -Pen

    tan

    ol(l

    )-

    3_m

    eth

    ylpe

    nta

    ne(

    2)

    n-P

    enta

    nol

    (l)-

    2,

    2dim

    eth

    ylbu

    tan

    e(2)

    A

    ceto

    nit

    rile

    (l)-

    be

    nze

    ne(

    2)

    Ben

    zen

    e(l)

    - n

    -hep

    tan

    e(2)

    25

    9 25

    9

    3.16

    3.

    58

    2.75

    0.

    03

    2.51

    4.

    67

    2.72

    0.

    11

    25

    9 25

    9

    3.42

    7.

    21

    3.24

    0.

    04

    3.24

    5.

    18

    3.08

    0.

    19

    25

    9 25

    9

    2.63

    7.

    12

    2.54

    0.

    13

    2.58

    4.

    89

    2.55

    0.

    11

    25

    9 25

    9

    2.81

    7.

    72

    2.85

    0.

    07

    2.55

    4.

    02

    2.64

    0.

    05

    45

    70

    45

    9 45

    13

    7.

    60

    19

    3.79

    11

    45

    14

    9.

    19

    25

    8 50

    4

    0.36

    0.

    83

    0.35

    7.

    65

    1.03

    0.

    22

    4.26

    0.

    72

    2.38

    8.

    70

    2.11

    0.

    71

    1.31

    1.

    04

    0.78

    0.

    61

    0.49

    1.

    05

    1.97

    1.

    22

    1.4

    0

    1.60

    1.

    30

  • TA

    BL

    E

    3 (c

    onti

    nu

    ed)

    Sys

    tem

    G

    Ave

    rage

    abs

    olu

    te e

    rror

    , S

    x 1

    00 a

    nd

    RM

    SD

    x

    100

    NR

    TL

    U

    NIQ

    UA

    C

    VgE

    ) n

    T

    (h

    E)

    m

    S(g

    E)

    S(h

    E)

    S(P

    ) R

    MS

    D

    S(g

    E)

    S(h

    E)

    S(P

    ) R

    MS

    D

    (C

    ) (

    C)

    Ace

    ton

    itri

    le(l

    )-

    45

    8 45

    13

    7.

    09

    2.68

    11

    .65

    8.73

    7.

    31

    2128

    n

    -hep

    tan

    e(2)

    E

    than

    ol(l

    )-

    cycI

    ohex

    ane(

    2)

    Wat

    er(l

    )-

    buty

    l gI

    ycol

    (2)

    n-B

    uta

    nol

    (l)-

    n

    -hep

    tan

    e(2)

    n-B

    uta

    nol

    (l)-

    n

    -hex

    ane(

    2)

    l+D

    ioxa

    ne(

    l)-

    acet

    onit

    rile

    (2)

    Car

    bon

    tet

    rach

    Iori

    de(l

    )-

    diet

    hyl

    su

    lfid

    e C

    hIo

    rofo

    rm(l

    )-

    diet

    hyl

    su

    lfid

    e(2)

    T

    olu

    ene(

    l)-

    1-ch

    Ioro

    hex

    ane(

    2)

    5

    20

    35

    50

    65 5

    25

    45

    65

    85

    60

    90

    59

    40

    12

    40

    10

    9.60

    25

    10

    25

    11

    15.6

    8

    25

    9 25

    10

    5.

    92

    50

    12

    15

    19

    8.00

    70

    12

    25

    17

    5.

    84

    9 5

    10

    9 20

    10

    9

    35

    10

    9 50

    10

    9

    65

    10

    8 5

    8 8

    25

    8 8

    45

    8 8

    65

    8 8

    85

    8 19

    30

    17

    22

    45

    17

    55

    10

    55

    10

    23

    15

    10

    1.71

    1.

    54

    2.02

    1.

    66

    1.81

    26

    .46

    26.4

    6 25

    .98

    22.4

    2 22

    .38

    6.47

    3.

    59

    1.97

    9.53

    3.

    90

    3.82

    4.

    60

    4.94

    31

    .42

    17.1

    1 21

    .78

    37.8

    3 30

    .52

    14.8

    9 14

    .48

    22.5

    8 8.

    58

    4.13

    6.90

    3.56

    2.86

    4.31

    7.

    43

    1.60

    0.

    98

    5.35

    2.

    56

    1.36

    4.

    35

    2.45

    1.

    60

    3.84

    2.

    24

    1.81

    4.

    03

    2.70

    1.

    83

    4.74

    15

    .44

    0.94

    9.

    50

    14.4

    8 1.

    88

    8.90

    14

    .95

    2.08

    8.

    88

    15.3

    4 2.

    61

    8.54

    13

    .73

    2.00

    8.

    65

    2.05

    0.

    82

    4.47

    1.

    44

    0.92

    2.

    14

    2.90

    0.

    77

    1.32

    1.

    28

    0.50

    0.

    76

    1.26

    0.

    75

    0.23

    0.

    22

    0.35

    0.

    26

    3.40

    12.6

    8

    15.4

    6

    5.93

    9.75

    12

    .31

    12.7

    3 7.

    65

    7.32

    7.

    77

    2.11

    11

    .95

    13.0

    0 13

    .16

    10.6

    2 12

    .87

    18.6

    0 22

    .00

    18.0

    0 23

    .00

    5.10

    12.3

    0

    5.60

    2.90

    1.85

    2.

    26

    12.3

    4 9.

    22

    2.50

    0.

    98

    1.73

    1.

    03

    1.52

    0.

    92

    1.67

    1.

    04

    1.87

    1.

    30

    7.53

    0.

    55

    6.29

    0.

    39

    6.75

    0.

    49

    6.31

    0.

    70

    6.88

    1.

    04

    0.51

    0.

    83

    0.92

    0.

    83

    2.76

    0.

    56

    1.74

    1.

    64

    0.49

    0.

    55

    1.27

    0.

    75

    0.22

    0.

    19

    0.22

    0.

    09

  • l-C

    hlo

    roh

    exan

    e(l)

    - et

    hyl

    ben

    zen

    e(2)

    l-

    Ch

    loro

    hex

    ane(

    l)-

    n-p

    ropy

    lben

    zen

    e(2)

    1,

    3-D

    ioxa

    lan

    e(l)

    - m

    eth

    ylcy

    cloh

    exan

    e l-

    Ch

    loro

    pen

    tan

    e(l)

    - di

    -n-b

    uty

    l et

    her

    ( 2)

    1,2-

    Dic

    hlo

    roet

    han

    e(l)

    - di

    -n-b

    uty

    l et

    her

    (2)

    l,l,

    l-T

    rich

    loro

    eth

    ane(

    l)-

    di-n

    -bu

    tyl

    eth

    er(2

    )

    Eth

    anol

    (l)-

    ac

    eton

    e(2)

    Ace

    ton

    e(l)

    - w

    ater

    (2)

    Cyc

    loh

    exan

    e(l)

    - m

    eth

    yl m

    eth

    acry

    late

    (2)

    Isob

    uty

    ric

    acid

    (l)-

    cy

    cloh

    exan

    e(2)

    T

    rim

    eth

    ylac

    etic

    ac

    id(l

    )-

    cycl

    ohex

    ane(

    2)

    Isob

    uty

    ric

    acid

    (l)-

    n

    -hep

    tan

    e(2)

    T

    rim

    eth

    ylac

    etic

    ac

    id(l

    )-

    n-h

    epta

    ne(

    2)

    50

    70

    90

    40

    40

    50

    57

    77

    97

    50

    70

    100

    125

    150

    100

    150

    200

    45

    60

    75

    25

    45

    25

    45

    25

    45

    25

    45

    10

    15

    17

    16.5

    3 7.

    67

    14

    25

    19

    9.30

    10

    .14

    8 25

    19

    17

    .31

    3.11

    15

    19

    4.

    13

    26

    40

    16

    6.39

    2.

    00

    12

    5 20

    18

    .09

    12

    25

    19

    12.8

    4 40

    19

    13

    5

    19

    14.8

    4 12

    25

    19

    10

    .11

    13

    14.0

    5 12

    25

    11

    24

    .05

    13

    10

    12

    12.1

    5 35

    11

    9

    25

    12

    3.00

    11

    50

    12

    3.

    06

    10

    1.51

    14

    50

    19

    11

    .27

    14

    11.0

    2 14

    5.

    95

    17

    25

    11

    2.32

    17

    2.

    55

    16

    2.55

    12

    35

    9

    1.74

    11

    1.

    50

    11

    35

    9 5.

    95

    12

    5.22

    12

    35

    9

    0.83

    12

    0.

    80

    10

    35

    8 2.

    36

    10

    2.75

    9.49

    3.

    81

    4.01

    4.

    30

    2.11

    2.95

    3.

    00

    1.13

    1.

    97

    1.76

    1.77

    0.38

    3.32

    0.76

    1.16

    0.29

    0.25

    0.

    20

    22.1

    2 0.

    25

    0.18

    12

    .04

    0.41

    0.

    50

    18.1

    0

    3.99

    4.

    79

    10.9

    3

    19.5

    9 3.

    66

    17.3

    9 18

    .69

    2.82

    15

    .02

    0.75

    0.

    46

    16.3

    9 0.

    36

    0.19

    9.

    21

    0.31

    0.

    25

    15.0

    5 0.

    43

    0.08

    20

    .44

    1.08

    0.

    32

    19.9

    3

    1.01

    1.

    77

    2.41

    1.

    42

    1.17

    4.

    72

    2.98

    0.

    83

    5.14

    3.

    62

    2.50

    8.

    00

    3.27

    3.

    43

    8.80

    4.

    14

    3.69

    5.

    79

    0.26

    0.

    51

    3.39

    0.

    24

    0.50

    2.

    55

    0.46

    0.

    45

    2.75

    2.

    88

    3.96

    2.

    93

    2.34

    4.

    66

    3.25

    4.

    38

    0.98

    5.

    64

    3.60

    2.

    51

    4.45

    1.

    47

    4.90

    5.

    00

    1.44

    4.

    85

    4.36

    3.

    86

    1.63

    3.

    28

    3.72

    2.

    28

    3.89

    3.77

    5.

    18

    3.75

    4.

    93

    2.20

    17.8

    0 10

    .46

    30.3

    3 5.

    71

    4.36

    12.8

    9 8.

    31

    12.7

    1 7.

    80

    7.80

    8.90

    1.70

    2.58

    2.42

    1.70

    1.97

    0.33

    0.

    17

    0.09

    0.

    12

    0.38

    0.

    48

    2.38

    3.

    34

    19.6

    5 3.

    67

    18.7

    2 2.

    82

    0.80

    0.

    43

    0.26

    0.

    17

    0.47

    0.

    25

    0.74

    0.

    14

    1.26

    0.

    34

    0.60

    1.

    49

    1.32

    1.

    08

    3.29

    0.

    95

    5.03

    3.

    32

    3.22

    3.

    05

    3.22

    2.

    99

    0.34

    0.

    44

    0.26

    0.

    48

    0.24

    0.

    49

    3.53

    3.

    98

    3.01

    4.

    71

    4.35

    0.

    61

    2.96

    2.

    16

    4.45

    4.

    98

    3.37

    4.

    99

    4.36

    1.

    40

    4.54

    2.

    35

    W

  • 126

    TABLE 4

    Volume and surface area parameters for the UNIQUAC model

    r 4 4 Methyl acetate 2.800 2.580 2.580 Benzene 3.190 2.400 2.400 Cyclohexane 3.970 3.010 3.010 Methanol 1.430 1.430 0.960 Ethyl acetate 3.480 3.120 3.120 Ethanol 2.110 1.970 0.920 2-Propanol 3.249 3.124 0.890 1-Propanol 3.249 3.128 0.890 Ethyl formate 2.817 2.576 2.576 Toluene 3.920 2.970 2.970 n-Heptane 5.170 4.400 4.400 n-Pentanol 4.597 4.208 1.150 n-Hexane 4.500 3.860 3.860 2,3-Dimethylbutane 4.500 3.860 3.860 2-Methylpentane 4.499 3.396 3.396 Isopentanol 5.923 4.516 1.150 3-Methylpentane 4.499 3.396 3.396 2,ZMethylpentane 4.498 3.932 3.932 Acetonitrile 1.870 1.724 1.724 Water 0.920 1.400 1.000 Butyl glycol 4.697 4.556 4.556 n-Butanol 3.450 3.050 0.880 l+Dioxane 3.185 2.917 2.917 Carbon tetrachloride 3.330 2.620 2.620 Diethyl sulfide 3.902 3.296 3.296 Chloroform 2.700 2.340 2.340 I-Chlorohexane 5.064 4.272 4.272 Ethylbenzene 4.600 3.510 3.510 n-Propylbenzene 5.272 4.048 4.048 1,3-Dioxolane 2.511 2.100 2.100 Methylcyclohexane 4.640 3.550 3.550 I-Chloropentane 4.390 3.732 3.132 Di-n-butyl ether 6.093 5.176 5.176 1,2-Dichloroethane 2.880 2.520 2.520 l,l,l-Trichloroethane 3.541 3.032 3.032 Acetone 2.570 2.340 2.340 Methyl methacrylate 3.922 3.564 3.564 Isobutyric acid 3.550 3.148 3.148 Trimethylacetic acid 4.224 3.768 3.768

    a total of 1101 data points for hE, the average absolute errors for hE calculations from the NRTL and UNIQUAC models are 5.8% and 6.7%, respectively. The predictions of the UNIQUAC model compare well with

  • 127

    those of the NRTL model, although the latter has six estimated parameters, and the effect of temperature on g E, VLE and hE data is well represented by both models. This shows that eqns. (2)-(4), (6) and (7) are capable of expressing the temperature dependency of the models for various types of mixture, including ones with hydrogen bonding.

    Using the error matrix, the off-diagonal elements of the correlation coefficient matrix, which is explained elsewhere in detail (Demirel and Gecegormez, 1989), is calculated as

    pjj = Uij/( uiiujj)12 I p;; = 1 Pij = Pji J

    ) (17)

    TABLE 5

    The elements of correlation coefficient matrix, v: p,, = 1; pi, = p,,

    P IJ System a

    2 3 27 22 38 43 25

    NRTL

    CL21 0.461 P31 0.354 p32 0.645 P41 0.707 IL42 0.087 P43 0.482 P51 0.777 p52 0.671 t453 0.794 CL54 0.723 P61 0.596 CL62 0.330 IL63 0.456 p64 0.476 p65 0.722

    UNIQUAC

    0.271 0.304 0.744 0.348 0.942 0.778 0.203 0.262 0.946 0.335 0.579 0.589 0.789 0.236 0.535 0.016 0.611 0.951 0.230 0.274 0.758 0.568 0.414 0.904 0.566 0.041 0.970 0.937 0.546 0.598 0.326 0.938 0.531 0.100 0.862 0.449 0.247 0.168 0.336 0.573 0.580 0.001 0.624 0.303 0.419 0.167 0.616 0.014 0.838 0.894 0.153 0.499 0.938 0.002 0.119 0.842 0.530 0.464 0.796 0.027 0.348 0.530 0.693 0.568 0.232 0.459 0.293 0.042 0.922 0.029 0.034 0.893 0.328 0.800 0.530 0.306 0.420 0.987 0.736 0.859 0.820 0.306 0.717 0.312 0.428 0.864 0.357 0.909 0.457 0.007

    PZI 0.273 0.923 0.892 0.976 0.960 0.999 0.982 P31 0.356 0.899 0.137 0.993 0.969 0.985 0.990 p32 0.935 0.718 0.424 0.944 0.873 0.989 0.988 1141 0.829 0.935 0.096 0.997 0.923 0.974 0.991 p42 0.355 0.811 0.427 0.987 0.937 0.983 0.989 IL43 0.315 0.979 0.985 0.984 0.986 0.995 0.983

    a 2, methyl acetate-cyclohexane; 3, methanol-ethyl acetate; 27, n-butanol-n-heptane; 22, benzene-n-heptane; 38, ethanol-toluene; 43, isobutyric acid-n-heptane; 25, water-butyl gIyco1.

  • TA

    BL

    E

    6

    Th

    e gl

    obal

    cor

    rela

    tion

    co

    effi

    cien

    ts

    Sys

    tem

    P

    :

    NR

    TL

    Cl

    C2

    c3

    c4

    CS

    UN

    IQU

    AC

    d,

    d,

    d3

    d4

    2 0.

    842

    0.88

    7 0.

    833

    0.90

    2 0.

    964

    0.72

    9 0.

    793

    0.91

    6 0.

    916

    0.78

    6 3

    0.83

    8 0.

    956

    0.90

    0 0.

    981

    0.96

    1 0.

    977

    0.96

    9 0.

    947

    0.98

    3 0.

    983

    27

    0.91

    3 0.

    612

    0.98

    5 0.

    984

    0.97

    7 0.

    983

    0.94

    7 0.

    954

    0.98

    5 0.

    988

    22

    0.99

    1 0.

    998

    0.98

    3 0.

    997

    0.84

    1 0.

    988

    0.99

    9 0.

    999

    0.99

    9 0.

    999

    38

    0.85

    5 0.

    846

    0.81

    9 0.

    953

    0.95

    8 0.

    951

    0.96

    7 0.

    966

    0.96

    3 0.

    974

    43

    0.95

    7 0.

    931

    0.97

    2 0.

    971

    0.95

    5 0.

    950

    0.99

    9 0.

    999

    0.99

    9 0.

    999

    25

    0.99

    7 0.

    999

    0.99

    9 0.

    997

    0.05

    5 0.

    999

    0.94

    7 0.

    954

    0.98

    5 0.

    988

    a 2,

    met

    hyl

    ace

    tate

    -cyc

    loh

    exan

    e;

    3, m

    eth

    anol

    -eth

    yl

    acet

    ate;

    27

    , n

    -bu

    tan

    ol-n

    -hep

    tan

    e;

    22,

    ben

    zen

    e-n

    -hep

    tan

    e;

    38,

    eth

    anol

    -tol

    uen

    e;

    43,

    isob

    uty

    ric

    acid

    -n-h

    epta

    ne;

    25

    , w

    ater

    -bu

    tyl

    glyc

    ol.

  • 129

    where uii represents the elements of the error matrix. If v is positive definite, p < 1 for all elements. If p = 0, then the parameters are uncorrelated and if p = 1, the par ameters are completely correlated. For a given parameter, the global correlation coefficient is given by

    /.A; = 1 - [ UkkVLk] -l (18) and is the correlation between it and that linear combination of the other parameters most highly correlated with it. All such coefficients should be between zero and one for a positive definite error matrix. The values of error matrix correlations and the global correlation coefficients for some of the systems are given in Tables 5 and 6, respectively. The parameters for some of the systems are highly correlated, but for such parameters it is not possible to specify unique values from a given set of data. have arisen when the same free energy function is used phases, as in LLE, at points where the mole fractions in identical.

    Such problems for two of the two phases are

    CONCLUSIONS

    Although the simultaneous fit of Gibbs energy and enthalpy of mixing data for 44 binary systems is satisfactory with the NRTL and UNIQUAC models, choice of the best model is mainly system-dependent. The use of temperature-dependent parameters improves the performance of the models, but care should be exercised in the selection of the best model for a given system, and in the estimation of the parameters for especially non-ideal mixtures.

    ACKNOWLEDGMENT

    The authors thank the Computer Centre of Cukurova University for the computation facilities provided.

    LIST OF SYMBOLS

    aij

    Cl, c3

    c29 c4

    UNIQUAC binary interaction parameter related to riT values of (g2, - gir) and (g,, - g,,) at 0C (cal mol-) coefficients of temperature change of (g,, - g,,) and (g,, - g,,) (cal mol- K-)

  • 130

    c5 value of (Y,~ at 0 C

    6 coefficient of temperature change of ai2 (K-l)

    d,, d, UNIQUAC parameters related to ajj (K)

    6 d, UNIQUAC parameters related to ajj (K) F objective function as defined by eqn. (9)

    gE excess molar Gibbs energy (cal mol-) Gi Gh

    constant in eqn. (5) Gibbs energy of mixing (cal mol-)

    G, G second and third derivative of Gibbs energy of mixing with respect

    hE

    m, n

    M, iv

    NP

    4; 4,! P

    r, R RMSD T s

    ij xi Yi

    excess enthalpy of mixing (cal mol-) number of experimental hE and gE data points, respectively, at a specified isothermal temperature number of isothermal system temperatures for hE and gE data, respectively number of parameters molecular geometric area parameter for component i molecular interaction area parameter for component i total pressure (Pa) molecular volume parameter for pure component i gas constant (cal mall K-) root mean square deviation absolute temperature (K) average absolute error (eqns. (13), (14), (15)) elements of error matrix liquid-phase mole fraction of component i vapor-phase mole fraction of component i

    Greek letters

    a12 non-randomness constant for binary l-2 interaction

    ; activity coefficient of component i area fraction of component i in residual contribution to the activity

    coefficient u variance of the fit 7ij NRTL binary parameter 7,; UNIQUAC binary parameter pij elements of correlation coefficient matrix (eqn. (17)) p,, elements of global correlation vector (eqn. (18))

    Subscripts

    exptl experimental calcd calculated

  • 131

    4 .i component max maximum min minimum

    Superscript

    E excess

    REFERENCES

    Abrams, D.S. and Prausnitz, J.M., 1975. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J., 21: 1166128.

    Anderson, T.F. and Prausnitz, J.M., 1978. Application of the UNIQUAC equation to calculation of multicomponent phase equilibria 1. Vapour-liquid equilibria. Ind. Eng. Chem. Proc. Des. Dev., 17: 552-560.

    Berro, C. and Peneloux, A., 1984. Excess energies and excess volumes of 1-butanol-n-heptane and 2-methyl-1-propanol-n-heptane binary systems. J. Chem. Eng. Data, 29: 206214.

    Berro, C., Rogalski, M. and Peneloux, A., 1982. Excess Gibbs energies and excess volumes of 1-butanol-n-hexane and 2-methyl-l-propanol-n-hexane binary systems. Ind. Eng. Chem. Process Des. Dev., 27: 352-355.

    Cairns, B.P. and Furzer, I.A., 1988. Sensitivity testing with the predictive thermodynamic models NRTL, UNIQUAC, ASOG and UNIFAC in multicomponent separations of methanol-acetone-chloroform. Chem. Eng. Sci., 43: 495-501.

    Campbell, S.W., Wilsak, R.A. and Thodos, G., 1987. Vapor-liquid equilibrium measurements for the ethanol-acetone systems at 372.7, 397.7 and 422.6 K. J. Chem. Eng. Data, 32: 357-362.

    Castellari, C., Francesconi, R. and Comelli, F., 1988. Vapor-liquid equilibrium, excess Gibbs energy and excess enthalpy of 1,3-dioxolane-methylcyclohexane at T = 313.15 K. Can. J. Chem. Eng. 66: 131-135.

    Demirel, Y. and Gecegormez, H., 1989. Simultaneous correlation of excess Gibbs energy and enthalpy of mixing by the UNIQUAC equation. Can. J. Chem. Eng., 67: 455-461.

    Demirel, Y. and McDermott, C., 1984. Prediction of phase behaviour and bubble point of partially miscible systems. Chim. Acta Turc. 12: 173-188.

    Flemr, V., 1976. A note on excess Gibbs energy equations based on local composition concept. Coll. Czech. Chem. Commun., 41: 3347-3349.

    Francesconi, R. and Comelli, F., 1988. Excess thermodynamic properties for the binary system 1,4-dioxane-acetonitrile at 40C. J. Chem. Eng. Data, 33: 80-83.

    Gray, D.F., Pasco, N.F. and Williamson, A.G., 1988a. Enthalpies of mixing of diethyl sulfide+ carbon tetrachloride and diethyl sulfide+ chloroform at 25 o C. J. Chem. Eng. Data, 33: 333-334.

    Gray, D.F., Pasco, N.F. and Williamson, A.G., 1988b. Liquid-vapor equilibria in mixtures of carbon tetrachloride and chloroform with dimethyl sulfide and diethyl sulfide. J. Chem. Eng. Data, 33: 335-337.

    Griswold, J. and Wong, S.Y., 1949. Phase equilibria of the acetone-methanol-water system from 100 o C into the critical region. I. Chem. E. Symp. Ser., No. 3, 48: 18-34.

  • 132

    Hanks, R.W. and Christensen, J.J., 1979. The prediction of multicomponent vapor-liquid equilibria from binary heats of mixing. I. Chem. Eng. Symp. Ser., No. 56, 1: 29-49.

    Hanks, R.W., Tan, R.L. and Christensen, J.J., 1978. In: Hanks and Christensen (1979) p. 34. Hull, D.M. and Lu, B.C.-Y., 1984. Vapor-liquid equilibria in mixtures of cyclohexane and

    methyl methacrylate. J. Chem. Eng. Data, 29: 417-419. Iwai, Y. and Arai, Y., 1982. Note on the local area fraction. Fluid Phase Equilibria, 9:

    201-202. James, F., 1978. Interpretation of the errors on parameters given by MINUIT. Data handling

    division, Cem, Geneva. Lark, B.S., Banipal, T.S. and Singh, S., 1987. Excess Gibbs energy for binary mixtures

    containing carboxylic acids. 3. Excess Gibbs energy for isobutyric acid and trimethylacetic acid + cyclohexane and + n-heptane. J. Chem. Eng. Data, 32: 402-406.

    Luo, B., Hamam, S.E.M., Benson, G.C. and Lu, B.C.-Y., 1987. Excess volumes and excess enthalpies for binary mixtures of methyl methacrylate with cyclopentane and with cyclohexane. J. Chem. Eng. Data, 32: 81-82.

    Lundberg, G.W., 1964. Thermodynamics of solutions. XI. Heats of mixing of hydrocarbons. J. Chem. Eng. Data, 9: 193-198.

    McDermott, C. and Ashton, N., 1977. Note on the definition of local composition. Fluid Phase Equilibria, 1: 33-35.

    Monfort, J.P., 1983. Vapor-liquid equilibria for benzene-acetonitrile and toluene-acetonitrile mixtures at 343.15 K. J. Chem. Eng. Data, 28: 24-27.

    Murthy, A.K.S. and Zudkevitch, D., 1979. Effect of heat of mixing and vapor-liquid equilibrium on design, performance and economics of distillation. I. Chem. E. Symposium Series, No. 56, 1: 51-78.

    Nagata, I. and Yamada, T., 1973. On the parameter-seeking method of local composition equations. J. Chem. Eng. Jpn., 6: 215-218.

    Nagata, I., Ohta, T. and Takahashi, T., 1972. Excess thermodynamics functions of methyl acetate-methanol and methyl acetate-ethanol systems. J. Chem. Eng. Data, 5: 227-231.

    Nagata, I., Ohta, T., Takahashi, T. and Gotoh, K., 1973. Thermodynamic properties of methyl acetate-benzene and methyl acetate-cyclohexane mixtures. J. Chem. Eng. Jpn., 6: 129-133.

    Nagata, I., Yamada, T. and Nakagawa, S., 1975. Excess Gibbs free energies and heats of mixing for binary systems ethyl acetate with methanol, ethanol, 1-propanol and 2-pro- panol. J. Chem. Eng. Data, 20: 271-275.

    Nagata, I., Ohta, T., Ogura, M. and Yasuda, S., 1976. Excess Gibbs free energies and heats of mixing for binary systems: ethyl formate with methanol, ethanol, 1-propanol, 2-propanol. J. Chem. Eng. Data, 21: 310-313.

    Nicolaides, G.L. and Eckert, C.A., 1978. Experimental heats of mixing of some miscible and partially miscible nonelectrolyte systems. J. Chem. Eng. Data, 23: 152-156.

    Nguyen, T.H. and Ratcliff, G.A., 1975a. Heats of mixing of binary systems of iso-pentanol and n-pentanol with hexane isomers at 25C: measurement and prediction by analytical group solution models. J. Chem. Eng. Data, 20: 256-258.

    Nguyen, T.H. and Ratcliff, G.A., 197513. Heats of mixing of n-alcohol-n-alkane systems at 15 and 55 o C. J. Chem. Eng, Data, 20: 252-255.

    Pablo, J.J. and Prausnitz, J.M., 1988. Thermodynamics of liquid-liquid equilibria including the critical region. AIChE J., 34: 1595-1606.

    Palmer, D.A. and Smith, B.D., 1972. Thermodynamic excess property measurements for the acetonitrile-benzene-n-heptane system at 45C. J. Chem. Eng. Data, 17: 71-76.

    Panayiotou, C. and Vera, J.H., 1981. Local compositions and local surface area fractions: a theoretical discussion, Can. J. Chem. Eng., 59: 501-505.

  • 133

    Paul, HI., Krug, J., Gutsche, B. and Knapp, H., 1986. Measurements of VLE, hE and uE for binary mixtures of dibutyl ether with 1-chloropentane, 1,2-dichloroethane, and l,l,l-tri- chloroethane. J. Chem. Eng. Data, 31: 448-456.

    Paul, HI., Krug, J. and Knapp, H., 1988, Measurements of VLE, oE and hE for binary mixtures of 1-chlorohexane with three n-alkylbenzenes: toluene, ethylbenzene, n-pro- pylbenzene. J. Chem. Eng. Data, 33: 453-454.

    Reid, R., Prausnitz, J.M. and Sherwood, T.K., 1977. The Properties of Gases and Liquids. McGraw-Hill, New York.

    Renon, H. and Prausnitz, J.M., 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 14: 135-144.

    Renon, H. and Prausnitz, J.M., 1969. Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Ind. Eng. Chem. Process Des. Dev., 8: 413-419.

    Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., 1965. Heats of mixing of some alcohol-hydrocarbon systems. J. Chem. Eng. Data, 10: 168-171.

    Sayegh, S.G. and Ratcliff, G.A., 1976. Excess Gibbs energies of binary systems of iso-penta- no1 and n-pentanol with hexane isomers at 25C: measurement and prediction by analytical group solution model. J. Chem. Eng. Data, 21: 71-74.

    Scatchard, G. and Satkiewitcz, F.G., 1964. Vapor-liquid equilibrium. XII. The system ethanol-cyclohexane from 5 to 65C. J. Am. Chem. Sot., 86: 130-133.

    Scatchard, G. and Wilson, G.M., 1964. Vapor-liquid equilibrium. XIII. The system water- butyl glycol from 5 to 85C. J. Am. Chem. Sot. 86: 133-137.

    Tassios, D., 1976. Limitations in correlating strongly nonideal binary systems with the NRTL and LEMF equations. Ind. Eng. Chem. Process Des. Dev., 15: 574-578.

    Tassios, D., 1979. The number of roots in the NRTL and LEMF equations and the effect on their performance. Ind. Eng. Chem. Process Des. Dev., 18: 182-186.

    Van Ness, H.C., Soczek, C.A., Peloguin, G.L. and Machado, R.L., 1967. Thermodynamic excess properties of three alcohol-hydrocarbon systems. J. Chem. Eng. Data, 12: 217-224.

    Villamanan, M.A., Van Ness, H.C., 1984. Excess Thermodynamic properties for water/ acetone. J. Chem. Eng. Data 29: 429-431.