a(4) family symmetry and quark-lepton unification · michal malinský uk neutrino network meeting,...

14
A(4) Family Symmetry and Quark-Lepton Unification Michal Malinský UK Neutrino network meeting, Oxford, November 29 2006 School of Physics and Astronomy, University of Southampton S.F.King, M.M., JHEP11(2006)071, ArXiv: hep-ph/0608021 S.F.King, M.M., ArXiv: hep-ph/0610250 S. Antusch, S.F.King, M.M., work in progress

Upload: others

Post on 29-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • A(4) Family Symmetry and Quark-Lepton Unification

    Michal Malinský

    UK Neutrino network meeting, Oxford, November 29 2006

    School of Physics and Astronomy, University of Southampton

    S.F.King, M.M., JHEP11(2006)071, ArXiv: hep-ph/0608021

    S.F.King, M.M., ArXiv: hep-ph/0610250

    S. Antusch, S.F.King, M.M., work in progress

  • Michal Malinský 2UK Neutrino network meeting, Oxford, November 29 2006

    Outline

    • General comments on SUSY flavour models

    • Hints from the neutrino sector

    • Sample SO(3) x Pati-Salam model

    • A(4) flavour symmetry and quark-lepton unification

  • Michal Malinský 3UK Neutrino network meeting, Oxford, November 29 2006

    General comments on (SUSY) flavour models

    In (MS)SM, the flavour physics is governed by the Yukawa couplings (and SSB sector)

    SU(3)c ⊗ SU(2)L ⊗ U(1)YMatter multiplets:

    QiL =

    (

    u1 u2 u3d1 d2 d3

    )i

    L

    = (3, 2, +1/3)

    U ciL =(

    uc1 uc2 u

    c3

    )i

    L= (3, 1,−4/3)

    DciL =(

    dc1 dc2 d

    c3

    )i

    L= (3, 1, +2/3)

    LiL =

    (

    νll

    )i

    L

    = (1, 2,−1)

    N ciL =(

    νc)i

    L= (1, 1, 0)

    EciL =(

    lc)i

    L= (1, 1, +2)

    Yukawa interactions:LY ! Y

    ijU Q

    iL

    TC−1U c

    jLHu + Y

    ijD Q

    iL

    TC−1Dc

    jLHd+

    +YijN L

    iL

    TC

    −1N

    cjLHu + Y

    ijE L

    iL

    TC

    −1E

    cjLHd + h.c.

    Majorana sector:LM ! Y

    ij∆

    LiL

    TC

    −1L

    jL∆ + M

    ijν

    ciL

    TC

    −1ν

    cjL + h.c.

    Quark and charged lepton masses:

    M iju ∝ YijU vu, M

    ijd ∝ Y

    ijD vd, M

    ijl ∝ Y

    ijE vd mν

    .= Y∆〈∆〉 − Y

    TN M

    −1YNv

    2u

    type-II type-I

    Seesaw mechanism:

  • Michal Malinský 4UK Neutrino network meeting, Oxford, November 29 2006

    In both cases, the extra symmetries must be badly broken at the electroweak scale

    Extra symmetries proposed to constrain the Yukawa (and SSB) structures

    General comments on (SUSY) flavour models

    Horizontal symmetries

    Q1L Q2

    L Q3

    L

    Ec1L E

    c2L E

    c3L

    Uc1L U

    c2L U

    c3L

    Nc1L N

    c2L N

    c3L

    L1

    L L2

    L L3

    L

    Dc1L D

    c2L D

    c3L

    Yukawa entries correlated

    !QL

    !UcL

    !DcL

    !NcL

    !EcL

    !LL

    ...SU(3), SO(3)

    Extended gauge symmetries

    {

    Q1L Q2

    L Q3

    L

    Ec1L E

    c2L E

    c3L

    Uc1L U

    c2L U

    c3L

    Nc1L N

    c2L N

    c3L

    L1

    L L2

    L L3

    L

    Dc1L D

    c2L D

    c3L

    {

    QcL

    LcL

    Yukawa matrices correlated

    ...SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L,

  • Michal Malinský 5UK Neutrino network meeting, Oxford, November 29 2006

    The flavour symmetry breaking (usually driven by flavour symmetry Higgs fields - flavons) must be well under control to lead to correct spectra and mixing patterns.

    General comments on (SUSY) flavour models

    It is typically transmitted to the matter sector via higher order vertices with flavour symmetry breaking flavon VEVs:

    h

    FL FcL

    Φ

    .

    .

    .

    .

    .

    .

    spectra mixing

    Typically driven by flavour symmetry breaking scale(s)

    Typically driven by vacuum alignment

    Realistic model = flavour symmetry + FS breaking + vacuum alignment mechanism

  • Michal Malinský 6UK Neutrino network meeting, Oxford, November 29 2006

    General comments on (SUSY) flavour models

    In SUSY, there is an extra piece of information coming from FCNC and CPV which get naturaly enhanced due to the off-diagonalities in the soft sector

    Usually, the larger the flavour symmetry multiplets the better the control over the Kähler potential and the soft sector.

    SUSY flavour problem

    µ → eγ, b → sγ, . . .

    M.Bando,N.Maekawa, Prog.Theor.Phys. 106 (2001) 1255S.F.King,M.Oliveira, Phys.Rev. D63 (2001) 095004F.-S.Ling,P.Ramond, Phys.Lett. B543 (2002) 29F.-S.Ling,P.Ramond, Phys.Rev. D67 (2003) 115010W.Grimus,L.Lavoura, Eur.Phys.J. C28 (2003) 123G.L.Kane et al., JHEP 08 (2005) 083 T.Blazek,S.Raby,K.Tobe, Phys.Rev.D62 (2000) 055001S.Raby, Phys.Lett.B561 (2003) 119S.F.King,G.G.Ross, Phys.Lett.B520 (2001) 243S.F.King,G.G.Ross, Phys.Lett.B574 (2003) 239R.Barbieri et al., [hep-ph/9901228]. S.Antusch,S.F. King, Nucl.Phys.B705 (2005) 239

    C.Hagedorn et al.,Phys. Rev. D74 (2006) 025007W.Grimus et al., JHEP07 (2004) 078R.Dermisek,S.Raby, Phys. Lett. B622 (2005) 327R.Dermisek et al., Phys. Rev.D74 (2006) 035011 C.Hagedorn,M.Lindner,R.N.Mohapatra, JHEP06 (2006) 042K.S.Babu,E.Ma,J.W.F.Valle, Phys.Lett.B552 (2003) 207

    U(1), SU(2), SU(3), SO(3)

    SUSY CP problem

    EDMs, mixing,...K − K

    D(3), D(4), D(5), S(4), A(4) . . .

    Discrete symmetries fine for the vacuum alignment

  • Michal Malinský 7UK Neutrino network meeting, Oxford, November 29 2006

    Hints from the neutrino sector

    indicates correlations among all three lepton families.

    U ∼

    2

    3

    1√

    30

    −1√

    6

    1√

    3

    1√

    2

    −1√

    6

    1√

    3−

    1√

    2

    Tri-bimaximal mixing in the lepton sector: P.F.Harrison,D.Perkins,W. G. Scott, Phys.Lett.B530, 167 (2002)

    Both SUSY constraints and lepton mixing tend to call for maximal flavor symmetries !

    Similar correlations arise for the neutrino Yukawa entries. If RH neutrinos happen to be sufficiently hierarchical and the charged lepton sector mixing negligible (in the basis in which RH neutrinos are diagonal), the sequential dominance mechanism gives the tri-bimaximal pattern automatically for

    YνLR ∼

    0 b .

    a b .

    −a b c

    S. F. King, Nucl. Phys. B576 (2000) 85 S. F. King, JHEP 09 (2002) 011

    a2

    M1!

    b2

    M2!

    c2

    M3

  • Michal Malinský 8UK Neutrino network meeting, Oxford, November 29 2006

    A sample SO(3) x Pati-Salam model

    〈!φ23〉 ∼

    0

    v

    −v

    , 〈!φ123〉 ∼

    , 〈!φ3〉 ∼

    .

    .

    V

    leads to the desired neutrino Yukawa matrix provided

    Issues to be addressed:

    RH neutrino sector should be essentially diagonal

    Charged lepton sector should not spoil the T-B lepton mixing

    The quark and lepton mass hierarchies and CKM mixing should be accommodated

    The vacuum alignment mechanism

    W leadingY =1

    My23 !F .!φ23F

    c1h +

    1

    My123 !F .!φ123F

    c2h +

    1

    My3 !F .!φ3F

    c3h + . . .

    For example

    {

    Q1L Q2

    L Q3

    L

    L1

    L L2

    L L3

    L

    Ec1L E

    c2L E

    c3L

    Uc1L U

    c2L U

    c3L

    Nc1L N

    c2L N

    c3L

    Dc1L D

    c2L D

    c3L

    {

    F c1 , Fc

    2 , Fc

    3 ≡!F ≡

    (3; 4, 1, 2)3 × (1; 4, 2, 1)

    ← SO(3) →

    ←P

    S→

    PS = SU(4)C ⊗ SU(2)L ⊗ SU(2)RS. F. King, JHEP 08 (2005) 105S. F. King, M.M., JHEP 11 (2006) 071

  • Michal Malinský 9UK Neutrino network meeting, Oxford, November 29 2006

    A sample SO(3) x Pati-Salam model

    the standard vacuum alignment mechanism very complicated and quite expensive !!!

    The model works quite well, but:

    Y fLR =

    0 y123εf123

    y12εf12

    εf3

    y23εf23

    y123εf123

    + CfyGJ ε̃f23

    σ ỹ23(ε̃23)2ε3−y23ε

    f23

    y123εf123

    + CfyGJ ε̃f23

    σ y3εf3

    σ ≡ 〈Σ〉/Mf

    εfx ≡ |〈 "φx〉|/Mf

    yx ∼ O(1)

    Cu,d,l,ν = −2, 1, 3, 0

    are the Clebsches to accommodate the proper mass hierarchies

    ε23, ε123, ε12 ! ε̃23 < ε3 ∼ O(1)

  • Michal Malinský 10UK Neutrino network meeting, Oxford, November 29 2006

    A(4) x Pati-Salam model

    Discrete symmetries can help with the huge vacuum degeneracy of the continuous case !!!

    Example: SO(3) and A(4) invariants that can be built out of triplets:

    A(4)SO(3)

    quadratic:

    cubic:

    quartic:

    φ.φ φ.φ

    (φ × χ).ψ,(φ × χ).ψ (φ ∗ χ).ψ

    (φ.φ)2, (φ × ψ)2, . . . (φ.φ)2,3∑

    i=1

    φiφiφiφi, (φ × ψ)2, . . .

    A(4) is the symmetry group of tetraheadron, i.e. a discrete subgroup of SO(3)Equivalently, it is a group of even permutations of 4 objects.

    B.Adhikary et al.,Phys. Lett. B638 (2006) 345E.Ma, H.Sawanaka,M.Tanimoto,hep-ph/0606103G.Altarelli,F.Feruglio, Nucl. Phys. B720 (2005) 64I.de Medeiros Varzielas,S.F.King,G.G.Ross,hep-ph/0512313 L.Lavoura,H.Kuhbock, hep-ph/0610050. G. Altarelli,F. Feruglio,Y.Lin, hep-ph/0610165.

    E.Ma,G.Rajasekaran,Phys.Rev.D64(2001)113012K.S.Babu,E.Ma,J.W.F.Valle,Phys.Lett.B552(2003)207M. Hirsch et al., Phys. Rev. D69 (2004) 093006S.-L. Chen,M.Frigerio,E.Ma, Nucl.Phys.B724(2005)423E. Ma,Phys. Rev. D72 (2005)037301

    Benefits of a discrete subgroup in the game:

    Invariants of the continuous case remain intact and new terms are allowed

    The extra terms break explicitly the original continuous symmetry

  • Michal Malinský 11UK Neutrino network meeting, Oxford, November 29 2006

    Example:

    The (single) flavon scalar potential

    V ! −M2φ(φ†φ) + Λ(φ†φ)2

    Isocurves in 2D projection

    λ > 0 : 〈!φ〉 ∼

    1

    1

    1

    λ < 0 : 〈!φ〉 ∼

    0

    0

    1

    or perms.

    !φ3, !φ123 VEVs almost for free !!!

    On the other hand, it might be difficult to get such simple structures from the F-terms.

    I. de Medeiros Varzielas, S. F. King, and G. G. Ross, hep-ph/0607045.

    However, higher order D-terms can naturally lead to a set of such extra quartic terms in the effective potential.

    +λ φ†iφiφ

    †iφi + . . .

    can in A(4) case contain terms like:

    A(4) x Pati-Salam model

  • Michal Malinský 12UK Neutrino network meeting, Oxford, November 29 2006

    Slight modification of the previous SO(3) model:

    〈!φ1〉 ∼

    v10

    0

    Vacuum:

    〈!φ2〉 ∼

    0

    v20

    〈!φ2〉 ∼

    0

    0

    V3

    〈!φ123〉 ∼

    vvv

    As we have seen these structures are easy to get !

    〈!φ23〉 ∼

    0

    v23−v23

    〈!̃φ23〉 ∼

    0

    V23−V23

    How to get these ?

    The Yukawa sector remains quite similar to that of the SO(3) case, but the vacuum alignment is very simple !

    A(4) x Pati-Salam model

  • Michal Malinský 13UK Neutrino network meeting, Oxford, November 29 2006

    Obtaining : 〈!φ23〉 ∼

    0

    v−v

    V ! −M223|φ23|2

    + λ123|φ†123

    .φ23|2

    + λ1|φ†1.φ23|

    2+ . . .

    Minimized for orthogonal to〈!φ23〉 〈!φ123〉 Minimized for orthogonal to〈!φ23〉 〈!φ1〉

    S. F. King, M.M., hep-ph/0610250

    Virtues of the vacuum alignment in the discrete case :

    Simplicity

    Extra constraints on the Kähler potential

    A(4) x Pati-Salam model

    Handle on the soft SUSY breaking sector (?)

    Work in progress...

  • Michal Malinský 14UK Neutrino network meeting, Oxford, November 29 2006

    Conclusions

    • SUSY flavour models strongly constrained in both Yukawa and soft sectors

    • SUSY flavour and CP problems call for maximal symmetries

    • Models with discrete subgroups of continuous symmetries provide for simple vacuum alignment mechanisms

    • Work in progress

    Thanks for your kind attention !