a virtual catalyst in the knowledge acquisition process geraldo boz junior, tecpar milton pires...

22
A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola, PUCPR Emerson Cabrera Paraiso, PUCPR The 23rd International Conference on Software Engineering and Knowledge Engineering (SEKE 2011)

Upload: clarence-conley

Post on 18-Dec-2015

227 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

A Virtual Catalyst in the Knowledge Acquisition Process

Geraldo Boz Junior, TecparMilton Pires Ramos, Tecpar

Gilson Yukio Sato, UTFPRJulio Cesar Nievola, PUCPR

Emerson Cabrera Paraiso, PUCPR

The 23rd International Conference on Software Engineering and Knowledge Engineering (SEKE 2011)

Page 2: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Structure

Introduction

Tool Features

Virtual Catalyst Noctua

Page 3: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Introduction• AI – Artificial Intelligence

• Knowledge Based Systems• Analysis, diagnosis• Preservation of knowledge

• KA – Knowledge Acquisition• Expert + Knowledge Engineer• Problems: deadlines, expenses, time availability,

knowledge representation

• CKC – Collaborative Knowledge Construction• Multiple remote collaborators• Problems: authorship, validation

• Noctua = AI + KA + CKC

3

Page 4: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

4

Knowledge Acquisition (KA)

Definition• Conceptual Knowledge x Procedural Knowledge [1]• Knowledge Acquisition is the explanation and the capture of

knowledge in a structured format. [2]KA techniques

• Interviews, simulation, scenarios [1] [3]Knowledge Representation

• Knowledge Pages, Production Rules [1] [2]Problems

• Faulty documentation, elicitation difficulty, disorganization, ignorance, availability [4]

Page 5: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

5

Collaborative Knowledge Construction (CKC)

Distance Collaboration• Synchronous collaborative sessions x asynchronous collaboration

[5]Incentive to Collaboration

• Productivity awards, reputation inside the group, social translucence [6]

Effectiveness: stimulus and measurements• Fostering interaction, distribution of roles, metacognition [7]• Quantity of logins, produced artifacts, quantity of messages and

comments, etc. [8]Tool characteristics

• Web, simple, forum, questions, synchronous/asynchronous, authorship, search [9]

Building consensus• Authority, consensus [10]

Page 6: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

6

Proactivity (CKC)

Intelligent Systems• Ability to understand and act on the environment according

to their own objectives. [5]• Perceptions and actions; memory, knowledge and goals;

planning and decision making [11]Profile of collaborators

• Interaction vary with interests, knowledge, history of activities [6]

Artificial element action• Familiarization, discussion [8]• Types of questions (“Evaluate...” , “What if...?”) [12]

Page 7: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Structure

Introdution

Tool Features

Virtual Catalyst Noctua

Introdution

Page 8: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

8

Noctua Project

Input Variables

Base de Regras

Internal Variables

Constants

Auxiliary Conclusions

Output Conclusions

Terminal Conclusions

Inference Engine

HiperglossárioHyper Glossary

Rule Base

Page 9: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

RuleBase

Hyper Glossary

Tags

?QuestionsInstant

Messages

!Comments

Images

Expert(s)

KnowledgeEngineer(s)

Log

Profiles

Project Memory9

Page 10: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Structure

Introduction

Tool Features

Virtual Catalyst Noctua Structure

Page 11: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Knowledge Page

11

Page 12: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Production Rule

12

Page 13: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Structure

Introduction

Tool Features

Virtual Catalyst Noctua

Tool Features

Page 14: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Tool Features

Rule Base

Hyper Glossary

Tags

?QuestionsInstant

Messages

!Comments

Images

Expert(s)

KnowledgeEngineer(s)

VirtualCatalyst

Log

Profiles

Project Memory14

Page 15: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Catalyst Action

If DIM >= lactation_initial_phase_limit DIM < lactation_end_limitThen last phase lactation

Rule Y

Profile

Tags

Rules

If SCC >= SCC_normal_limit SCC < SCC_high_limitThen high SCC

Rule X

15

Page 16: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Catalyst Action

Rule ?

Mr. Expert, is it possible to conclude something from these conditions?

If SCC >= SCC_normal_limit SCC < SCC_high_limit

Then ???

DIM >= lactation_initial_phase_limit

16

Page 17: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Structure

Introduction

Tool Features

Virtual Catalyst NoctuaVirtual Catalyst Noctua

Page 18: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

18

Experimentation

instigated17%

spontaneous83%

Entries/Rules

instigated23%

spon-taneou

s77%

Opinions

Project Gourmethttp://projetos.dia.tecpar.br/noctua

Pairing Foods and Wine

•9 distant collaborators•111 questions made by Noctua•204 instant messages

•50 rules and entries (17% instigated)•60 opinions validating knowledge (23% instigated)

This experimentation inspired an improvement in the tool, which now also integrates input variables to the rules and entries of the project.

Page 19: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Expected Results

• A method for Knowledge Acquisition with characteristics of Collaborative Knowledge Construction and a Virtual Catalyst.

• More efficient Knowledge Acquisition• Decrease the need to face meetings• Lower costs• Shorter development time• Procedural knowledge

integrated with conceptual knowledge

19

Page 20: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

Conclusion

Work already done• Theoretical foundation• Defining tool features• Development of the tool (Noctua)

Work in progress• More experiments• Assessment of experiment results• New tool features

20

Page 21: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

References

21

[1] MILTON, N.R Knowledge Acquisition in Practice, Springer-Verlag London Limited, 2007

[2] ROLSTON, D.W. Principles of Artificial Intelligence and Expert Systems Development. McGraw-Hill Book Co, 1988.

[3] GROVER, M.D. A Pragmatic Knowledge Acquisition Methodology. Psychological Review, 1982, pp. 1-3.

[4] MASTELLA, L.S. Técnicas de Aquisição de Conhecimento para Sistemas Baseados em Conhecimento, UFRGS, 2004.

[5] SCHWARTZ, D.G. Encyclopedia of Knowledge Management. Idea Group Reference, 2006.

[6] NABETH, T.; RODA, C.; ANGEHRN, A. e MITTAL, P. Using artificial agents to stimulate participation in virtual communities. ADIS International Conference CELDA (Cognition and Exploratory Learning in Digital Age), 2005, pp. 2-5.

[7] PETTENATI, M.C. e RANIERI, M. Informal learning theories and tools to support knowledge management in distributed CoPs. Proceedings of the 1st International Workshop on Building Technology Enhanced Learning solutions for Communities of Practice, held in conjunction with the 1st European Conference on Technology Enhanced Learning Crete, Greece, 2006, pp. 345-355.

[8] ANGEHRN, A.A. Designing Intelligent Agents for Virtual Communities. CALT Report 11-2004, 2004, pp. 1-29.

[9] NOY, N.F.; CHUGH, A. e ALANI, H. The CKC Challenge: Exploring Tools for Collaborative Knowledge Construction. IEEE Intelligent Systems, vol. 23, 2008, pp. 64-68.

[10] DIENG, R.; CORBY, O.; GIBOIN, A.; GOLEBIOWSKA J.; MATTA N. e RIBIÈRE M. Méthodes et outils pour la gestion des connaissances. Dunod, 2000.

[11] KENDAL, S e CREEN, M. An Introduction to Knowledge Engineering. Springer-Verlag London Limited, 2007.

[12] MCGRAW, K. e HARBISON-BRIGGS K. Knowledge acquisition: principles and guidelines. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1989.

Page 22: A Virtual Catalyst in the Knowledge Acquisition Process Geraldo Boz Junior, Tecpar Milton Pires Ramos, Tecpar Gilson Yukio Sato, UTFPR Julio Cesar Nievola,

A Virtual Catalyst in the Knowledge Acquisition Process

Geraldo Boz Junior, TecparMilton Pires Ramos, Tecpar

Gilson Yukio Sato, UTFPRJulio Cesar Nievola, PUCPR

Emerson Cabrera Paraiso, PUCPR

The 23rd International Conference on Software Engineering and Knowledge Engineering (SEKE 2011)

Thank you!