a textbook of engineering physics_m. n. avadhanulu, and p. g. kshirsagar.pdf

Upload: shriramnatarajan

Post on 07-Aug-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    1/116

    Scilab Textbook Companion for

    A Textbook Of Engineering Physics

    by M. N. Avadhanulu, And P. G. Kshirsagar1

    Created byJumana Mp

    btechElectronics Engineering

    VNIT NAGPURCollege Teacher

    Dr.A.S.GandhiCross-Checked by

    Mukul R. Kulkarni

    August 10, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    2/116

    Book Description

    Title:  A Textbook Of Engineering Physics

    Author:  M. N. Avadhanulu, And P. G. Kshirsagar

    Publisher:  S. Chand And Company, New Delhi

    Edition:   9

    Year:   2011

    ISBN:   81-219-0817-5

    1

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    3/116

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa  Example (Solved example)

    Eqn  Equation (Particular equation of the above book)

    AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    4/116

    Contents

    List of Scilab Codes   5

    4 Electron Ballistics   9

    5 Electron Optics   14

    6 Properties of Light   17

    7 Interference and Diffraction   19

    8 Polarization   22

    11 Architectural Acoustics   24

    12 Ultrasonics   27

    13 Atomic Physics   29

    14 Lasers   36

    15 Atomic nucleus and nuclear energy   39

    16 Structure of Solids   49

    17 The Band Theory of Solids   52

    18 Semiconductors   54

    19 PN Junction Diode   59

    3

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    5/116

    21 Magnetic Materials   61

    22 Superconductivity   64

    23 Dielectrics   66

    24 Fibre optics   71

    25 Digital electronics   76

    4

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    6/116

    List of Scilab Codes

    Exa 4.1 Calculation of acceleration time taken and distance cov-ered and kinetic energy of an accelerating proton   . . . 9

    Exa 4.2 electrostatic deflection   . . . . . . . . . . . . . . . . . . 10Exa 4.3 electron projected at an angle into a uniform electric field   10Exa 4.4 motion of an electron in a uniform magnetic field   . . . 11Exa 4.5 motion of an electron in a uniform magnetic field acting

    at an angle   . . . . . . . . . . . . . . . . . . . . . . . . 11Exa 4.6 Magnetostatic deflection  . . . . . . . . . . . . . . . . . 12Exa 4.7 electric and magnetic fields in crossed configuration . . 12Exa 5.1 Electron refraction calculation of potential difference   . 14Exa 5.2 Cyclotron  . . . . . . . . . . . . . . . . . . . . . . . . . 14Exa 5.4 calculation of linear separation of lines formed on pho-

    tographic plates   . . . . . . . . . . . . . . . . . . . . . 15

    Exa 6.1 Optical path calculation  . . . . . . . . . . . . . . . . . 17Exa 6.2 Coherence length calculation   . . . . . . . . . . . . . . 17Exa 7.1 plane parallel thin film . . . . . . . . . . . . . . . . . . 19Exa 7.2 wedge shaped thin film   . . . . . . . . . . . . . . . . . 19Exa 7.3 Newtons ring experiment   . . . . . . . . . . . . . . . . 20Exa 7.4 nonreflecting film . . . . . . . . . . . . . . . . . . . . . 20Exa 8.2 Polarizer   . . . . . . . . . . . . . . . . . . . . . . . . . 22Exa 8.3 calculation of birefringence   . . . . . . . . . . . . . . . 22Exa 11.1 calculation of total absorption and average absorption

    coefficient  . . . . . . . . . . . . . . . . . . . . . . . . . 24Exa 11.2 calculation of average absorption coefficient   . . . . . . 24

    Exa 11.3 calculation of average absorption coefficient and area   . 25Exa 12.1 calculation of natural frequency . . . . . . . . . . . . . 27Exa 12.2 calculation of natural frequency . . . . . . . . . . . . . 27Exa 12.3 calculation of depth and wavelength   . . . . . . . . . . 28

    5

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    7/116

    Exa 13.1 calculation of rate of flow of photons   . . . . . . . . . . 29

    Exa 13.2 calculation of threshold wavelength and stopping poten-tial   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 13.3 calculation of momentum of Xray photon undergoing

    scattering   . . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 13.4 calculation of wavelength of scattered radiation and ve-

    locity of recoiled electrone   . . . . . . . . . . . . . . . . 31Exa 13.5 calculation of wavelength of light emitted   . . . . . . . 32Exa 13.6 calculation of de Broglie wavelength   . . . . . . . . . . 32Exa 13.7 calculation of uncertainty in position   . . . . . . . . . . 33Exa 13.8 Energy states of an electron and grain of dust  . . . . . 34Exa 14.1 calculation of intensity of laser beam   . . . . . . . . . . 36

    Exa 14.2 calculation of intensity of laser beam   . . . . . . . . . . 36Exa 14.3 calculation of coherence length bandwidth and line width   37Exa 14.4 calculation of frequency difference   . . . . . . . . . . . 38Exa 14.5 calculation of frequency difference   . . . . . . . . . . . 38Exa 15.1 calculation of binding energy per nucleon   . . . . . . . 39Exa 15.2 calculation of energy  . . . . . . . . . . . . . . . . . . . 39Exa 15.3 calculation of binding energy   . . . . . . . . . . . . . . 40Exa 15.4 calculation of binding energy   . . . . . . . . . . . . . . 41Exa 15.5 calculation of halflife   . . . . . . . . . . . . . . . . . . . 41Exa 15.6 calculation of activity   . . . . . . . . . . . . . . . . . . 42

    Exa 15.7 calculation of age of mineral . . . . . . . . . . . . . . . 42Exa 15.8 calculation of age of wooden piece   . . . . . . . . . . . 43Exa 15.9 calculation of energy released   . . . . . . . . . . . . . . 44Exa 15.10 calculation of crossection   . . . . . . . . . . . . . . . . 44Exa 15.11 calculation of final energy   . . . . . . . . . . . . . . . . 45Exa 15.12 calculation of amount of fuel   . . . . . . . . . . . . . . 45Exa 15.13 calculation of power output   . . . . . . . . . . . . . . . 46Exa 15.14 calculation of power developed   . . . . . . . . . . . . . 47Exa 15.15 calculation of amount of dueterium consumed   . . . . . 47Exa 16.1 calculation of density   . . . . . . . . . . . . . . . . . . 49Exa 16.2 calculation of no of atoms   . . . . . . . . . . . . . . . . 49

    Exa 16.3 calculation of distance   . . . . . . . . . . . . . . . . . . 50Exa 16.4 calculation of interatomic spacing . . . . . . . . . . . . 51Exa 17.1 calculation of velocity of fraction of free electrone  . . . 52Exa 17.2 calculation of velocity of e   . . . . . . . . . . . . . . . . 52Exa 17.3 calculation of velocity of fraction of free electrones   . . 53

    6

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    8/116

    Exa 18.2 calculation of probability   . . . . . . . . . . . . . . . . 54

    Exa 18.3 calculation of fraction of e in CB   . . . . . . . . . . . . 54Exa 18.4 calculation of fractionional change in no of e . . . . . . 55Exa 18.5 calculation of resistivity   . . . . . . . . . . . . . . . . . 56Exa 18.6 calculation of conductivity of intrinsic and doped semi-

    conductors   . . . . . . . . . . . . . . . . . . . . . . . . 56Exa 18.7 calculation of hole concentration   . . . . . . . . . . . . 57Exa 18.8 calculation of Hall voltage  . . . . . . . . . . . . . . . . 57Exa 19.1 calculation of potential barrier   . . . . . . . . . . . . . 59Exa 19.2 calculation of current   . . . . . . . . . . . . . . . . . . 59Exa 21.1 calculation of magnetizing force and relative permeability   61Exa 21.2 calculation of magnetization and magnetic flux density   61

    Exa 21.3 calculation of relative permeability   . . . . . . . . . . . 62Exa 22.1 calculation of magnetic field . . . . . . . . . . . . . . . 64Exa 22.2 calculation of transition temperature  . . . . . . . . . . 64Exa 22.3 calculation of temp at which there is max critical field   65Exa 23.1 calculation of relative permittivity   . . . . . . . . . . . 66Exa 23.2 calculation of electronic polarizability   . . . . . . . . . 66Exa 23.3 calculation of electronic polarizability and relative per-

    mittivity   . . . . . . . . . . . . . . . . . . . . . . . . . 67Exa 23.4 calculation of electronic polarizability and relative per-

    mittivity   . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Exa 23.5 calculation of ionic polarizability   . . . . . . . . . . . . 68Exa 23.6 calculation of frequency and phase difference   . . . . . 69Exa 23.7 calculation of frequency   . . . . . . . . . . . . . . . . . 69Exa 24.1 Fiber optics numerical aperture calculation   . . . . . . 71Exa 24.2 calculation of acceptance angle   . . . . . . . . . . . . . 72Exa 24.3 calculation of normailsed frequency . . . . . . . . . . . 72Exa 24.4 calculation of normailsed frequency and no of modes   . 73Exa 24.5 calculation of numerical aperture and maximum accep-

    tance angle   . . . . . . . . . . . . . . . . . . . . . . . . 73Exa 24.6 calculation of power level   . . . . . . . . . . . . . . . . 74Exa 24.7 calculation of power loss   . . . . . . . . . . . . . . . . . 74

    Exa 25.1 sum of two binary numbers   . . . . . . . . . . . . . . . 76Exa 25.2 sum of two binary numbers   . . . . . . . . . . . . . . . 77Exa 25.3 sum of two binary numbers   . . . . . . . . . . . . . . . 77Exa 25.4 difference of two binary numbers   . . . . . . . . . . . . 78Exa 25.5 difference of two binary numbers   . . . . . . . . . . . . 78

    7

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    9/116

    Exa 25.6 difference of two binary numbers   . . . . . . . . . . . . 79

    Exa 25.7 product of two binary numbers   . . . . . . . . . . . . . 80Exa 25.8 binary multiplication . . . . . . . . . . . . . . . . . . . 80Exa 25.9 binary division   . . . . . . . . . . . . . . . . . . . . . . 81Exa 25.10 binary division   . . . . . . . . . . . . . . . . . . . . . . 82Exa 25.11 octal addition . . . . . . . . . . . . . . . . . . . . . . . 82Exa 25.12 octal multiplication   . . . . . . . . . . . . . . . . . . . 83Exa 25.13 hexadecimal addition   . . . . . . . . . . . . . . . . . . 83Exa 25.14 binary to decimal conversion   . . . . . . . . . . . . . . 84Exa 25.15 decimal to binary conversion   . . . . . . . . . . . . . . 85Exa 25.16 decimal to binary conversion   . . . . . . . . . . . . . . 85Exa 25.17 decimal to octal conversion   . . . . . . . . . . . . . . . 87

    Exa 25.18 octal to binary conversion  . . . . . . . . . . . . . . . . 88Exa 25.19 octal to binary conversion  . . . . . . . . . . . . . . . . 88Exa 25.20 binary to octal conversion  . . . . . . . . . . . . . . . . 91Exa 25.21 hexa to decimal conversion   . . . . . . . . . . . . . . . 94Exa 25.22 decimal to hexadecimal conversion   . . . . . . . . . . . 94Exa 25.23 hexa to binary conversion   . . . . . . . . . . . . . . . . 95Exa 25.24 binary to hexa conversion   . . . . . . . . . . . . . . . . 96Exa 25.25 Substraction by ones complement method   . . . . . . . 96Exa 25.26 Substraction by ones complement method   . . . . . . . 99Exa 25.27 Substraction by ones complement method   . . . . . . . 101

    Exa 25.28 finding twos complement   . . . . . . . . . . . . . . . . 104Exa 25.29 Addition of negative number by twos complement method   105Exa 25.30 Substraction by twos complement method   . . . . . . . 108AP 1 Binary to Decimal convertor   . . . . . . . . . . . . . . 112AP 2 Decimal to Base 2 Converter   . . . . . . . . . . . . . . 114

    8

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    10/116

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    11/116

    t im e i s : ’ ) ;

    18   K E = E * q * x ; // k i n e t i c e ne rg y19   disp ( K E , ’ k i n e t i c e ne rg y ( i n J ) a t t he t im e i s : ’ ) ;

    Scilab code Exa 4.2  electrostatic deflection

    1   clc ; clear ;

    2   / / E xa mp le 4 . 23   // e l e c t r o s t a t i c d e f l e c t i o n

    4   / / g i v e n v a l u e s5   V 1 = 2 0 0 0 ; // i n v o l t s , p o t e n t i a l d i f f e r e n c e t hr ou ghwhi ch e l e c t r o n beam i s a c c e l e r a t e d

    6   l = . 0 4 ; // l e ng t h o f r e c t a ng u l a r p l a t e s7   d = . 0 1 5 ; // d i s t a n c e b et we en p l a t e s8   V = 5 0 ; // p o t e n t i a l d i f f e r e n c e be t we en p l a t e s9   // c a l c u l a t i o n s

    10   a l p h a = atan ( l * V / ( 2 * d * V 1 ) ) * ( 1 8 0 / % p i ) ; / / i n d e g r e e s11   disp ( a l p h a ,  ’ a ng l e o f d e f l e c t i o n o f e l e c t r o n beam i s :

    ’ ) ;12   v = 5 . 9 3 * 1 0 ^ 5 * sqrt ( V 1 ) ; // h o r i z o n t a l v e l o c i t y i n m/ s

    13   t = l / v ; / / i n s14   disp (t ,  ’ t r a n s i t t i m e t h r o u g h e l e c t r i c f i e l d i s : ’ )

    Scilab code Exa 4.3   electron projected at an angle into a uniform electricfield

    1   clc ; clear ;

    2   / / E xa mp le 4 . 3

    3   / / e l e c t r o n p r o j e c t e d a t an a n gl e i n t o a u ni fo rme l e c t r i c f i e l d

    4   / / g i v e n v a l u e s5   v 1 = 4 . 5 * 1 0 ^ 5 ; // i n i t i a l spe e d i n m/ s6   a l p h a = 3 7 * % p i / 1 8 0 ; // a ng l e o f p r o j e c t i o n i n d e g r e e s

    10

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    12/116

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    13/116

    1   clc ; clear ;

    2   / / E xa mp le 4 . 53   // m ot io n o f an e l e c t r o n i n a u ni fo rm m ag ne ti c f i e l da c ti n g a t a n a ng l e

    4   / / g i v e n v a l u e s5   v = 3 * 1 0 ^ 7 ; // e l e c t r o n s pe ed6   B = . 2 3 ; / / m a g n e t i c f i e l d i n wb /mˆ 27   q = 4 5 * % p i / 1 8 0 ; // i n d e gr ee s , a n g le i n wh ich e l e c t r o n

    e n t e r f i e l d8   e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9   m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g

    10   R = m * v * sin ( q ) / ( e * B ) ; / / i n m

    11   disp (R , ’ r a di u s o f h e l i c a l pat h i s : ’ )12   p = 2 * % p i * m * v * cos ( q ) / ( e * B ) ; / / i n m13   disp (p , ’ p i t ch o f h e l i c a l pa th ( i n m) i s : ’ )

    Scilab code Exa 4.6  Magnetostatic deflection

    1   clc ; clear ;

    2   / / E xa mp le 4 . 6

    3   // M a gn e to s ta t i c d e f l e c t i o n4   / / g i v e n v a l u e s5   D = . 0 3 ; // d e f l e c t i o n i n m6   m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g7   e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C8   L = . 1 5 ; / / d i s t a n c e b et we en CRT a nd a no de i n m9   l = L / 2 ;

    10   V = 2 0 0 0 ; // i n v o l t s i n wb/11   B = D * sqrt ( 2 * m * V ) / ( L * l * sqrt ( e ) ) ; // i n wb/mˆ212   disp (B , ’ t r a n s v e r s e m a g ne t ic f i e l d a c t i n g ( i n wb/mˆ 2 )

    i s : ’ )

    Scilab code Exa 4.7  electric and magnetic fields in crossed configuration

    12

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    14/116

    1   clc ; clear ;

    2   / / E xa mp le 4 . 73   / / e l e c t r i c a nd m a g n e t i c f i e l d s i n c r o s s e dc o n f i g u r a t i o n

    4   / / g i v e n v a l u e s5   B = 2 * 1 0 ^ - 3 ; / / m a g n e t i c f i e l d i n wb /mˆ 26   E = 3 . 4 * 1 0 ^ 4 ; // e l e c t r i c f i e l d i n V/m7   m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g8   e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9   v = E / B ; // i n m/ s

    10   disp (v , ’ e l e c t r o n s pe ed i s : ’ )11   R = m * v / ( e * B ) ; / / i n m

    12   disp (R , ’ r a d i u s o f c i r c u l a r p at h ( i n m) when e l e c t r i cf i e l d i s s w it c he d o f f ’ )

    13

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    15/116

    Chapter 5

    Electron Optics

    Scilab code Exa 5.1  Electron refraction calculation of potential difference

    1   clc ; clear ;

    2   / / E xa mp le 5 . 13   // E l e c t r o n r e f r a c t i o n , c a l c u l a t i o n o f p o t e n t i a l

    d i f f e r e n c e4

    5   / / g i v e n v a l u e s

    6   V 1 = 2 5 0 ; // p o t e n t i a l by which e l e c t r o n s a r ea c c e l e r a t e d i n V ol ts

    7   a l p h a 1 = 5 0 * % p i / 1 8 0 ; / / i n d e g r e e8   a l p h a 2 = 3 0 * % p i / 1 8 0 ; / / i n d e g r e e9   b = sin ( a l p h a 1 ) / sin ( a l p h a 2 ) ;

    10   // c a l c u l a t i o n11   V 2 = ( b ^ 2 ) * V 1 ;

    12   a = V 2 - V 1 ;

    13   disp (a , ’ p o t e n t i a l d i f f e r e n c e ( i n v o l t s ) i s : ’ ) ;

    Scilab code Exa 5.2   Cyclotron

    14

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    16/116

    1   clc ; clear ;

    2   / / E xa mp le 5 . 2 & 5 . 33   / / C y cl ot ro n , c a l c u l a t i o n o f m ag ne ti c i n du c ti o n ,maximum en er gy

    4

    5   / / g i v e n v a l u e s6   f = 1 2 * ( 1 0 ^ 6 ) ; / / o s c i l l a t o r f r e q u e n c y i n H e r t z7   r = . 5 3 ; // r a d i u s o f t he d ee i n me t r e8   q = 1 . 6 * 1 0 ^ - 1 9 ; // D e ut er on c h a rg e i n C9   m = 3 . 3 4 * 1 0 ^ - 2 7 ; // mass o f d e ut er o n i n kg

    10   // c a l c u l a t i o n11   B = 2 * % p i * f * m / q ; //

    12   disp (B , ’ m a gn et i c i n d u c t i o n ( i n T e sl a ) i s : ’ ) ;13   E = B ^ 2 * q ^ 2 * r ^ 2 / ( 2 * m ) ;

    14   disp (E , ’ maximum e n e r g y t o w hi ch d e u t e r o n s c an b ea c c e l e r a t e d ( i n J ) i s ’ )

    15   E 1 = E * 6 . 2 4 * 1 0 ^ 1 8 / 1 0 ^ 6 ; / / c o n v e r s i o n o f e n er g y i n t o MeV16   disp ( E 1 , ’ maximum e n e r g y t o w hi ch d e u t e r o n s c an b e

    a c c e l e r a t e d ( i n MeV) i s ’ ) ;

    Scilab code Exa 5.4   calculation of linear separation of lines formed onphotographic plates

    1   clc ; clear ;

    2   / / E xa mp le 5 . 43   / /Mass s pe ct ro gr ap h , c a l c u l a t i o n o f l i n e a r

    s e p a r at i o n o f l i n e s fo rmed o n p h ot og r ap hi c p l a t e s4

    5   / / g i v e n v a l u e s6   E = 8 * 1 0 ^ 4 ; // e l e c t r i c f i e l d i n V/m

    7   B = . 5 5 / / m a g n et i c i n d u c t i o n i n Wb/m∗28   q = 1 . 6 * 1 0 ^ - 1 9 ; // c ha r ge o f i o n s9   m 1 = 2 0 * 1 . 6 7 * 1 0 ^ - 2 7 ; // a t o mi c mass o f an i s o t o p e o f  

    neon10   m 2 = 2 2 * 1 . 6 7 * 1 0 ^ - 2 7 ; // a t o mi c m ass o f o t h e r i s o t o p e o f  

    15

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    17/116

    neon

    11   // c a l c u l a t i o n12   x = 2 * E * ( m 2 - m 1 ) / ( q * B ^ 2 ) ; //13   disp (x , ’ s e p a r a t i o n o f l i n e s ( i n me t r e ) i s : ’ )

    16

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    18/116

    Chapter 6

    Properties of Light

    Scilab code Exa 6.1   Optical path calculation

    1   clc ; clear ;

    2   / / E xa mp le 6 . 13   // O p t ic a l p ath c a l c u l a t i o n4

    5   / / g i v e n v a l u e s6   n = 1 . 3 3 ; // r e f r a c t i v e i n de x o f medium

    7   x = . 7 5 ; / / g e o m e t r i c a l p at h i n m i cr o me tr e8   // c a l c u l a t i o n9   y = x * n ; //

    10   disp (y , ’ o p t i c a l p at h ( i n m ic ro me tr e ) i s : ’ )

    Scilab code Exa 6.2   Coherence length calculation

    1   clc ; clear ;

    2   / / E xa mp le 6 . 23   // C o he re nc e l e n g t h c a l c u l a t i o n4

    5   / / g i v e n v a l u e s

    17

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    19/116

    6   l = 1 * 1 0 ^ - 1 4 ; // l i n e w id th i n m et re

    7   x = 1 0 . 6 * 1 0 ^ - 6 ; / /IR e m i s s i o n w a ve l en g th i n m et re8   // c a l c u l a t i o n9   y = x ^ 2 / l ; //

    10   disp (y , ’ c o h e r e n c e l e n g t h ( i n m et re ) i s : ’ )

    18

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    20/116

    Chapter 7

    Interference and Diffraction

    Scilab code Exa 7.1  plane parallel thin film

    1   clc ; clear ;

    2   / / E xa mp le 7 . 13   / / p la ne p a r a l l e l t hi n f i l m4

    5   / / g i v e n v a l u e s6   x = 5 8 9 0 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m etr e

    7   n = 1 . 5 ; // r e f r a c t i v e i nd ex8   r = 6 0 * % p i / 1 8 0 ; // a ng l e o f r e f r a c t i o n i n d eg r e e9   // c a l c u l a t i o n

    10   t = x / ( 2 * n * cos ( r ) ) ;

    11   disp ( t * 1 0 ^ 6 , ’ t h i c k n e s s o f p l a t e ( i n m ic ro me tr e ) i s : ’) ;

    Scilab code Exa 7.2  wedge shaped thin film

    1   clc ; clear ;

    2   / / E xa mp le 7 . 23   / / wedge s ha pe d t h i n f i l m

    19

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    21/116

    4

    5   / / g i v e n v a l u e s6   x = 5 8 9 3 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m etr e7   n = 1 . 5 ; // r e f r a c t i v e i nd ex8   y = . 1 * 1 0 ^ - 3 ; // f r i n g e s p a c in g9   // c a l c u l a t i o n

    10   z = x / ( 2 * n * y ) ; / / a n g l e o f wed ge11   a l p h a = z * 1 8 0 / % p i ; // c o n ve r si o n o f r ad i an i n t o d e g r e e12   disp ( a l p h a ,  ’ a n g l e o f wedg e ( i n d e g r e e ) i s : ’ ) ;

    Scilab code Exa 7.3   Newtons ring experiment

    1   clc ; clear ;

    2   / / E xa mp le 7 . 33   / / Newto n ’ s r i n g e x p e r i m e n t−   c a l c u l a t i o n o f  

    r e f r a c t i v e i nd ex4

    5   / / g i v e n v a l u e s6   D 1 = 1 . 5 ; // d i am et re ( i n cm ) o f t en t h d ar k r i n g i n a i r7   D 2 = 1 . 2 7 ; / / d i a me t r e ( i n cm ) o f t e n th d ar k r i n g i n

    l i q u i d8

    9

    10   // c a l c u l a t i o n11   n = D 1 ^ 2 / D 2 ^ 2 ;

    12   disp (n , ’ r e f r a c t i v e i n d e x o f l i q u i d i s ’ ) ;

    Scilab code Exa 7.4   nonreflecting film

    1   clc ; clear ;

    2   / / E xa mp le 7 . 43   // n o n r e f l e c t i n g f i l m4

    20

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    22/116

    5   / / g i v e n v a l u e s

    6   l = 5 5 0 0 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t7   n 1 = 1 . 3 3 ; // r e f r a c t i v e i nd ex o f w a te r8   n 2 = 1 . 5 2 ; // r e f r a c t i v e i nd ex o f g l a s s window pane9   x = sqrt ( n 1 ) ; // t o c h e c k i f i t i s n o n r e f l e c t i n g

    10

    11   // c a l c u l a t i o n12   t = l / ( 4 * n 1 ) ; // t h i c k n e s s o f w at er f i l m r e q u i r e d13   disp ( t * 1 0 ^ 6 , ’ minimum t h i c k n e s s o f f i l m ( i n m et re ) i s

    ’ ) ;

    21

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    23/116

    Chapter 8

    Polarization

    Scilab code Exa 8.2  Polarizer

    1   clc ; clear ;

    2   / / E xa mp le 8 . 23   // P o l a r i z e r , c a l c u l a t i o n o f a n gl e4

    5   / / g i v e n v a l u e s6   I o = 1 ; // i n t e n s i t y o f p o l a r i s e d l i g h t

    7   I 1 = I o / 2 ; // i n t e n s i t y o f beam p o l a r i s e d by f i r s t byf i r s t p o l a r i s e r

    8   I 2 = I o / 3 ; // i n t e n s i t y o f l i g h t p o l a r i s e d by s ec o ndp o l a r i s e r

    9

    10

    11   // c a l c u l a t i o n12   a = acos ( sqrt ( I 2 / I 1 ) ) ;

    13   a l p h a = a * 1 8 0 / % p i ; // c o n ve r si o n o f a n gl e i n t o d e g r ee14   disp ( a l p h a ,  ’ a ng l e be t we en c h a r a c t e r i s t i c d i r e c t i o n s

    ( i n d e gr e e ) i s ’ ) ;

    Scilab code Exa 8.3   calculation of birefringence

    22

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    24/116

    1   clc ; clear ;

    2   / / E xa mp le 8 . 33   // c a l c u l a t i o n o f b i r e f r i n g e n c e4

    5   / / g i v e n v a l u e s6

    7   l = 6 * 1 0 ^ - 7 ; // w av el en gt h o f l i g h t i n m et re8   d = 3 * 1 0 ^ - 5 ; // t h i c k n e ss o f c r y s t a l9

    10

    11   // c a l c u l a t i o n12   x = l / ( 4 * d ) ;

    13   disp (x , ’ t h e b i r e f r i n g a n c e o f t h e c r y s t a l i s ’ ) ;

    23

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    25/116

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    26/116

    1   clc ; clear ;

    2   / / E x am pl e 1 1 . 23   / / c a l c u l a t i o n o f a v e r a g e a b s o r p t i o n c o e f f i c i e n t4

    5   / / g i v e n v a l u e s6

    7   V = 1 0 * 8 * 6 ; // v olume o f h a l l i n mˆ38   t = 1 . 5 ; // r e v e r b e r a t i o n t im e o f empty h a l l i n s e c9   A = 2 0 ; // a r e a o f c u r t a i n c l o t h i n mˆ2

    10   t 1 = 1 ; // new r e v e r b e r a t i o n t im e i n s e c11

    12   // c a l c u l a t i o n

    13   a 1 = . 1 6 1 * V / t ; // t o t a l a b s or p t i o n o f empty h a l l14   a 2 = . 1 6 1 * V / t 1 ; // t o t a l a b so r p t i o n a f t e r a c u r t a i n

    c l o t h i s s us pe nd ed15

    16   k = ( a 2 - a 1 ) / ( 2 * 2 0 ) ;

    17   disp (k ,  ’ t h e a v e r a g e a b s o r p t i o n c o e f f i c i e n t i s ’ ) ;

    Scilab code Exa 11.3   calculation of average absorption coefficient and area

    1   clc ; clear ;

    2   / / E x am pl e 1 1 . 33   / / c a l c u l a t i o n o f a v e r a g e a b s o r p t i o n c o e f f i c i e n t and

    a r e a4

    5   / / g i v e n v a l u e s6

    7   V = 2 0 * 1 5 * 1 0 ; // v olume o f h a l l i n mˆ38   t = 3 . 5 ; // r e v e r b e r a t i o n t im e o f empty h a l l i n s e c

    9   t 1 = 2 . 5 ; // r e du c ed r e v e r b e r a t i o n t im e10   k 2 = . 5 ; / / a b s o r p t i o n c o e f f i c i e n t o f c u r t a i n c l o t h11   // c a l c u l a t i o n12   a 1 = . 1 6 1 * V / t ; // t o t a l a b s or p t i o n o f empty h a l l13   k 1 = a 1 / ( 2 * ( 2 0 * 1 5 + 1 5 * 1 0 + 2 0 * 1 0 ) ) ;

    25

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    27/116

    14   disp ( k 1 ,  ’ t h e a v e r a g e a b s o r p t i o n c o e f f i c i e n t i s ’ ) ;

    15   a 2 = . 1 6 1 * V / t 1 ; // t o t a l a b s or p t i o n when w a ll i s c ov er edw it h c u r t a i n16   a = t 1 * ( a 2 - a 1 ) / ( t 1 * k 2 ) ;

    17   disp (a , ’ a re a o f w a ll t o be c ov er ed w i th c u r t a i n ( i n mˆ 2 ) i s : ’ )

    26

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    28/116

    Chapter 12

    Ultrasonics

    Scilab code Exa 12.1   calculation of natural frequency

    1   clc ; clear ;

    2   / / E x am pl e 1 2 . 13   // c a l c u l a t i o n o f n a t u r a l f re qu e nc y , m a g n e t o s t r i c t i o n4

    5   / / g i v e n v a l u e s6

    7   l = 4 0 * 1 0 ^ - 3 ; // l e ng t h o f p ur e i r o n r od8   d = 7 . 2 5 * 1 0 ^ 3 ; // d e n s i t y o f i r o n i n kg /mˆ39   Y = 1 1 5 * 1 0 ^ 9 ; //Young ’ s modulus in N/mˆ2

    10

    11   // c a l c u l a t i o n12   f = ( 1 * sqrt ( Y / d ) ) / ( 2 * l ) ;

    13   disp ( f * 1 0 ^ - 3 ,  ’ t h e n a t u r a l f r e q u e n cy ( i n kHz ) i s ’ ) ;

    Scilab code Exa 12.2   calculation of natural frequency

    1   clc ; clear ;

    2   / / E x am pl e 1 2 . 2

    27

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    29/116

    3   / / c a l c u l a t i o n o f n a t ur a l f r eq u en c y

    45   / / g i v e n v a l u e s6

    7   t = 5 . 5 * 1 0 ^ - 3 ; // t h i c k n e s s i n m8   d = 2 . 6 5 * 1 0 ^ 3 ; / / d e n s i t y i n k g /mˆ 39   Y = 8 * 1 0 ^ 1 0 ; //Young ’ s modulus in N/mˆ2

    10

    11

    12   // c a l c u l a t i o n13   f =( sqrt ( Y / d ) ) / ( 2 * t ) ; // f r e qu e n cy i n h e r t z14   disp ( f * 1 0 ^ - 3 ,  ’ t h e n a t u r a l f r e q u e n cy ( i n kHz ) i s ’ ) ;

    Scilab code Exa 12.3  calculation of depth and wavelength

    1   clc ; clear ;

    2   / / E x am pl e 1 2 . 33   // c a l c u l a t i o n o f d ep th and w av el en gt h4

    5   / / g i v e n v a l u e s

    67   f = . 0 7 * 1 0 ^ 6 ; / / f r e q u e n c y i n Hz8   t = . 6 5 ; // t im e t a ke n f o r p u l s e t o r e t u r n9   v = 1 7 0 0 ; // v e l o c i t y o f sound i n s e a w at er i n m/ s

    10

    11   // c a l c u l a t i o n12   d = v * t / 2 ; //13   disp (d , ’ t h e d ep th o f s e a ( i n m) i s ’ ) ;14   l = v / f ; // w av el en gh t o f p u l s e i n m15   disp ( l * 1 0 ^ 2 , ’ w a ve l en g th o f p u l s e ( i n cm ) i s ’ ) ;

    28

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    30/116

    Chapter 13

    Atomic Physics

    Scilab code Exa 13.1  calculation of rate of flow of photons

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 13   / / c a l c u l a t i o n o f r a t e o f f lo w o f p h ot o ns4

    5   / / g i v e n v a l u e s6

    7   l = 5 8 9 3 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m8   P = 4 0 ; / / po wer o f s od iu m lamp i n W9   d = 1 0 ; // d i s t a n c e from t he s o ur c e i n m

    10   s = 4 * % p i * d ^ 2 ; // s u r f a c e a r e a o f r a d i us i n mˆ211   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s12   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s13   // c a l c u l a t i o n14   E = P * 1 ; //15   disp (E , ’ t o t a l e n er g y e m i tt e d p e r s e co n d ( i n J o u l e ) i s ’

    ) ;

    16   n = E * l / ( c * h ) ; // t o t a l no o f p ho to ns17   R = n / s ;18   disp (R , ’ r a t e o f f l o w o f p ho to ns p er u n it a re a ( i n /m

    ˆ 2) i s ’ )

    29

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    31/116

    Scilab code Exa 13.2   calculation of threshold wavelength and stoppingpotential

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 23   // c a l c u l a t i o n o f t h r e s h o l d w av el en gt h and s t op p in g

    p o t e n t i a l4

    5   / / g i v e n v a l u e s6

    7   l = 2 0 0 0 ; // w av el en gt h o f l i g h t i n a rm st ro ng8   e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e l e c t r o n9   W = 4 . 2 ; // work f u n c t i o n i n eV

    10   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s11   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s12   // c a l c u l a t i o n13   x = 1 2 4 0 0 / ( W ) ; // h∗ c = 12400 eV14   disp (x ,  ’ t h r e s h o l d w a v e l e n g t h ( i n A rm s tr on g ) i s ’ ) ;15   V s = ( 1 2 4 0 0 / l - W ) ; //

    16   disp ( V s , ’ s t o p p i n g p o t e n t i a l ( i n VOLTS ) i s ’ )

    Scilab code Exa 13.3  calculation of momentum of Xray photon undergo-ing scattering

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 33   / / c a l c u l a t i o n o f momentum o f X−r ay p ho to n u n d er g o in g

    s c a t t e r i n g4

    5   / / g i v e n v a l u e s6

    7   a l p h a = 6 0 * % p i / 1 8 0 ; // s c a t t e r i n g a n gl e i n r ad i an

    30

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    32/116

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    33/116

    a r m s t r o n g ) i s ’ ) ;

    18   x 1 = x * 1 0 ^ 1 0 ; // c o n v e r ti n g i n c i d e n t w av el en gt h i n t oa r m s t r o n g19   K E = h c * e * ( ( 1 / x 1 ) - ( 1 / y ) ) ; // k i n e t i c e ne rg y i n J ou l e20   disp ( K E , ’ k i n e t i c e n e r g y i n j o u l e i s ’ ) ;21   v = sqrt ( 2 * K E / m ) ;

    22   disp (v , ’ v e l o c i t y o f r e c o i l e d e l e c t r o n ( i n m/ s ̂ 2) i s ’ );

    Scilab code Exa 13.5  calculation of wavelength of light emitted

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 53   / / c a l c u l a t i o n o f w av el en gt h o f l i g h t e mi tt ed4

    5   / / g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e l e c t r o n e7   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t8   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s9   E 1 = 5 . 3 6 ; / / e n er g y o f f i r s t s t a t e i n eV

    10   E 2 = 3 . 4 5 ; // e ne rg y o f s ec on d s t a t e i n eV11

    12

    13   // 1 ) c a l c u l a t i o n14

    15   l = h * c * 1 0 ^ 1 0 / ( ( E 1 - E 2 ) * e ) ;

    16   disp (l , ’ w a ve l en g th o f s c a t t e r e d l i g h t ( i n A rm st ro ng )i s ’ ) ;

    Scilab code Exa 13.6  calculation of de Broglie wavelength

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 6

    32

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    34/116

    3   // c a l c u l a t i o n o f de B r o g l i e w av el en gt h

    45   / / 1 ) g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ;

    7   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s8   V = 1 8 2 ; // p o t e n t i a l d i f f e r e n c e i n v o l t s9   m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg

    10

    11

    12   // 1 ) c a l c u l a t i o n13

    14   l = h / sqrt ( 2 * e * m * V ) ;

    15   disp (l , ’ d e B r o g l i e w a v e l e n g t h ( i n m) i s ’ ) ;16

    17

    18   / / 2 ) g i v e n v a l u e s19   m 1 = 1 ; // mass o f o b j e ct i n kg20   v = 1 ; // v e l o c i t y o f o b j e ct i n m/ s21   l 1 = h / ( m 1 * v ) ;

    22   disp ( l 1 , ’ d e br o g ie w av el en gt h o f o b j e c t i n m) i s ’ ) ;

    Scilab code Exa 13.7   calculation of uncertainty in position

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 73   / / c a l c u l a t i o n o f u n ce r ta i nt y i n p o s i t i o n4

    5   / / 1 ) g i v e n v a l u e s6

    7   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s

    8   v 1 = 2 2 0 ; // v e l o c i t y o f e i n m/ s9   m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg10   A = 0 . 0 6 5 / 1 0 0 ; / / a c c u r a c y11

    12

    33

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    35/116

    13   // 1 ) c a l c u l a t i o n

    14   v 2 = v 1 * A ; // u n c e r t a i n t y i n s pe ed15   x 1 = h / ( 2 * % p i * m * v 2 ) ; //16   disp ( x 1 , ’ u n c er t a i n t y i n p o s i t i o n o f e ( i n m) i s ’ ) ;17

    18

    19   / / 2 ) g i v e n v a l u e s20   m 1 = 1 5 0 / 1 0 0 0 ; // mass o f o b j e c t i n kg21   x 2 = h / ( 2 * % p i * m 1 * v 2 ) ;

    22   disp ( x 2 , ’ u n c er t a i n t y i n p o s i t i o n o f b a s e b a l l ( i n m)i s ’ ) ;

    Scilab code Exa 13.8  Energy states of an electron and grain of dust

    1   clc ; clear ;

    2   / / E x am pl e 1 3 . 83   / / c a l c u l a t i o n o f e n er gy s t a t e s o f an e l e c t r o n and

    g r a i n o f d us t and c om pa ri ng4

    5   / / 1 ) g i v e n v a l u e s

    6   L 1 = 1 0 * 1 0 ^ - 1 0 ; // w i dt h o f p o t e n t i a l w e l l i n whi ch e i sc o n f i n e d

    7   L 2 = . 1 * 1 0 ^ - 3 ; // w i d t h o f p o t e n t i a l w e l l i n which g r a i no f d u s t i s c on f i n e d

    8   h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck ’ s c o n s t a n t i n J s9   v 1 = 1 0 ^ 6 ; // v e l o c i t y o f g a ri n o f d u st i n m/ s

    10   m 1 = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg11   m 2 = 1 0 ^ - 9 ; // mass o f g r a i n i n kg12

    13   // 1 ) c a l c u l a t i o n

    1415   E e 1 = 1 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // f i r s t e n er g y s t a t e o f  e l e c t r o n

    16   disp ( E e 1 , ’ f i r s t e ne rg y s t a t e o f e i s ’ ) ;17   E e 2 = 2 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // s ec on d e ne rg y s t a t e o f  

    34

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    36/116

    e l e c t r o n

    18   disp ( E e 2 , ’ s e c o n d e n er g y s t a t e o f e i s ’ ) ;19   E e 3 = 3 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // t h i r d e ne rg y s t a t e o f  e l e c t r o n

    20   disp ( E e 3 , ’ t hi r d e n e r g y s t a t e o f e i s ’ ) ;21   disp ( ’ E ne rg y l e v e l s o f an e l e c t r o n i n an i n f i n i t e

    p o t e n t i a l w e l l a r e q u an t is e d a nd t he e ne rg yd i f f e r e n c e be t we en t h e s u c c e s s i v e l e v e l s i s q u i t e

    l a r g e . E l e c tr o n c an no t jump fro m o ne l e v e l t oo t h e r on s t r e n g t h o f t h er m al e n er g y . Henceq u a n t i z a t i o n o f e n e r g y p l a y s a s i g n i f i c a n t r o l ei n c as e o f e l e c t r o n ’ )

    2223   E g 1 = 1 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // f i r s t e n er g y s t a t e o f  

    g r a i n o f d u st24   disp ( E g 1 , ’ f i r s t e ne rg y s t a t e o f g r a i n o f d us t i s ’ ) ;25   E g 2 = 2 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // s ec on d e ne rg y s t a t e o f  

    g r a i n o f d u st26   disp ( E g 2 , ’ s e c o n d e n er g y s t a t e o f g r a i n o f d u s t i s ’ )

    ;

    27   E g 3 = 3 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // t h i r d e ne rg y s t a t e o f  g r a i n o f d u st

    28   disp ( E g 3 , ’ t hi r d e n e r g y s t a t e o f g r a in o f d u s t i s ’

    )

    ;

    29   K E = m 2 * v 1 ^ 2 / 2 ; // k i n e t i c e ne rg y o f g r a in o f d us t ;30   disp ( K E , ’ k i n e t i c e n er g y o f g r a i n o f d u s t i s ’ ) ;31   disp ( ’ The e n e r g y l e v e l s o f a g r a i n o f d u s t a re s o

    n ea r t o e a c h o t h er t ha t t h ey c o n s t i t u t e aco nt in uum . These e ne rg y l e v e l s a r e f a r s m a l l e rt han t he k i n e t i c e ne rg y p o ss e ss e d b y t h e g r ai n o f  

    d us t . I t can move t hr ou gh a l l t h es e e ne rg y l e v e l sw i th o ut an e x t e r n a l s u p pl y o f e n er g y . Thus

    q u a n t i z a t i o n o f e n e r g y l e v e l s i s n o t a t a l l

    s i g n i f i c a n t i n c as e o f m ac ro sc op ic b o d i e s . ’ )

    35

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    37/116

    Chapter 14

    Lasers

    Scilab code Exa 14.1  calculation of intensity of laser beam

    1   clc ; clear ;

    2   / / E x am pl e 1 4 . 13   / / c a l c u l a t i o n o f i n t e n s i t y o f l a s e r beam4

    5   / / g i v e n v a l u e s6   P = 1 0 * 1 0 ^ - 3 ; / / P ow er i n Watt

    7   d = 1 . 3 * 1 0 ^ - 3 ; / / d i a m e t r e i n m8   A = % p i * d ^ 2 / 4 ; / / a r e a i n mˆ 29

    10

    11   // c a l c u l a t i o n12   I = P / A ;

    13   disp (I , ’ i n t e n s i t y ( i n W/mˆ 2 ) i s ’ ) ;

    Scilab code Exa 14.2  calculation of intensity of laser beam

    1   clc ; clear ;

    2   / / E x am pl e 1 4 . 2

    36

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    38/116

    3   / / c a l c u l a t i o n o f i n t e n s i t y o f l a s e r beam

    45   / / g i v e n v a l u e s6   P = 1 * 1 0 ^ - 3 ; / / P ow er i n Watt7   l = 6 3 2 8 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m8   A = l ^ 2 ; / / a r e a i n mˆ 29

    10

    11   // c a l c u l a t i o n12   I = P / A ;

    13   disp (I , ’ i n t e n s i t y ( i n W/mˆ 2 ) i s ’ ) ;

    Scilab code Exa 14.3  calculation of coherence length bandwidth and linewidth

    1   clc ; clear ;

    2   / / E x am pl e 1 4 . 33   // c a l c u l a t i o n o f c o h er e nc e l en g th , ba nd wid th and l i n e

    w i dt h4

    5   / / g i v e n v a l u e s6   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7   t = . 1 * 1 0 ^ - 9 ; // t i m e d i v i s i o n i n s8   l = 6 2 3 8 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m9

    10   // c a l c u l a t i o n11   x = c * t ;

    12   disp (x , ’ c o h er e n ce l e n g th ( i n m) i s ’ ) ;13   d = 1 / t ;

    14   disp (d , ’ b an dw id th ( i n Hz ) i s ’ ) ;

    15   y = l ^ 2 * d / c ; // l i n e wi dt h i n m16   disp ( y * 1 0 ^ 1 0 , ’ l i n e w id th ( i n a r ms tr o ng ) i s ’ ) ;

    37

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    39/116

    Scilab code Exa 14.4  calculation of frequency difference

    1   clc ; clear ;

    2   / / E x am pl e 1 4 . 43   // c a l c u l a t i o n o f f re q u e n c y d i f f e r e n c e4

    5   / / g i v e n v a l u e s6   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7   l = . 5 ; // d i s t a n c e i n m8

    9   // c a l c u l a t i o n10   f = c / ( 2 * l ) ; / / i n h e r t z

    11   disp ( f / 1 0 ^ 6 , ’ f r e qu e n cy d i f f e r e n c e ( i n MHz) i s ’ ) ;

    Scilab code Exa 14.5  calculation of frequency difference

    1   clc ; clear ;

    2   / / E x am pl e 1 4 . 53   / / c a l c u l a t i o n o f no o f c a v i t y modes4

    5   / / g i v e n v a l u e s6   c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7   n = 1 . 7 5 ; // r e f r a c t i v e i nd ex8   l = 2 * 1 0 ^ - 2 ; // l e ng t h o f ruby r o d i n m9   x = 6 9 4 3 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m

    10   y = 5 . 3 * 1 0 ^ - 1 0 ; // s p re ad o f w av el en gt h i n m11

    12   // c a l c u l a t i o n13   d = c / n / l ;

    14   f = c * y / x ^ 2 ;

    15   m = f / d ;16   disp (m , ’ no o f modes i s ’ ) ;

    38

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    40/116

    Chapter 15

    Atomic nucleus and nuclear

    energy

    Scilab code Exa 15.1  calculation of binding energy per nucleon

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 13   // c a l c u l a t i o n o f b i nd i ng e ne rg y p er n uc le on4

    5   / / g i v e n v a l u e s6   M p = 1 . 0 0 8 1 4 ; / / mass o f p r ot o n i n amu7   M n = 1 . 0 0 8 6 6 5 ; // m ass o f n u c le o n i n amu8   M = 7 . 0 1 8 2 2 ; / / mass o f L it hi um n u c l e u s i n amu9   a m u = 9 3 1 ; //amu i n MeV

    10   n = 7 - 3 ; // no o f n e u tr on s i n l i t hi u m n u cl e u s11

    12   // c a l c u l a t i o n13   E T = ( 3 * M p + 4 * M n - M ) * a m u ; / / t o t a l b i n d i n g e n er g y i n MeV14   E = E T / 7 ; / / 7 1 s t h e ma ss number

    15   disp (E , ’ B i nd i ng e n er g y p er n u c le o n i n MeV i s ’ ) ;

    39

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    41/116

    Scilab code Exa 15.2   calculation of energy

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 23   // c a l c u l a t i o n o f e ne rg y4

    5   / / g i v e n v a l u e s6   M 1 = 1 5 . 0 0 0 0 1 ; / / a t o m ic m as s o f N15 i n amu7   M 2 = 1 5 . 0 0 3 0 ; / / a t o m ic m as s o f O15 i n amu8   M 3 = 1 5 . 9 9 4 9 ; / / a t o m ic m as s o f O16 i n amu9   a m u = 9 3 1 . 4 ; //amu in MeV

    10   m p = 1 . 0 0 7 2 7 6 6 ; / / r e s t m a s s o f p r ot o n

    11   m n = 1 . 0 0 8 6 6 5 4 ; / / r e s t m a s s o f n e ut r on12

    13   // c a l c u l a t i o n14   Q 1 = ( M 3 - m p - M 1 ) * a m u ;

    15   disp ( Q 1 , ’ e n er g y r e q u i r e d t o rem ov e o ne p r ot o n fr omO16 i s ’ ) ;

    16   Q 2 = ( M 3 - m n - M 2 ) * a m u ;

    17   disp ( Q 2 , ’ e n er g y r e q u i r e d t o rem ov e o ne n e ut r on f ro mO16 i s ’ ) ;

    Scilab code Exa 15.3  calculation of binding energy

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 33   // c a l c u l a t i o n o f b i nd i ng e ne rg y4

    5   / / g i v e n v a l u e s6   M p = 1 . 0 0 7 5 8 ; / / mass o f p r ot o n i n amu

    7   M n = 1 . 0 0 8 9 7 ; / / mass o f n u c le o n i n amu8   M = 4 . 0 0 2 8 ; // m ass o f H el iu m n u c l e u s i n amu9   a m u = 9 3 1 . 4 ; //amu in MeV

    10

    11   // c a l c u l a t i o n

    40

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    42/116

    12   E 1 = ( 2 * M p + 2 * M n - M ) * a m u ; // t o t a l b i n di n g e ne rg y

    13   disp ( E 1 , ’ B i n di n g e n e r g y i n MeV i s ’ ) ;14   E 2 = E 1 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ;15   disp ( E 2 , ’ b i nd i n g e ne rg y i n J ou l e i s ’ ) ;

    Scilab code Exa 15.4  calculation of binding energy

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 4

    3   // c a l c u l a t i o n o f amount o f u nch ang ed m a t e r i a l45   / / g i v e n v a l u e s6   T = 2 ; // h a l f l i f e i n y e a rs7   k = . 6 9 3 1 / T ; / / d ec ay c o n s t a n t8   M = 4 . 0 0 2 8 ; // m ass o f H el iu m n u c l e u s i n amu9   a m u = 9 3 1 . 4 ; //amu in MeV

    10   N o = 1 ; // i n i t i a l amount in g11

    12   // c a l c u l a t i o n13   N = N o * ( % e ^ ( - k * 2 * T ) ) ;

    14   disp (N , ’ a mount o f m a t e r i a l r e ma i n i ng u nc ha ng ed a f t e rf o u r y e a r s ( i n gram ) i s ’ ) ;

    Scilab code Exa 15.5   calculation of halflife

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 53   / / c a l c u l a t i o n o f amount o f h a l f l i f e

    45   / / g i v e n v a l u e s6   t = 5 ; // t im e p e ri o d i n y e a r s7   a m u = 9 3 1 . 4 ; //amu in MeV8   N o = 5 ; // i n i t i a l amount in g

    41

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    43/116

    9   N = 5 - ( 1 0 . 5 * 1 0 ^ - 3 ) ; // amount p r e s e n t a f t e r 5 y e a rs

    1011

    12   // c a l c u l a t i o n13   k = log ( N / N o ) / t ; // d e ca y c o n s t a n t14   T = - . 6 9 3 / k ;

    15   disp (T ,  ’ h a l f l i f e i n y e a r s i s ’ ) ;

    Scilab code Exa 15.6   calculation of activity

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 63   / / c a l c u l a t i o n o f a c t i v i t y4

    5   / / g i v e n v a l u e s6   t = 2 8 ; // h a l f l i f e i n y e a r s7   m = 1 0 ^ - 3 ; / / ma ss o f s a mp l e8   M = 9 0 ; / / a to m ic mass o f s t r o n ti u m9   N A = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o ’ s numbe r

    10

    1112   // c a l c u l a t i o n13   n = m * N A / M ; // no o f n u c l e i i n 1 mg s am pl e14   k = . 6 9 3 / ( t * 3 6 5 * 2 4 * 6 0 * 6 0 ) ; // d e ca y c o n s t a n t15   A = k * n ;

    16   disp (A , ’ a c t i v i t y o f s am pl e ( i n d i s i n t e g r a t i o n s p ers e co n d ) i s ’ ) ;

    Scilab code Exa 15.7  calculation of age of mineral

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 73   // c a l c u l a t i o n o f a ge o f m i n er al

    42

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    44/116

    4

    5   / / g i v e n v a l u e s6   t = 4 . 5 * 1 0 ^ 9 ; // h a l f l i f e i n y e a rs7   M 1 = 2 3 8 ; // a t o mi c mass o f Uranium i n g8   m = . 0 9 3 ; // mass o f l e a d i n 1 g o f uranium i n g9   N A = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o ’ s numbe r

    10   M 2 = 2 0 6 ; // a t o mi c m ass o f l e ad i n g11

    12   // c a l c u l a t i o n13   n = N A / M 1 ; // no o f n u c l e i i n 1 g o f uranium sa mp le14   n 1 = m * N A / M 2 ; // no o f n u c l e i i n m mass o f l e a d15   c = n 1 / n ;

    16   k = . 6 9 3 / t ; // d e ca y c o n s t a n t17   T = ( 1 / k ) * log ( 1 + c ) ;

    18   disp (T , ’ a g e o f m in er al i n y ea r s i s ’ ) ;

    Scilab code Exa 15.8  calculation of age of wooden piece

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 8

    3   // c a l c u l a t i o n o f a ge o f wooden p i e c e4

    5   / / g i v e n v a l u e s6   t = 5 7 3 0 ; // h a l f l i f e o f C14 i n y e a rs7   M 1 = 5 0 ; // mass o f wooden p i e c e i n g8   A 1 = 3 2 0 ; // a c t i v i t y o f wooden p i e c e ( d i s i n t e g r a t i o n

    p er m in ut e p er g )9   A 2 = 1 2 ; // a c t i v i t y o f l i v i n g t r e e

    10

    11   // c a l c u l a t i o n

    12   k = . 6 9 3 / t ; // d e ca y c o n s t a n t13   A = A 1 / M 1 ; // a c t i v i t y a f t e r d ea th14

    15   T = ( 1 / k ) * log ( A 2 / A ) ;

    16   disp (T , ’ a g e o f m in er al i n y ea r s i s ’ ) ;

    43

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    45/116

    Scilab code Exa 15.9   calculation of energy released

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 93   // c a l c u l a t i o n o f e n er gy r e l e a s e d4

    5   / / g i v e n v a l u e s6   M 1 = 1 0 . 0 1 6 1 2 5 ; / / a to m ic mass o f Boron i n amu

    7   M 2 = 1 3 . 0 0 7 4 4 0 ; / / a to m ic mass o f C13 i n amu8   M 3 = 4 . 0 0 3 8 7 4 ; / / a t o m ic m as s o f H el iu m i n amu9   m p = 1 . 0 0 8 1 4 6 ; // m ass o f p r ot o n i n amu

    10   a m u = 9 3 1 ; //amu i n MeV11

    12   // c a l c u l a t i o n13   Q = ( M 1 + M 3 - ( M 2 + m p ) ) * a m u ; // t o t a l b i n di n g e ne rg y i n M14   disp (Q , ’ B i nd i ng e n er g y p er n u c le o n i n MeV i s ’ ) ;

    Scilab code Exa 15.10   calculation of crossection

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 03   / / c a l c u l a t i o n o f c r o s s s e c t i o n4

    5   / / g i v e n v a l u e s6   t = . 0 1 * 1 0 ^ - 3 ; // t h i c k n e s s i n m7   n = 1 0 ^ 1 3 ; // no o f p r ot o ns bo mb ard ing t a r g e t p er s8   N A = 6 . 0 2 * 1 0 ^ 2 6 ;

    // av ogadr o ’ s numbe r9   M = 7 ; // a t o mi c mass o f l i t hi u m i n kg10   d = 5 0 0 ; // d e n s i t y o f l i t h i u m i n kg /mˆ311   n 0 = 1 0 ^ 8 ; // no o f n e ut r on s p ro du ce d p er s12   // c a l c u l a t i o n

    44

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    46/116

    13   n 1 = d * N A / M ; // no o f t a r g e t n u c l e i p er u n it volume

    14   n 2 = n 1 * t ; // no o f t a r ge t n u c l e i p er a re a15   A = n 0 / ( n * n 2 ) ;16   disp (A , ’ c r o s s s e c t i o n ( i n mˆ 2) f o r t h i s r e a c t i o n i s ’ ) ;

    Scilab code Exa 15.11  calculation of final energy

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 1

    3   / / c a l c u l a t i o n o f f i n a l e ne rg y45   / / g i v e n v a l u e s6   B = . 4 ; //max mag net ic f i e l d in Wb/mˆ27   c = 3 * 1 0 ^ 8 ;

    8   e = 1 . 6 * 1 0 ^ - 1 9 ;

    9   d = 1 . 5 2 ; / / d i a m e t r e i n m10   r = d / 2 ;

    11

    12   // c a l c u l a t i o n13   E = B * e * r * c ; //E=pc , p=mv=Ber

    14   disp (E , ’ f i n a l e ne rg y o f e ( i n J ) i s ’ ) ;15   E 1 = ( E / e ) / 1 0 ^ 6 ;

    16   disp ( E 1 , ’ f i n a l e ne rg y o f e ( i n MeV) i s ’ ) ;

    Scilab code Exa 15.12  calculation of amount of fuel

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 2

    3   // c a l c u l a t i o n o f amount o f f u e l4

    5   / / g i v e n v a l u e s6   P = 1 0 0 * 1 0 ^ 6 ; // p ower r e q u i r e d by c i t y7   M = 2 3 5 ; / / a to m ic mass o f Uranium i n g

    45

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    47/116

    8   e = 2 0 / 1 0 0 ; // c o n ve r si o n e f f i c i e n c y

    9   N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r10   E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n11   t = 8 . 6 4 * 1 0 ^ 4 ; // day i n s e co n d s12

    13

    14   // c a l c u l a t i o n15   E 1 = P * t ; / / e n e r g y r e q u i r e m e n t16   m = E 1 * M / ( N A * e * E ) ; / / no o f n u c l e i N=NA∗m/M, e ne rg y

    r e l e a s e d by m kg i s N∗E , e n e r g y r e q u i r e m e n t =e∗N∗E17   disp (m , ’ amount o f f u e l ( i n kg ) r e q u i r e d i s ’ ) ;

    Scilab code Exa 15.13   calculation of power output

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 33   // c a l c u l a t i o n o f power o ut pu t4

    5   / / g i v e n v a l u e s6   M = 2 3 5 ; / / a to m ic mass o f Uranium i n kg

    7   e = 5 / 1 0 0 ; // r e a c t o r e f f i c i e n c y8   m = 2 5 / 1 0 0 0 ; / / amount o f u ra ni um co ns um ed p e r d ay i n kg9   E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n

    10   t = 8 . 6 4 * 1 0 ^ 4 ; // day i n s e co n d s11   N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r12

    13   // c a l c u l a t i o n14   n = N A * m / M ; // no o f n u c l e i i n 25 g15   E 1 = n * E ; // e n er g y p ro du ce d by n n u c l e i16   E 2 = E 1 * e ; / / e n e r g y c o n v e r t e d t o p ow er

    17   P = E 2 / t ; / / p ow er o u tp u t i n Watt18   disp ( P / 1 0 ^ 6 , ’ p ow er o u t p u t i n MW i s ’ ) ;

    46

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    48/116

    Scilab code Exa 15.14  calculation of power developed

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 43   // c a l c u l a t i o n o f power d ev e lo p ed4

    5   / / g i v e n v a l u e s6   M = 2 3 5 ; / / a to m ic mass o f Uranium i n kg7   m = 2 0 . 4 ; / / amount o f u ra ni um co ns um ed p e r d ay i n kg8   E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n9   t = 3 6 0 0 * 1 0 0 0 ; // t im e o f o p e ra t i on

    10   N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r

    1112   // c a l c u l a t i o n13   n = N A * m / M ; // no o f n u c l e i i n 2 0 . 4 kg14   E 1 = n * E ; // e n er g y p ro du ce d by n n u c l e i15   P = E 1 / t ; // in Watt16   disp ( P / 1 0 ^ 6 , ’ p o we r d e v e l o p e d i n MW i s ’ ) ;

    Scilab code Exa 15.15   calculation of amount of dueterium consumed

    1   clc ; clear ;

    2   / / E x am pl e 1 5 . 1 53   / / c a l c u l a t i o n o f amount o f d u et er i um co nsu med4

    5   / / g i v e n v a l u e s6   M 1 = 2 . 0 1 4 7 8 ; / / a t o m ic m as s o f H yd ro ge n i n amu7   M 2 = 4 . 0 0 3 8 8 ; / / a t o m ic m as s o f H el iu m i n amu8   a m u = 9 3 1 ; //amu i n MeV9   e = 3 0 / 1 0 0 ; // e f f i c i e n c y

    10   P = 5 0 * 1 0 ^ 6 ; / / o u t p u t p ow er11   N A = 6 . 0 2 6 * 1 0 ^ 2 6 ; / / a v o g a d r o n um be r12   t = 8 . 6 4 * 1 0 ^ 4 ; // s e c o n ds i n a day13

    14   // c a l c u l a t i o n

    47

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    49/116

    15   Q = ( 2 * M 1 - M 2 ) * a m u ; // e ne rg y r e l e a s e d i n a D−D r e a c t i o n

    i n MeV16   O = Q * e * 1 0 ^ 6 / 2 ; / / a c t u a l o ut p ut p e r d u et e ri u m atom i neV

    17   n = P / ( O * 1 . 6 * 1 0 ^ - 1 9 ) ; // no o f D a toms r e q u i r e d18   m = n * M 1 / N A ; // e q u i v al e n t mass o f D r e q ui r e d p er s19   X = m * t ;

    20

    21   disp (X , ’ D eu te ri um r e q u ir e m en t p e r day i n kg i s ’ ) ;

    48

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    50/116

    Chapter 16

    Structure of Solids

    Scilab code Exa 16.1   calculation of density

    1   clc ; clear ;

    2   / / E x am pl e 1 6 . 13   // c a l c u l a t i o n o f d e ns i t y4

    5   / / g i v e n v a l u e s6   a = 3 . 3 6 * 1 0 ^ - 1 0 ; / / l a t t i c e c o n s t a n t i n m

    7   M = 2 0 9 ; / / a to mi cm as s o f p ol on iu m i n kg8   N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o ’ s numbe r9   z = 1 ; / / no o f atom

    10   // c a l c u l a t i o n11   d = z * M / ( N * a ^ 3 )

    12

    13   disp (d , ’ d e n s i t y ( i n kg /mˆ 3 ) i s ’ ) ;

    Scilab code Exa 16.2  calculation of no of atoms

    1   clc ; clear ;

    2   / / E x am pl e 1 6 . 2

    49

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    51/116

    3   // c a l c u l a t i o n o f no o f atoms

    45   / / g i v e n v a l u e s6   a = 4 . 3 * 1 0 ^ - 1 0 ; // e dg e o f u n it c e l l i n m7   d = 9 6 3 ; / / d e n s i t y i n kg /mˆ 38   M = 2 3 ; / / a to mi cm as s o f s od iu m i n kg9   N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o ’ s numbe r

    10

    11   // c a l c u l a t i o n12   z = d * N * a ^ 3 / M ;

    13

    14   disp (z , ’ no o f atoms i s ’ ) ;

    Scilab code Exa 16.3   calculation of distance

    1   clc ; clear ;

    2   / / E x am pl e 1 6 . 33   // c a l c u l a t i o n o f d i s t a n c e4

    5   / / g i v e n v a l u e s

    6   z = 4 ; // no o f atoms i n f c c7   d = 2 1 8 0 ; / / d e n s i t y i n k g /mˆ 38   M = 2 3 + 3 5 . 3 ; // a to mi cm as s o f so dium c h l o r i d e i n kg9   N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o ’ s numbe r

    10

    11   // c a l c u l a t i o n12   a 1 = z * M / ( N * d ) ;

    13   a = a 1 ^ ( 1 / 3 ) ;

    14   l = a / 2 ; / / i n m15

    16   disp ( l * 1 0 ^ 1 0 , ’ d i s t a n c e b et we en a d j a ce n t c h l o r i n e ands od iu m a to ms i n a r ms t ro n g i s ’ ) ;

    50

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    52/116

    Scilab code Exa 16.4   calculation of interatomic spacing

    1   clc ; clear ;

    2   / / E x am pl e 1 6 . 43   / / c a l c u l a t i o n o f i n t e ra t o m i c s p ac i ng4

    5   / / g i v e n v a l u e s6   a l p h a = 3 0 * % p i / 1 8 0 ; // B ragg a n g l e i n d e g re e7   h = 1 ;

    8   k = 1 ;

    9   l = 1 ;

    10   m = 1 ; // o r d e r o f r e f l e c t i o n

    11   x = 1 . 7 5 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m12

    13   // c a l c u l a t i o n14   d = m * x / ( 2 * sin ( a l p h a ) ) ;

    15   a = d * sqrt ( h ^ 2 + k ^ 2 + l ^ 2 ) ; / / i n m16

    17   disp ( a * 1 0 ^ 1 0 , ’ i n t e r a t o m i c s p a ci n g i n a rm st ro ng i s ’ ) ;

    51

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    53/116

    Chapter 17

    The Band Theory of Solids

    Scilab code Exa 17.1   calculation of velocity of fraction of free electrone

    1   clc ; clear ;

    2   / / E x am pl e 1 7 . 13   // c a l c u l a t i o n o f p r o b a b i l i t y4

    5   / / g i v e n v a l u e s6   E = . 0 1 ; // e ne rg y d i f f e r e n c e i n eV

    7   k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n e8

    9   // c a l c u l a t i o n10   P = 1 / ( 1 + ( % e ^ ( E / k T ) ) ) ;

    11

    12   disp (P , ’ i n t e r a t o m i c s p a c i ng i s ’ ) ;

    Scilab code Exa 17.2  calculation of velocity of e

    1   clc ; clear ;

    2   / / E x am pl e 1 7 . 23   / / c a l c u l a t i o n o f v e l o c i t y o f e

    52

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    54/116

    4

    5   / / g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e i n C7   E = 2 . 1 * e ; // f er mi l e v e l i n J8   m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg9

    10   // c a l c u l a t i o n11   v = sqrt ( 2 * E / m ) ;

    12

    13   disp (v , ’ v e l o c i t y o f e ( i n m/ s ) ’ ) ;

    Scilab code Exa 17.3   calculation of velocity of fraction of free electrones

    1   clc ; clear ;

    2   / / E x am pl e 1 7 . 33   / / c a l c u l a t i o n o f v e l o c i t y o f f r a c t i o n o f f r e e

    e l e c t r o n s4

    5   / / g i v e n v a l u e s6   E = 5 . 5 ; // f e r m i l e v e l i n eV

    7   k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n e8

    9   // c a l c u l a t i o n10   f = 2 * k T / E ;

    11

    12   disp (f , ’ f r a c t i o n o f f r e e e l e c t r o n e \ s u pt o w id th kTon e i t h e r s i d e o f Ef i s ’ ) ;

    53

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    55/116

    Chapter 18

    Semiconductors

    Scilab code Exa 18.2   calculation of probability

    1   clc ; clear ;

    2   / / E x am pl e 1 8 . 23   // c a l c u l a t i o n o f p r o b a b i l i t y4

    5   / / g i v e n v a l u e s6   T = 3 0 0 ; / / temp i n K

    7   k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n eV8   E g = 5 . 6 ; // f o r b i d d e n g ap i n eV9

    10   // c a l c u l a t i o n11   f = 1 / ( 1 + % e ^ ( E g / ( 2 * k T ) ) ) ;

    12

    13   disp (f , ’ p r o b a b i l i t y o f an e b ei n g t h e rm a l l y prom otedt o c o nd u ct i on band i s ’ ) ;

    Scilab code Exa 18.3  calculation of fraction of e in CB

    1   clc ; clear ;

    54

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    56/116

    2   / / E x am pl e 1 8 . 3

    3   // c a l c u l a t i o n o f f r a c t i o n o f e i n CB45   / / g i v e n v a l u e s6   T = 3 0 0 ; / / temp i n K7   k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n eV8   E g 1 = . 7 2 ; / / f o r b i d d e n g ap o f g erm an ium i n eV9   E g 2 = 1 . 1 ; // f o r b i dd e n gap o f s i l i c o n i n eV

    10   E g 3 = 5 . 6 ; / / f o r b i d d e n ga p o f diamond i n eV11

    12   // c a l c u l a t i o n13   f 1 = % e ^ ( - E g 1 / ( 2 * k T ) ) ;

    14   disp ( f 1 , ’ f r a c t i o n o f e i n c on du c ti on band o f  g er ma ni um i s ’ ) ;

    15   f 2 = % e ^ ( - E g 2 / ( 2 * k T ) ) ;

    16   disp ( f 2 , ’ f r a c t i o n o f e i n c on du c ti on band o f  s i l i c o n i s ’ ) ;

    17   f 3 = % e ^ ( - E g 3 / ( 2 * k T ) ) ;

    18   disp ( f 3 , ’ f r a c t i o n o f e i n c on du c ti on band o f  diamond i s ’ ) ;

    Scilab code Exa 18.4  calculation of fractionional change in no of e

    1   clc ; clear ;

    2   / / E x am pl e 1 8 . 33   // c a l c u l a t i o n o f f r a c t i o n i o n a l c ha n ge i n no o f e4

    5   / / g i v e n v a l u e s6   T 1 = 3 0 0 ; / / temp i n K7   T 2 = 3 1 0 ; / / temp i n K

    8   E g = 1 . 1 ; // f o r b i d de n gap o f s i l i c o n i n eV9   k = 8 . 6 * 1 0 ^ - 5 ; / / b o lt zm a nn ’ s c o n s t a n t i n eV /K10

    11   // c a l c u l a t i o n12   n 1 = ( 1 0 ^ 2 1 . 7 ) * ( T 1 ^ ( 3 / 2 ) ) * 1 0 ^ ( - 2 5 0 0 * E g / T 1 ) ; // no o f  

    55

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    57/116

    c o nd u ct i on e a t T1

    13   n 2 = ( 1 0 ^ 2 1 . 7 ) * ( T 2 ^ ( 3 / 2 ) ) * 1 0 ^ ( - 2 5 0 0 * E g / T 2 ) ; // no o f  c o nd u ct i on e a t T214   x = n 2 / n 1 ;

    15   disp (x , ’ f r a c t i o n a l c ha n g e i n no o f e i s ’ ) ;

    Scilab code Exa 18.5   calculation of resistivity

    1   clc ; clear ;

    2   / / E x am pl e 1 8 . 53   / / c a l c u l a t i o n o f r e s i s t i v i t y4

    5   / / g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ;

    7   n i = 2 . 5 * 1 0 ^ 1 9 ; / / i n t r i n s i c d e n s i t y o f c a r r i e r s p e r mˆ 38   u e = . 3 9 ; // m o b i l i t y o f e9   u h = . 1 9 ; // m o b i l i t y o f h o l e

    10

    11

    12   // c a l c u l a t i o n

    13   c = e * n i * ( u e + u h ) ; / / c o n d u c t i v i t y14   r = 1 / c ; // r e s i s t i v i t y15   disp (r ,  ’ r e s i s t i v i t y in ohm m i s ’ ) ;

    Scilab code Exa 18.6   calculation of conductivity of intrinsic and dopedsemiconductors

    1   clc ; clear ;

    2   / / E x am pl e 1 8 . 63   / / c a l c u l a t i o n o f c o n d u c t i v i t y o f i n t r i n s i c and d op ed

    s e m i c o n d u c t o r s4

    5   / / g i v e n v a l u e s

    56

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    58/116

    6   h = 4 . 5 2 * 1 0 ^ 2 4 ; // no o f h o l e s p er mˆ3

    7   e = 1 . 2 5 * 1 0 ^ 1 4 ; // no o f e l e c t r o n s p er mˆ38   u e = . 3 8 ; // e m o b i l i t y9   u h = . 1 8 ; // h o l e m o b i l i t y

    10   q = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e i n C11   // c a l c u l a t i o n12   ni = sqrt ( h * e ) ; // i n t r i n s i c c o nc e n t r at i o n13   c i = q * n i * ( u e + u h ) ;

    14   disp ( c i , ’ c o n d u c t i v i t y o f s e m i co n d u ct o r ( i n S /m) i s ’ ) ;15   c p = q * h * u h ;

    16   disp ( c p , ’ c o n d u c t i v i t y o f d op ed s e m ic o n d uc t o r ( i n S /m) i s ’ ) ;

    Scilab code Exa 18.7   calculation of hole concentration

    1   clc ; clear ;

    2   / / E x am pl e 1 8 . 73   / / c a l c u l a t i o n o f h o l e c o n c e n t r a t i o n4

    5   / / g i v e n v a l u e s

    6   n i = 2 . 4 * 1 0 ^ 1 9 ; // c a r r i e r c o n c e n t r a t i o n p er mˆ37   N = 4 * 1 0 ^ 2 8 ; / / c o n c e n t r a t i o n o f g e a to ms p e r mˆ 38

    9   // c a l c u l a t i o n10   N D = N / 1 0 ^ 6 ; / / d on or c o c n t r t n11   n = N D ; // no o f e l e c t r o n e s12

    13   p = n i ^ 2 / n ;

    14   disp (p , ’ c o n c e n t ar t i o n o f h o l e s p er mˆ3 i s ’ ) ;

    Scilab code Exa 18.8   calculation of Hall voltage

    1   clc ; clear ;

    57

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    59/116

    2   / / E x am pl e 1 8 . 8

    3   // c a l c u l a t i o n o f H al l v o l t a ge45   / / g i v e n v a l u e s6   N D = 1 0 ^ 2 1 ; // d o no r d e n s i t y p e r mˆ 37   B = . 5 ; / / m a g n et i c f i e l d i n T8   J = 5 0 0 ; / / c u r r e n t d e n s i t y i n A/mˆ 29   w = 3 * 1 0 ^ - 3 ; // w id th i n m

    10   e = 1 . 6 * 1 0 ^ - 1 9 ; / / c h a rg e i n C11

    12   // c a l c u l a t i o n13

    1415   V = B * J * w / ( N D * e ) ; // i n v o l t s16   disp ( V * 1 0 ^ 3 , ’ H a ll v o l t ag e i n mv i s ’ ) ;

    58

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    60/116

    Chapter 19

    PN Junction Diode

    Scilab code Exa 19.1   calculation of potential barrier

    1   clc ; clear ;

    2   / / E x am pl e 1 9 . 13   // c a l c u l a t i o n o f p o t e n t i a l b a r r i e r4

    5   / / g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ;

    7   n = 4 . 4 * 1 0 ^ 2 8 ; // no o f a to ms p e r mˆ 38   k T = . 0 2 6 * e ; / / temp e q v l n t a t room temp9   n i = 2 . 4 * 1 0 ^ 1 9 ; / / no o f i n t r i n s i c c a r r i e r s p e r mˆ 3

    10   N A = n / 1 0 ^ 6 ; // no o f a c c e p t o r s11   N D = n / 1 0 ^ 6 ; // no o f d on or s12

    13   // c a l c u l a t i o n14   V = ( k T / e ) * log ( N A * N D / n i ^ 2 ) ;

    15   disp (V , ’ p o t e n t i a l b a r r i e r i n v o l t s i s ’ ) ;

    Scilab code Exa 19.2   calculation of current

    59

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    61/116

    1   clc ; clear ;

    2   / / E x am pl e 1 9 . 23   / / c a l c u l a t i o n o f c u r r e nt4

    5   / / g i v e n v a l u e s6   e = 1 . 6 * 1 0 ^ - 1 9 ;

    7   k T = . 0 2 6 * e ; / / temp e q v l n t a t room temp8   I o = 2 * 1 0 ^ - 7 ; // c u r r e n t f l o w i n g a t room temp i n A9   V = . 1 ; // f or wa rd b i a s v o l t a g e i n v o l t s

    10

    11   // c a l c u l a t i o n12   I = I o * ( % e ^ ( e * V / k T ) - 1 ) ; // in Ampere

    13   disp ( I * 1 0 ^ 6 , ’ c u r r e nt f l o w i n g when f o rw ar d b i a sa p p l i e d ( i n m i c ro a m pe r e ) i s ’ ) ;

    60

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    62/116

    Chapter 21

    Magnetic Materials

    Scilab code Exa 21.1  calculation of magnetizing force and relative perme-ability

    1   clc ; clear ;

    2   / / E x am pl e 2 1 . 13   // c a l c u l a t i o n o f m ag ne ti zi ng f o r c e and r e l a t i v e

    p e r m e a b i l i t y4

    5   / / g i v e n v a l u e s6   M = 2 3 0 0 ; / / m a g n e t i z a t i o n i n A/m7   B = . 0 0 3 1 4 ; / / f l u x d e n s i t y i n Wb/mˆ 28   u = 1 2 . 5 7 * 1 0 ^ - 7 ; / / p e r m e a b i l i t y i n H/m9

    10   // c a l c u l a t i o n11   H = ( B / u ) - M ;

    12   disp (H , ’ m a g n e t i z i n g f o r c e ( i n A/m) i s ’ ) ;13   U r = B / ( u * H ) ;

    14   disp ( U r , ’ r e l a t i v e p e rm e ab i l i t y i s ’ )

    Scilab code Exa 21.2  calculation of magnetization and magnetic flux den-sity

    61

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    63/116

    1   clc ; clear ;

    2   / / E x am pl e 2 1 . 23   / / c a l c u l a t i o n o f m a g ne t iz a t io n and m ag ne ti c f l u xd e n s i t y

    4

    5   / / g i v e n v a l u e s6   H = 1 0 ^ 5 ; / / e x t e r n a l f i e l d i n A/m7   X = 5 * 1 0 ^ - 5 ; // s u s c e p t i b i l i t y8   u = 1 2 . 5 7 * 1 0 ^ - 7 ; / / p e r m e a b i l i t y i n H/m9

    10   // c a l c u l a t i o n11   M = X * H ;

    12   disp (M , ’ m a g n e t i z a t i o n ( i n A/m) i s ’ ) ;13   B = u * ( M + H ) ;

    14   disp (B , ’ m a gn et i c f l u x d e n s i t y ( i n wb/mˆ 2 ) i s ’ )

    Scilab code Exa 21.3  calculation of relative permeability

    1   clc ; clear ;

    2   / / E x am pl e 2 1 . 3

    3   / / c a l c u l a t i o n o f r e l a t i v e p e rm e ab i l i t y4

    5   / / g i v e n v a l u e s6

    7   X = 3 . 7 * 1 0 ^ - 3 ; // s u s c e p t i b i l i t y a t 300 k8   T = 3 0 0 ; / / temp i n K9   T 1 = 2 0 0 ; / / temp i n K

    10   T 2 = 5 0 0 ; / / temp i n K11

    12   // c a l c u l a t i o n

    13   C = X * T ; / / c u r i e c o n s t a n t14   X T 1 = C / T 1 ;15   disp ( X T 1 , ’ r e l a t i v e p e r m e a b i l i t y a t T1 i s ’ ) ;16   X T 2 = C / T 2 ;

    17   disp ( X T 2 , ’ r e l a t i v e p e r m e ab i l i t y a t T2 i s ’ )

    62

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    64/116

    63

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    65/116

    Chapter 22

    Superconductivity

    Scilab code Exa 22.1  calculation of magnetic field

    1   clc ; clear ;

    2   / / E x am pl e 2 2 . 13   / / c a l c u l a t i o n o f m a gn et i c f i e l d4

    5   / / g i v e n v a l u e s6

    7   T c = 7 . 2 ; // t r a n s i t i o n temp i n K8   T = 5 ; / / temp i n K9   H c = 3 . 3 * 1 0 ^ 4 ; / / m a g n e t i c f i e l d a t T i n A/m

    10

    11

    12   // c a l c u l a t i o n13   H c 0 = H c / ( 1 - ( T ^ 2 / T c ^ 2 ) ) ;

    14   disp ( H c 0 , ’ max v a lu e o f H a t 0K ( i n A/m) i s ’ ) ;

    Scilab code Exa 22.2   calculation of transition temperature

    1   clc ; clear ;

    64

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    66/116

    2   / / E x am pl e 2 2 . 2

    3   / / c a l c u l a t i o n o f t r a n s i t i o n t em pe ra tu re45   / / g i v e n v a l u e s6

    7   T = 8 ; / / temp i n K8   H c = 1 * 1 0 ^ 5 ; // c r i t i c a l magn e t i c f i e l d at T i n A/m9   H c 0 = 2 * 1 0 ^ 5 ; / / m a g n et i c f i e l d a t 0 K i n A/m

    10

    11   // c a l c u l a t i o n12   T c = T / ( sqrt ( 1 - H c / H c 0 ) ) ;

    13   disp ( T c , ’ t r a n s i t i o n temp i n K i s ’ ) ;

    Scilab code Exa 22.3  calculation of temp at which there is max criticalfield

    1   clc ; clear ;

    2   / / E x am pl e 2 2 . 33   // c a l c u l a t i o n o f temp a t whi ch t h e r e i s max

    c r i t i c a l f i e l d

    45   / / g i v e n v a l u e s6

    7   T c = 7 . 2 6 ; // c r i t i c a l temp in K8   H c = 8 * 1 0 ^ 5 ; //max c r i t i c a l magn e t i c f i e l d at T i n A/m9   H = 4 * 1 0 ^ 4 ; // s u b j e c t e d m a gn et i c f i e l d a t i n A/m

    10

    11   // c a l c u l a t i o n12   T = T c * ( sqrt ( 1 - H / H c ) ) ;

    13   disp (T , ’ max t emp f o r s u p e r c o n d u c t i v i t y i n K i s ’ ) ;

    65

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    67/116

    Chapter 23

    Dielectrics

    Scilab code Exa 23.1  calculation of relative permittivity

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 13   // c a l c u l a t i o n o f r e l a t i v e p e r m i t t i v i t y4

    5   / / g i v e n v a l u e s6

    7   E = 1 0 0 0 ; // e l e c t r i c f i e l d i n V/m8   P = 4 . 3 * 1 0 ^ - 8 ; // p o l a r i z a t i o n i n C/mˆ 29   e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m

    10

    11

    12   // c a l c u l a t i o n13   e r = 1 + ( P / ( e * E ) ) ;

    14   disp ( e r , ’ r e l a t i v e p e r m i t t i v i t y o f NaCl i s ’ ) ;

    Scilab code Exa 23.2   calculation of electronic polarizability

    1   clc ; clear ;

    66

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    68/116

    2   / / E x am pl e 2 3 . 2

    3   / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y45   / / g i v e n v a l u e s6

    7   e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m8   e r = 1 . 0 0 2 4 ; // r e l a t i v e p e r m i t t i v i t y a t NTP9   N = 2 . 7 * 1 0 ^ 2 5 ; / / a to ms p e r mˆ 3

    10

    11

    12   // c a l c u l a t i o n13   a l p h a = e * ( e r - 1 ) / N ;

    14   disp ( a l p h a ,  ’ e l e c t r o n i c p o l a r i z a b i l i t y ( i n F/mˆ 2) i s ’) ;

    Scilab code Exa 23.3  calculation of electronic polarizability and relativepermittivity

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 3

    3   / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y andr e l a t i v e p e r m i t t i v i t y

    4

    5   / / g i v e n v a l u e s6

    7   e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m8   N = 9 . 8 * 1 0 ^ 2 6 ; / / a to ms p e r mˆ 39   r = . 5 3 * 1 0 ^ - 1 0 ; // r a d i u s i n m

    10

    11

    12   // c a l c u l a t i o n13   a l p h a = 4 * % p i * e * r ^ 3 ;14   disp ( a l p h a ,  ’ e l e c t r o n i c p o l a r i z a b i l i t y ( i n F/mˆ 2) i s ’

    ) ;

    15   e r = 1 + ( 4 * % p i * N * r ^ 3 ) ;

    67

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    69/116

    16   disp ( e r , ’ r e l a t i v e p e r m i t t i v i t y i s ’ )

    Scilab code Exa 23.4  calculation of electronic polarizability and relativepermittivity

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 43   / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y and

    r e l a t i v e p e r m i t t i v i t y

    45   / / g i v e n v a l u e s6   w = 3 2 ; // a t om ic w ei gh t o f s u l ph u r7   d = 2 . 0 8 * 1 0 ^ 3 ; / / d e n s i t y i n k g /mˆ 38   N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r9   a l p h a = 3 . 2 8 * 1 0 ^ - 4 0 ; // e l e c t r o n i c p o l a r i z a b i l i t y i n F .m

    ˆ210   e = 8 . 8 5 4 * 1 0 ^ - 1 2 ; / / p e r m i t t i v i y11   // c a l c u l a t i o n12

    13   n = N A * d / w ;

    14   k = n * a l p h a / ( 3 * e ) ;15   e r = ( 1 + 2 * k ) / ( 1 - k ) ;

    16   disp ( e r , ’ r e l a t i v e p e r m i t t i v i t y i s ’ )

    Scilab code Exa 23.5   calculation of ionic polarizability

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 5

    3   / / c a l c u l a t i o n o f i o n i c p o l a r i z a b i l i t y4

    5   / / g i v e n v a l u e s6   n = 1 . 5 ; // r e f r a c t i v e i nd ex7   e r = 6 . 7 5 ; // r e l a t i v e p e r m i t t i v i t y

    68

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    70/116

    8

    9   // c a l c u l a t i o n10   P i = ( e r - n ^ 2 ) * 1 0 0 / ( e r - 1 ) ;11   disp ( P i , ’ p e r c e nt a g e i o n i c p o l a r i z a b i l i t y ( i n %) ) i s ’

    )

    Scilab code Exa 23.6   calculation of frequency and phase difference

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 63   / / c a l c u l a t i o n o f f r e q ue n cy and p ha se d i f f e r e n c e4

    5   / / g i v e n v a l u e s6   t = 1 8 * 1 0 ^ - 6 ; // r e l a x a t i o n t i m e i n s7

    8   // c a l c u l a t i o n9   f = 1 / ( 2 * % p i * t ) ;

    10   disp (f , ’ f r e qu e n cy a t wh ich r e a l and i m ag i na r y p a rto f c om pl x d i e l e c t r i c c o n s t a n t a r e e q u a l i s ’ ) ;

    11   a l p h a = atan ( 1 ) * 1 8 0 / % p i ; // p ha se d i f f e r e n c e bet w ee n

    c u r r e nt and v o l t a g e ( 1 b e ca u se r e a l and i ma g in ryp a r t s a r e e q u a l o f t h e d i e l e c t r i c c o n s t a n t )

    12   disp ( a l p h a ,  ’ p ha se d i f f e e r e n c e ( i n d e g r e e ) i s ’ ) ;

    Scilab code Exa 23.7   calculation of frequency

    1   clc ; clear ;

    2   / / E x am pl e 2 3 . 7

    3   // c a l c u l a t i o n o f f r e q ue n cy4

    5   / / g i v e n v a l u e s6   t = 5 . 5 * 1 0 ^ - 3 ; // t h i c k n e s s o f p l a t e i n m7   Y = 8 * 1 0 ^ 1 0 ; //Young ’ s modulus in N/mˆ2

    69

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    71/116

    8   d = 2 . 6 5 * 1 0 ^ 3 ; / / d e n s i t y i n k g /mˆ 3

    910

    11

    12   // c a l c u l a t i o n13   f = sqrt ( Y / d ) / ( 2 * t ) ; // i n Hz14   disp ( f / 1 0 ^ 3 , ’ f r e q u e n c y o f f u n da m e nt a l n o t e ( i n KHz )

    i s ’ ) ;

    70

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    72/116

    Chapter 24

    Fibre optics

    Scilab code Exa 24.1   Fiber optics numerical aperture calculation

    1   clc ; clear ;

    2   / / E x am pl e 2 4 . 13   / / F i b e r o p t i c s4

    5   / / g i v e n v a l u e s6   n = 1 . 5 ; // r e f r a c t i v e i nd ex

    7   x = . 0 0 0 5 ; // f r a c t i o n a l i nd ex d i f f e r e n c e8

    9   // c a l c u l a t i o n10   u = n * ( 1 - x ) ;

    11   disp (u , ’ c l a d d in g i nd ex i s ’ ) ;12   a l p h a = asin ( u / n ) * 1 8 0 / % p i ;

    13   disp ( a l p h a ,  ’ c r i t i c a l i n t e r n a l r e f l e c t i o n a n g l e ( i nd e g r e e ) i s ’ ) ;

    14   t h e t a = asin ( sqrt ( n ^ 2 - u ^ 2 ) ) * 1 8 0 / % p i ;

    15   disp ( t h e t a ,  ’ c r i t i c a l a c c e p t a n c e a n g l e ( i n d e g r e e ) i s ’

    ) ;16   N = n * sqrt ( 2 * x ) ;

    17   disp (N , ’ n u me r ic a l a p e r tu r e i s ’ ) ;

    71

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    73/116

    Scilab code Exa 24.2   calculation of acceptance angle

    1   clc ; clear ;

    2   / / E x am pl e 2 4 . 23   // c a l c u l a t i o n o f a c c e p t a n ce a n gl e4

    5   / / g i v e n v a l u e s6   n = 1 . 5 9 ; // c l ad d i ng r e f r a c t i v e i nd ex7   u = 1 . 3 3 ; // r e f r a c t i v e i nd ex o f w at er8   N = . 2 0 ; // n u me r ic a l a p e r tu r e o f f i b r e9   // c a l c u l a t i o n

    10   x = sqrt ( N ^ 2 + n ^ 2 ) ; // i nd ex o f f i b r e11   N1 = sqrt ( x ^ 2 - n ^ 2 ) / u ; // n u m e ri c a l a p e r t u r e when f i b r e

    i s i n w a te r12   a l p h a = asin ( N 1 ) * 1 8 0 / % p i ;

    13   disp ( a l p h a ,  ’ a c c e p t a n ce a n gl e i n d e g r e e i s ’ ) ;

    Scilab code Exa 24.3   calculation of normailsed frequency

    1   clc ; clear ;

    2   / / E x am pl e 2 4 . 33   // c a l c u l a t i o n o f n or m al i se d f r eq u en c y4

    5   / / g i v e n v a l u e s6   n = 1 . 4 5 ; // c o re r e f r a c t i v e i nd ex7   d = . 6 ; // c o r e d i am et r e i n m8   N = . 1 6 ; // n um er i c al a p e r t ur e o f f i b r e

    9   l = . 9 * 1 0 ^ - 6 ; // w av el en gt h o f l i g h t10

    11   // c a l c u l a t i o n12   u = sqrt ( n ^ 2 + N ^ 2 ) ; // i nd ex o f g l a s s f i b r e13   V = % p i * d * sqrt ( u ^ 2 - n ^ 2 ) / l ;

    72

  • 8/20/2019 A Textbook Of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar.pdf

    74/116

    14   disp (V , ’ n o r ma l i se d f r eq u e nc y i s ’ ) ;

    Scilab code Exa 24.4  calculation of normailsed frequency and no of modes

    1   clc ; clear ;

    2   / / E x am pl e 2 4 . 43   // c a l c u l a t i o n o f n or m ai l se d f r eq u en c y and no o f  

    modes4

    5   / / g i v e n v a l u e s6   n = 1 . 5 2 ; // c o re r e f r a c t i v e i nd ex7   d = 2 9 * 1 0 ^ - 6 ; // c o r e d i am e tr e i n m8   l = 1 . 3 * 1 0 ^ - 6 ; // w av el en gt h o f l