a strong künneth theorem for topological periodic cyclic ...mmandell/talks/mit-170313.pdf · a...

122
A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell Indiana University MIT Topology Seminar March 13, 2017 M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 1 / 16

Upload: others

Post on 26-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

A Strong Künneth Theorem for Topological PeriodicCyclic Homology

Michael A. Mandell

Indiana University

MIT Topology Seminar

March 13, 2017

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 1 / 16

Page 2: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -categories satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline1 Introduction to TP2 Structure and properties of TP3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 3: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -algebras satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline1 Introduction to TP2 Structure and properties of TP3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 4: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -algebras satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline

1 Introduction to TP2 Structure and properties of TP3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 5: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -algebras satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline1 Introduction to TP

2 Structure and properties of TP3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 6: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -algebras satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline1 Introduction to TP2 Structure and properties of TP

3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 7: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Overview

Topological periodic cyclic homology (TP) is the analogue of cyclicperiodic homology (HP) using THH in place of HH. If k is a finite field,then smooth and proper k -algebras satisfy a strong Künneth theorem

TP(X ) ∧LTP(k) TP(Y )→ TP(X ⊗k Y )

is an isomorphism in the derived category of TP(k)-modules.

Joint work with Andrew BlumbergPreprint Soon

Outline1 Introduction to TP2 Structure and properties of TP3 The Künneth theorem

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 2 / 16

Page 8: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology

and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HNHPHHHC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 9: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology

and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HNHPHHHC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 10: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology

and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HNHPHHHC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 11: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HNHP

HH

HC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 12: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:

···

······

······

↓ ↓ ↓ ↓ ···

· · · ← • ←

• ← • ← • ← •

↓ ↓ ↓

· · · ← • ←

• ← • ← •

↓ ↓

· · · ← • ←

• ← •

· · · ← • ←

↓· · · ← •

···

HNHPHH

HC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 13: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:···

···

······

···

↓ ↓

↓ ↓ ↓ ···

· · · ← • ← •

← • ← • ← •

↓ ↓

↓ ↓

· · · ← • ← •

← • ← •

↓ ↓

· · · ← • ← •

← •

↓ ↓· · · ← • ← •

↓· · · ← •

···

HN

HPHHHC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 14: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Hochschild Homology and Cyclic Homology

Cyclic bar construction

Ncyq R = R ⊗ · · · ⊗ R︸ ︷︷ ︸

q factors

⊗R

R ⊗ · · · ⊗ R

⊗ ⊗

R

Chain complex

Construct Double Complex:···

······

······

↓ ↓ ↓ ↓ ↓ ···· · · ← • ← • ← • ← • ← •

↓ ↓ ↓ ↓· · · ← • ← • ← • ← •

↓ ↓ ↓· · · ← • ← • ← •

↓ ↓· · · ← • ← •

↓· · · ← •

···

HN

HP

HHHC

Cyclic structure =⇒ Connes’ B operator B : NcyR → NcyR[−1]

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 3 / 16

Page 15: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HH corresponds to THH

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 16: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HH corresponds to THH

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 17: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HH corresponds to THH

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 18: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction

···

···

······

···↓

↓ ↓ ↓ ···· · · ← • ←

← • ← • ← •↓

↓ ↓· · · ← • ←

← • ← •↓

↓· · · ← • ←

← •↓

· · · ← • ←

↓· · · ← •

···

HH corresponds to THH

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 19: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction

···

······

······

↓ ↓ ↓ ↓ ···

· · · ← • ←

• ← • ← • ← •

↓ ↓ ↓

· · · ← • ←

• ← • ← •

↓ ↓

· · · ← • ←

• ← •

· · · ← • ←

↓· · · ← •

···

HH corresponds to THHHC corresponds to THHhT

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 20: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction···

···

······

···

↓ ↓

↓ ↓ ↓ ···

· · · ← • ← •

← • ← • ← •

↓ ↓

↓ ↓

· · · ← • ← •

← • ← •

↓ ↓

· · · ← • ← •

← •

↓ ↓· · · ← • ← •

↓· · · ← •

···

HH corresponds to THHHN corresponds to THHhT

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 21: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Hochschild Homology

Cyclic bar construction (Bökstedt)

Ncyq R = R ∧ · · · ∧ R︸ ︷︷ ︸

q factors

∧R

R ∧ · · · ∧ R

∧ ∧R

Spectrum

Construction···

······

······

↓ ↓ ↓ ↓ ↓ ···· · · ← • ← • ← • ← • ← •

↓ ↓ ↓ ↓· · · ← • ← • ← • ← •

↓ ↓ ↓· · · ← • ← • ← •

↓ ↓· · · ← • ← •

↓· · · ← •

···

HH corresponds to THHHP corresponds to THH tT

Cyclic structure =⇒ circle group action

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 4 / 16

Page 22: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)

(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 23: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)

(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 24: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)

(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 25: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)

(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 26: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 27: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 28: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 29: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 30: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Topological Periodic Cyclic Homology

DefinitionFor a ring spectrum R, define the Topological Periodic CyclicHomology of R by TP(R) = THH(R)tT.

HighlightsMajor player in trace method K -theory calculations

Characteristic p replacement for HP (?)(2014–) Hasse-Weil zeta function: Connes-Consani Hesselholt(2011–) Non-commutative motives: Kontsevich, Marcolli-Tabuadanon-commutative homological motives ????

Realization functor / Weil cohomology theory

HP∗(X )⊗k [t ,t−1] HP∗(Y )→ HP∗(X ⊗k Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 5 / 16

Page 31: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLax symmetric monoidal functor

TP(X ) ∧LTP(R) TP(Y )→ TP(X ⊗L

R Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 32: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLet k be finite field. The lax symmetric monoidal functor

TP(X ) ∧LTP(k ) TP(Y )→ TP(X ⊗

L

k Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 33: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLet k be finite field. The lax symmetric monoidal functor

TP(X ) ∧LTP(k ) TP(Y )→ TP(X ⊗

L

k Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 34: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLet k be finite field. The lax symmetric monoidal functor

TP(X ) ∧LTP(k ) TP(Y )→ TP(X ⊗

L

k Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 35: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLet k be finite field. The lax symmetric monoidal functor

TP(X ) ∧LTP(k ) TP(Y )→ TP(X ⊗

L

k Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 36: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Introduction

Künneth Theorem

TheoremLet k be finite field. The lax symmetric monoidal functor

TP(X ) ∧LTP(k ) TP(Y )→ TP(X ⊗

L

k Y )

is an isomorphism when X and Y are smooth and proper.

DefinitionA k -algebra X is smooth when it is compact as an X ⊗k X op-module,i.e., when R HomX⊗k X op

(X ,−) commutes with direct sums.

DefinitionA k -algebra X is proper when it is compact as a k -module.

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 6 / 16

Page 37: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 38: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 39: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 40: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 41: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 42: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 43: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 44: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 45: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Review of Tate Construction

ET ET+ → S0 → ET

Smash with Z ET and take fixed points

(Z ET ∧ ET+)ET → (Z ET)T → (Z ET ∧ ET)T

(X ET ∧ ET+)ET ' Σ(X ET)hT ' ΣX∧hT (Adams Isomorphism)

Definition

For Z a T-equivariant spectrum Z tT = (Z ET ∧ ET)T.(Composite of derived functors.)

ΣZhT → Z hT → Z tT → Σ2ZhT

TP(X ) = THH(X )tT

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 7 / 16

Page 46: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET

←− This is coherent

THH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 47: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET

←− This is coherent

THH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 48: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET

←− This is coherent

THH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 49: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET

←− This is coherent

THH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 50: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET

←− This is coherent

THH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 51: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET

←− This can be made coherent!

Use diagonal map ET→ ET× ET ←− This is coherentTHH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 52: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET ←− This can be made coherent!Use diagonal map ET→ ET× ET ←− This is coherentTHH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 53: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET ←− This can be made coherent!Use diagonal map ET→ ET× ET ←− This is coherentTHH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 54: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Multiplication

TP(X ) ∧ TP(Y ) ∼= (THH(X )ET ∧ ET)T ∧ (THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ ET ∧ THH(Y )ET ∧ ET)T

→ (THH(X )ET ∧ THH(Y )ET ∧ ET)T

→ ((THH(X ) ∧ THH(Y ))ET ∧ ET)T

→ ((THH(X ∧ Y ))ET ∧ ET)T ∼= TP(X ∧ Y )

ET ∧ ET ' ET ←− This can be made coherent!Use diagonal map ET→ ET× ET ←− This is coherentTHH(X ) ∧ THH(Y ) ∼= THH(X ∧ Y )

TP(X ) ∧ TP(R) ∧ TP(Y )→ TP(X ∧ R ∧ Y )

TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 8 / 16

Page 55: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 56: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 57: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 58: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 59: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 60: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 61: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 62: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET

/ on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . .

/ S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 63: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET / on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . . / S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 64: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET / on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . . / S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 65: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET / on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . . / S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 66: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Filtration

······

······

···↓ ↓ ↓ ↓ ↓ ···

· · · ← • ← • ← • ← • ← •↓ ↓ ↓ ↓

· · · ← • ← • ← • ← •↓ ↓ ↓

· · · ← • ← • ← •↓ ↓

· · · ← • ← •↓

· · · ← •···

···�� �� �� ��

T× T× T�� �� ��

OOOOOO

T× T�� ��

OOOO

T

OO

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

TP(X ) = (THH(X )ET ∧ ET)T

Simplicial filtration on ET / on ET

T+ ∧ (T× T/(T ∨ T)) ∧∆[2]/∂∆[2]

T+ ∧ (T/{1}) ∧∆[1]/∂∆[1]

T+

T+, Σ2T+, Σ4T+,. . . / S0, ΣT+, Σ3T+,. . .

Filtration on TP(X ) : F iTP(X ) =

{(THH(X )(ET,ET−i−1) ∧ S0)T i ≤ 0(THH(X )ET ∧ ETi)

T i > 0

F i/F i−1 =

{(THH(X )(Σ2iT+))T i ≤ 0(THH(X )ET ∧ Σ2i−1T+)T i > 0

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 9 / 16

Page 67: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Spectral Sequence

······

······

··· ···· · · ← • ← • ← • ← • ← •

· · · ← • ← • ← • ← •

· · · ← • ← • ← •

· · · ← • ← •

· · · ← •···

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

Spectral sequence

E1i,j = πi+jΣ

2iTHH(X ) = THHj−i(X )

Renumber: Double filtration degree

E2r2i,j = (E r

i,i+j)old, d2r = (dr )old

Spectral SequenceConditionally convergent spectral sequence

E22i,j = THHj(X ) =⇒ TP2i+j(X ). (E r

2i+1,j = 0)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 10 / 16

Page 68: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Spectral Sequence

······

···

· · · • • • · · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

Spectral sequence

E1i,j = πi+jΣ

2iTHH(X ) = THHj−i(X )

Renumber: Double filtration degree

E2r2i,j = (E r

i,i+j)old, d2r = (dr )old

Spectral SequenceConditionally convergent spectral sequence

E22i,j = THHj(X ) =⇒ TP2i+j(X ). (E r

2i+1,j = 0)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 10 / 16

Page 69: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Spectral Sequence

······

···

· · · • • • · · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

Spectral sequence

E1i,j = πi+jΣ

2iTHH(X ) = THHj−i(X )

Renumber: Double filtration degree

E2r2i,j = (E r

i,i+j)old, d2r = (dr )old

Spectral SequenceConditionally convergent spectral sequence

E22i,j = THHj(X ) =⇒ TP2i+j(X ). (E r

2i+1,j = 0)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 10 / 16

Page 70: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

The Spectral Sequence

······

···

· · · • • • · · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

· · · • •

hh

hh

· · ·

Filtration on TP(X ) with associated graded

F i/F i−1 ' Σ2iTHH(X )

Spectral sequence

E1i,j = πi+jΣ

2iTHH(X ) = THHj−i(X )

Renumber: Double filtration degree

E2r2i,j = (E r

i,i+j)old, d2r = (dr )old

Spectral SequenceConditionally convergent spectral sequence

E22i,j = THHj(X ) =⇒ TP2i+j(X ). (E r

2i+1,j = 0)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 10 / 16

Page 71: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 72: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 73: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 74: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 75: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 76: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 77: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 78: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 79: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal?

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 80: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Structure and Properties

Combining the Multiplication and Filtration

MultiplicationDiagonal ET→ ET× ETMult. ET ∧ ET ' ET

FiltrationSimplicial/cellular filt. on ETFiltration on ET

TP(X ) = (THH(X )ET ∧ ET)T

Can we make TP(X ) ∧ TP(Y )→ TP(X ∧ Y ) a filtered map?

In homotopy category, easy obstruction theory cellular approximationto diagonal & multiplication =⇒ multiplicative spectral sequence.

What about TP(X ) ∧TP(R) TP(X )→ TP(X ∧R Y )? Coherent model?

Definitely not with symmetry.

What about just associativity?

Coherently homotopy associative cellular approximation to diagonal!

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 11 / 16

Page 81: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces

Let X• be a simplicial space, |X•| its geometric realization. |X n• | vs |X•|n

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Find an A∞ operad A and a map of operadsA(n)→ Filt(|X•|, |X•|n) ⊂ T (|X•|, |X•|n).

Barycentric Coordinates and Milnor Coordinates on ∆[m]

Barycentric t0, . . . , tm,∑

ti = 1↔ Milnor 0 ≤ u0 ≤ u1 ≤ · · · ≤ um−1 ≤ 1

An element in |X•| is specified by (x ∈ Xm,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 12 / 16

Page 82: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces

Let X• be a simplicial space, |X•| its geometric realization. |X n• | vs |X•|n

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Find an A∞ operad A and a map of operadsA(n)→ Filt(|X•|, |X•|n) ⊂ T (|X•|, |X•|n).

Barycentric Coordinates and Milnor Coordinates on ∆[m]

Barycentric t0, . . . , tm,∑

ti = 1↔ Milnor 0 ≤ u0 ≤ u1 ≤ · · · ≤ um−1 ≤ 1

An element in |X•| is specified by (x ∈ Xm,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 12 / 16

Page 83: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces

Let X• be a simplicial space, |X•| its geometric realization. |X n• | vs |X•|n

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Find an A∞ operad A and a map of operadsA(n)→ Filt(|X•|, |X•|n) ⊂ T (|X•|, |X•|n).

Barycentric Coordinates and Milnor Coordinates on ∆[m]

Barycentric t0, . . . , tm,∑

ti = 1↔ Milnor 0 ≤ u0 ≤ u1 ≤ · · · ≤ um−1 ≤ 1

An element in |X•| is specified by (x ∈ Xm,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 12 / 16

Page 84: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces

Let X• be a simplicial space, |X•| its geometric realization. |X n• | vs |X•|n

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Find an A∞ operad A and a map of operadsA(n)→ Filt(|X•|, |X•|n) ⊂ T (|X•|, |X•|n).

Barycentric Coordinates and Milnor Coordinates on ∆[m]

Barycentric t0, . . . , tm,∑

ti = 1↔ Milnor 0 ≤ u0 ≤ u1 ≤ · · · ≤ um−1 ≤ 1

An element in |X•| is specified by (x ∈ Xm,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 12 / 16

Page 85: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces

Let X• be a simplicial space, |X•| its geometric realization. |X n• | vs |X•|n

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Find an A∞ operad A and a map of operadsA(n)→ Filt(|X•|, |X•|n) ⊂ T (|X•|, |X•|n).

Barycentric Coordinates and Milnor Coordinates on ∆[m]

Barycentric t0, . . . , tm,∑

ti = 1↔ Milnor 0 ≤ u0 ≤ u1 ≤ · · · ≤ um−1 ≤ 1

An element in |X•| is specified by (x ∈ Xm,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 12 / 16

Page 86: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution

1 The overlapping little 1-cubes operad CΞ1

2 The map CΞ1 → T (|X•|, |X•|n).

3 little 1-cubes operad C1 ⊂ CΞ1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 87: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution1 The overlapping little 1-cubes operad CΞ

1

2 The map CΞ1 → T (|X•|, |X•|n).

3 little 1-cubes operad C1 ⊂ CΞ1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 88: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution1 The overlapping little 1-cubes operad CΞ

12 The map CΞ

1 → T (|X•|, |X•|n).

3 little 1-cubes operad C1 ⊂ CΞ1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 89: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution1 The overlapping little 1-cubes operad CΞ

12 The map CΞ

1 → T (|X•|, |X•|n).

3 little 1-cubes operad C1 ⊂ CΞ1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 90: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution1 The overlapping little 1-cubes operad CΞ

12 The map CΞ

1 → T (|X•|, |X•|n).

3 little 1-cubes operad C1 ⊂ CΞ1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 91: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Approximation of the diagonal for simplicial spaces (ii)

ProblemParametrize a contractible spaces of filtered approximations of thediagonal maps |X•| → |X•|n for all n that compose appropriately.

Solution1 The overlapping little 1-cubes operad CΞ

12 The map CΞ

1 → T (|X•|, |X•|n).3 little 1-cubes operad C1 ⊂ CΞ

1 .

An element c ∈ CΞ(n) specifies n monotonic PL maps gi : I → I

(x ,0 ≤ u0 ≤ · · · ≤ um−1 ≤ 1) 7→((x ,0 ≤ g1(u0) ≤ · · · ≤ g1(um−1) ≤ 1), . . . ,

(x ,0 ≤ gn(u0) ≤ · · · ≤ gn(um−1) ≤ 1))

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 13 / 16

Page 92: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

Applied to TP

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 93: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

Applied to TP

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 94: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

Applied to TP

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 95: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

F−iTP(X ) ∧ F−jTP(X ) = (THH(X )(ET,ETi−1))T ∧ (THH(Y )(ET,ETj−1))T

→ (THH(X )(ET,ETi−1) ∧ THH(Y )(ET,ETj−1))T

→ ((THH(X ) ∧ THH(Y ))(ET,ETi+j−1))T

∼= ((THH(X ∧ Y ))(ET,ETi+j−1))T

= F−i−jTP(X ∧ Y )

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 96: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

F−iTP(X ) ∧ F−jTP(X ) = (THH(X )(ET,ETi−1))T ∧ (THH(Y )(ET,ETj−1))T

→ (THH(X )(ET,ETi−1) ∧ THH(Y )(ET,ETj−1))T

→ ((THH(X ) ∧ THH(Y ))(ET,ETi+j−1))T

∼= ((THH(X ∧ Y ))(ET,ETi+j−1))T

= F−i−jTP(X ∧ Y )

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 97: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

F−iTP(X ) ∧ F−jTP(X ) = (THH(X )(ET,ETi−1))T ∧ (THH(Y )(ET,ETj−1))T

→ (THH(X )(ET,ETi−1) ∧ THH(Y )(ET,ETj−1))T

→ ((THH(X ) ∧ THH(Y ))(ET,ETi+j−1))T

∼= ((THH(X ∧ Y ))(ET,ETi+j−1))T

= F−i−jTP(X ∧ Y )

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 98: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

F−iTP(X ) ∧ F−jTP(X ) = (THH(X )(ET,ETi−1))T ∧ (THH(Y )(ET,ETj−1))T

→ (THH(X )(ET,ETi−1) ∧ THH(Y )(ET,ETj−1))T

→ ((THH(X ) ∧ THH(Y ))(ET,ETi+j−1))T

∼= ((THH(X ∧ Y ))(ET,ETi+j−1))T

= F−i−jTP(X ∧ Y )

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 99: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

F−iTP(X ) ∧ F−jTP(X ) = (THH(X )(ET,ETi−1))T ∧ (THH(Y )(ET,ETj−1))T

→ (THH(X )(ET,ETi−1) ∧ THH(Y )(ET,ETj−1))T

→ ((THH(X ) ∧ THH(Y ))(ET,ETi+j−1))T

∼= ((THH(X ∧ Y ))(ET,ETi+j−1))T

= F−i−jTP(X ∧ Y )

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 100: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 101: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 102: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 103: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 104: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 105: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 106: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Digression

Filtered Monoidal Structure

A filtered approximation of the diagonal gives a mapETi+j−1 → (ETi−1 × ET) ∪ (ET× ETj−1) ⊂ ET× ET

Hence a map (ET,ETi+j−1)→ (ET,ETi−1)× (ET,ETj−1)

ParametrizedC1(n)+ ∧ F−i1TP(X1) ∧ · · · ∧ F−in TP(Xn)→ F−i1−···−in TP(X1 ∧ · · · ∧ Xn)

Little 1-cubes: Moore construction (Moore loop space)

Use length parameter to make fully associative

F−iTP(X ) ∧ R>0+ ∧ F−jTP(Y ) ∧ R>0

+ → F−i−jTP(X ∧ Y ) ∧ R>0+

Filtered monoidal TPM(X ) ∧ TPM(Y )→ TPM(X ∧ Y )

TPM(X ) ∧TPM (R) TPM(Y )→ TPM(X ∧R Y )

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 14 / 16

Page 107: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 108: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 109: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 110: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 111: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 112: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

Also map of filtered TP(R)-modules=⇒ map of spectral sequences

preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 113: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

Also map of filtered TP(R)-modules=⇒ map of spectral sequences preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 114: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

Also map of filtered TP(R)-modules=⇒ map of spectral sequences preserving periodicity op. on E2

Righthand spectral sequence is Tate spectral sequence for

THH(X ∧R Y ) ∼= THH(X ) ∧THH(R) THH(Y )

E2 periodic with π∗(THH(X ) ∧THH(R) THH(Y )) in each even column

Lefthand spectral sequence has (renumbered) E2-term

π∗Gr(TP(X ) ∧TP(R) TP(Y )) ∼= π∗(Gr TP(X ) ∧Gr TP(R) Gr TP(Y ))

E2-term is π∗Gr TP(R)-module =⇒ (2,0)-periodic

Proposition

Map of spectral sequences is an isomorphism on E2

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 15 / 16

Page 115: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent.

In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 116: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent.

In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 117: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent.

In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 118: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent.

In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 119: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent. In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 120: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent. In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodic

π∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 121: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Künneth Theorem

Outline of Proof of Künneth Theorem

Filtered map TP(X ) ∧TP(R) TP(Y )→ TP(X ∧R Y )

induces isomorphism of E2-terms of spectral sequences

RHSS: Tate spectral sequence =⇒ conditionally convergent.

TheoremIf R = Hk and X and Y are smooth and proper, then the LHSS isconditionally convergent. In fact, strongly convergent.

TheoremIf R is an E∞ ring spectrum and A is a smooth and proper R-algebra,then THH(A) is a compact THH(R)-module.

TP∗(k) = Wk [v , v−1] is periodicπ∗(F 0TP(k)) = Wk [v ,pv−1] has finite global dimension

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 16 / 16

Page 122: A Strong Künneth Theorem for Topological Periodic Cyclic ...mmandell/talks/MIT-170313.pdf · A Strong Künneth Theorem for Topological Periodic Cyclic Homology Michael A. Mandell

Questions and Answers

M.A.Mandell (IU) Topological Periodic Cyclic Homology Mar 2017 17 / 17