a strategy for routing the mpc8536e in a six-layer pcb · 2016. 11. 23. · a strategy for routing...

48
Freescale Semiconductor Application Note © Freescale Semiconductor, Inc., 2007. All rights reserved. Freescale Confidential Proprietary This application note is a design guide to assist the customer in creating a low-layer, low-cost PCB design when using the MPC8536E device. Key items of discussion include assumed PCB stackup, power delivery to the device, and proper signal referencing. Additionally, layout plots for the device fan-out are also included. NOTE The schematic and Gerber data shown within this application note is intended merely to demonstrate the fan-out and power delivery strategy necessary to achieve a six-layer PCB. The schematic and Gerber data does not include all the decoupling, nor do they show all the necessary pull-ups and AC caps required outside the BGA fan-out area. This level of detail is captured as part of the MPC8536E development system. AN3444 Rev. 0, 10/2007 Contents 1 Ballmap Organization . . . . . . . . . . . . . . . . . . . . .2 2 Interface Support in Six Layers . . . . . . . . . . . . . .2 3 Board Stackup Considerations . . . . . . . . . . . . . .4 3.1 Stackup Proposal . . . . . . . . . . . . . . . . . . . .4 4 Signal Breakout . . . . . . . . . . . . . . . . . . . . . . . . . .6 4.1 Inside the BGA area . . . . . . . . . . . . . . . . . .6 4.2 Outside the BGA Area . . . . . . . . . . . . . . . .8 4.3 Trace Spacing Outside the BGA Area . . . .8 5 Via Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 6 Power and Ground Strategy . . . . . . . . . . . . . . . .10 6.1 Power Planes . . . . . . . . . . . . . . . . . . . . . .10 6.2 Current Delivery . . . . . . . . . . . . . . . . . . . .14 6.3 PLL Filters . . . . . . . . . . . . . . . . . . . . . . . .14 6.4 Sharing Power Supplies . . . . . . . . . . . . . .15 6.5 Bypass Capacitor Placement . . . . . . . . . .16 6.6 Bulk Capacitors . . . . . . . . . . . . . . . . . . . .20 7 Signal Layer Gerber Plot . . . . . . . . . . . . . . . . . .21 8 Fan-Out Schematics . . . . . . . . . . . . . . . . . . . . .26 9 Current Delivery in the BGA Field . . . . . . . . . . .40 9.1 Via Current Capacity . . . . . . . . . . . . . . . .41 9.2 Alternate Plane Current Capacity . . . . . .42 10 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . .46 A Strategy for Routing the MPC8536E in a Six-Layer PCB by Michael George DSD Applications Freescale Semiconductor, Inc. Austin, Texas

Upload: others

Post on 14-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

Freescale SemiconductorApplication Note

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Freescale Confidential Proprietary

This application note is a design guide to assist the customer in creating a low-layer, low-cost PCB design when using the MPC8536E device. Key items of discussion include assumed PCB stackup, power delivery to the device, and proper signal referencing. Additionally, layout plots for the device fan-out are also included.

NOTEThe schematic and Gerber data shown within this application note is intended merely to demonstrate the fan-out and power delivery strategy necessary to achieve a six-layer PCB. The schematic and Gerber data does not include all the decoupling, nor do they show all the necessary pull-ups and AC caps required outside the BGA fan-out area. This level of detail is captured as part of the MPC8536E development system.

AN3444Rev. 0, 10/2007

Contents1 Ballmap Organization . . . . . . . . . . . . . . . . . . . . .22 Interface Support in Six Layers . . . . . . . . . . . . . .23 Board Stackup Considerations . . . . . . . . . . . . . .4

3.1 Stackup Proposal . . . . . . . . . . . . . . . . . . . .44 Signal Breakout . . . . . . . . . . . . . . . . . . . . . . . . . .6

4.1 Inside the BGA area. . . . . . . . . . . . . . . . . .64.2 Outside the BGA Area . . . . . . . . . . . . . . . .84.3 Trace Spacing Outside the BGA Area . . . .8

5 Via Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Power and Ground Strategy. . . . . . . . . . . . . . . .10

6.1 Power Planes . . . . . . . . . . . . . . . . . . . . . .106.2 Current Delivery . . . . . . . . . . . . . . . . . . . .146.3 PLL Filters . . . . . . . . . . . . . . . . . . . . . . . .146.4 Sharing Power Supplies . . . . . . . . . . . . . .156.5 Bypass Capacitor Placement . . . . . . . . . .166.6 Bulk Capacitors . . . . . . . . . . . . . . . . . . . .20

7 Signal Layer Gerber Plot . . . . . . . . . . . . . . . . . .218 Fan-Out Schematics . . . . . . . . . . . . . . . . . . . . .269 Current Delivery in the BGA Field . . . . . . . . . . .40

9.1 Via Current Capacity . . . . . . . . . . . . . . . .419.2 Alternate Plane Current Capacity . . . . . .42

10 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4511 Revision History. . . . . . . . . . . . . . . . . . . . . . . . .46

A Strategy for Routing the MPC8536E in a Six-Layer PCBby Michael George

DSD ApplicationsFreescale Semiconductor, Inc.Austin, Texas

Page 2: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

2 Freescale Confidential Proprietary Freescale Semiconductor

Ballmap Organization

1 Ballmap OrganizationThe MPC8536E is a 783-pin, 28 × 28 BGA array. The bus organization of the device is shown in Figure 1.

Figure 1. MPC8536E Bus Groupings (Viewed from the top of the device)

2 Interface Support in Six LayersThough the MPC8536E device can be fully broken out in six layers, there are a handful of signals that are not necessarily optimal from a signal integrity perspective, mainly due to splits in the reference plane. Such cases are very limited and are, therefore manageable. Table 1 enumerates the MPC8536E interfaces and whether there is proper signal referencing in the six-layer PCB fan-out example.

Table 1. Interface Support in Six Layers

Interface Configuration Reference Plane Comment

DDR2 Full 64-bit + ECC DDR Data—GND

DDR ADDR—1.8 V

DDR CLKs—1.8 V

Fully supported.

ETSEC RGMII RGMII I/O—2.5 V

GTX_CLK125—GND

Both Ethernet ports can be fully routed in RGMII mode with proper signal referencing to the TVDD/LVDD power split, set at 2.5 V.

Signals needed for GMII can be broken out, but have breaks in their reference plane.

TSEC

USB

PCI and3.3 V I/O

Srds1

LocalBus

DDR

Srds2 CoreandPlat

A1 A28

Page 3: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 3

Interface Support in Six Layers

POR Config All user defined POR pins are accessible.

GND and PWR Fully supported. Some POR pins cross splits but since they are static, there is no concern.

PCI Full 32-bit PCI with 3 GNTs and 3 REQs

GND PCI_REQ[4:5] and PCI_GNT[4:5] not broken out on same layer as rest of the PCI bus.

LB All signals are accessible GND and PWR LB_LAD[23:31] cross split boundaries. These signals are not edge sensitive, therefore imperfections in their transitions can be managed. Use of stitching caps could be used.

SERDES1 All eight lanes accessible GND Fully supported

SERDES2 Both lanes accessible GND Fully supported

IRQ All IRQs (0–11) and IRQ_OUT useable

GND and PWR Fully supported

SPI All signals are accessible GND Fully supported

SDHC All signals are accessible GND Fully supported

JTAG/COP All signals are accessible GND and PWR Fully supported

DUARTS Both UART ports are fully accessible

GND and PWR Fully supported

USB All three ports fully accessible GND Fully supported

Power pins and AVDD filters

All unique powers accessible N/A Fully supported

I2C Both I2C port accessible GND and PWR Fully supported

Clocking SYSCLK, RTC, and DDRCLK accessible

GND and PWR Fully supported

1588 All signals are accessible GND and PWR Signals cross split boundaries. Most customers do not use. Use of stitching caps could be used.

GPIO and miscellaneous

signals

All signals are accessible GND and PWR Fully supported

DEBUG TRIG_OUT PWR Signal crosses split boundaries. Noncritical debug signal. Use of stitching cap could be used.

Table 1. Interface Support in Six Layers (continued)

Interface Configuration Reference Plane Comment

Page 4: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

4 Freescale Confidential Proprietary Freescale Semiconductor

Board Stackup Considerations

3 Board Stackup ConsiderationsThis section presents the considerations associated with the PCB and its stackup. Table 2 list the target impedances needed in a six-layer design.

Additional considerations for the stackup include

• Must utilize high volume, low cost PCB technology

• Routing density

• Aspect ratio less than 10:1

• Drill size set at 10 mil

• Common core construction

• Proper signal referencing for all critical signals

3.1 Stackup ProposalFigure 2 shows a viable stackup for achieving the target impedances noted in Table 2. The target card thickness used is 62 mils (±7 mils). All signal routing is done on the inner two signal layers, or on the top and bottom signal layers. No signal routing is performed on the power and ground layers.

Table 2. Target Impedance for a Typical MPC8536E Design

Interface Connection Target Impedance

DDR2 8536E-to-DDR2 memory Single ended impedance = 55–60 ΩDifferential impedance = 100 Ω ± 10%

SERDES1 (PCIe) 8536E-to-PCIe connector or device MicroStrip

Single ended impedance = 60 ± 15%

Differential impedance = 100 Ω ± 20%

Stripline

Single ended impedance = 60 ± 15%

Differential impedance = 100 Ω ± 15%

SERDES2 (SGMII/SATA)

8536E-to-connector or device Differential impedance = 100 Ω ± 15%

All 8536E signals 8536E-to-connector or device Single ended interface = 55–60 Ω

Other system Items:

USB differential USB Phy to connector Differential impedance = 90 Ω ± 15%

Ethernet differential Ethernet Phy to connector Differential impedance = 100 Ω ± 15%

Page 5: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 5

Board Stackup Considerations

Figure 2. Example Six-Layer PCB Stackup (Provided by Sanmina-SCI; www.sanmina-sci.com)

Table 3. Impedance Information (Provided by Sanmina-SCI; www.sanmina-sci.com)

Layer Type Line Width Center-to-Centertpd

(ps/in.)Impedance

(Ω)

1 Single-endedMicrostrip

5 mil n/a 153 55.15

1 DifferentialMicrostrip

4 mil 8 mil 154 93.28

1 DifferentialMicrostrip

5 mil 12 mil 154 96.54

3 Single-endedStripline

4 mil n/a 179 56.0

3 DifferentialStripline

4 mil 10 mil 181 96.38

4 Single-endedStripline

4 mil n/a 179 56.0

4 DifferentialStripline

4 mil 10 mil 181 96.38

Page 6: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

6 Freescale Confidential Proprietary Freescale Semiconductor

Signal Breakout

4 Signal Breakout

4.1 Inside the BGA areaThe key strategy used in breaking-out the MPC8536E is centered on the use of inexpensive through-hole vias and the use of two track routing for the inner and bottom layers (see Figure 4). For all mainstream PCB fabrication shops, this approach is considered “production-level” technology and is capable of being produced in high volumes. Additionally, this approach produces a cheaper overall PCB design, avoiding the additional cost associated with blind and buried type approaches.

The key items of the strategy are as follows:

• 1 mm (39.3 mil) ball pitch

• Plastic substrate

• 22 mil attach pad on top layer

• 19 mil via pad

• 28 mil anti-pad

• Single track routing on top layer (between attach pads)

• Two track routing on inner layers and on the bottom layer

— Using 4 mil traces and 4 mil space

Figure 3 and Figure 4 show the track routing strategy used for each of the signal layers.

6 Single-endedMicrostrip

5 mil n/a 153 55.15

6 DifferentialMicrostrip

4 mil 8 mil 154 93.28

6 DifferentialMicrostrip

5 mil 12 mil 154 96.54

Table 3. Impedance Information (Provided by Sanmina-SCI; www.sanmina-sci.com) (continued)

Layer Type Line Width Center-to-Centertpd

(ps/in.)Impedance

(Ω)

Page 7: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 7

Signal Breakout

Figure 3. Signal Routing (Top and Layer #2)

2 traces per rowWidth >= 4 mil

Signal Layer #2

3 traces per rowWidth = 4 milSpace = 4 mil

Drill = 10 milPad = 19 mil

Attach Pad 22 mil

Row 1

Row 12

Row 7

Signal Layer #1 (top)

Page 8: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

8 Freescale Confidential Proprietary Freescale Semiconductor

Signal Breakout

Figure 4. Signal Routing (Signal Layer #3 and Bottom)

4.2 Outside the BGA AreaInside the BGA area, two track routing limits the minimum trace width to 4 mils and the minimum spacing to 4 mils. Outside the BGA area, this is not the case. Since wider traces have less dielectric loss, the designer may find it useful to use larger trace widths once outside the via array. Similarly, in the cases of differential pairs, the air gaps can be adjusted as needed in order to hit desired impedance targets.

4.3 Trace Spacing Outside the BGA AreaTo minimize crosstalk opportunities once outside the BGA area, the spacing between differing signal groups must be observed. This spacing, denoted as ‘S,’ is based on the dielectric thickness ‘H’ (shown in Figure 5). For the stackup shown in Figure 2, the dielectric thickness is 4.0. Using a 3:1 spacing rule, the air gap between differing signal groups should be at least 12 mil.

Signal Layer #3

2 traces per rowWidth = 4 mil

Signal Layer #4

2 traces per rowWidth = 4 mil

Row 3

Row 12

Row 7

Page 9: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 9

Via Usage

Figure 5. Trace Spacing Outside the BGA Area

5 Via UsageFor the six-layer PCB a 10-mil drill is used. A 10-mil drill has favorably cost advantages since smaller drill sizes incur additional cost. During fabrication, the drill tolerance is specified as +0/–3 mil, giving a finished hole size (FHS) of approximately 7–7.5 mil.

Using a 10-mil drill an aspect ratio of ~ 6:1 is realized. This aspect ratio is based on an 0.062-inch board thickness and is well within the high volume, production capabilities of all mainstream PCB vendors. Figure 6 depicts the via model used for the six-layer PCB.

Figure 6. Cross Section of PCB

Reference Plane

Trace 1 Trace 2

H

S

39.3 mil (1 mm) BGA Pitch

19.3 mil

11.3 mil

28 mil Anti-Pad

Standard Via

= Section of power plane flowing between vias

19 mil Pad

7–7.5 mil FHS

= Outer layer signal tracks= Inner layer signal tracks

= Via barrel/via pad copper

= PCB

Legend

10 mil Drill

Page 10: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

10 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

6 Power and Ground StrategyThe MPC8536E requires several power supplies for each subsystem (DDR, Ethernet, SerDes, and so forth) as well as the interconnect fabric itself (the platform voltage). The total number of supplies a system needs depends on the interfaces, the interface voltages required to connect with external peripherals, and the number of those voltages that are common and shareable.

Consult the MPC8536E PowerQUICC™ III Integrated Processor Hardware Specifications for accurate voltage and current requirements. For convenience, Table 4 provides a snapshot of the MPC8536E power requirements at the date of this application note. The table also reflects the unique power splits which where constructed in the six-layer PCB example (refer to the Power Rails column). In short, a total of seven unique power rails are used.

Note that Table 4 lists the power requirements for the MPC8536E only; it does not include requirements for external devices, memory, and so forth. At the very least, additional power is needed to drive connected I/O pins, and the internal logic of the other devices often shared with the MPC8536E supplies.

6.1 Power PlanesThe following pictures (Figure 7 through Figure 10) highlight the power strategy used for the six-layer PCB. The ground reference for the PCB is a solid ground plane at layer 2. Since it is a solid plane with no splits, the ground layer is not shown.

Table 4. MPC8536E Power Requirements 1

1 These figures are subject to change without notice. Consult the latest version of the MPC8536E PowerQUICC™ III Integrated Processor Hardware Specifications.

Power Rails SymbolTypical Voltage

Tolerance PMAX

Core power VDD_COREAVDD_CORE

1.1 Vor

1.0 V

±50 mV 7 W

Platform (internal buses)

VDD_PLATAVDD_PLATAVDD_PCIAVDD_DDRAVDD_LBIUAVDD_SRDSAVDD_SRDS2

1.0 V ±50 mV 5 W

SerDes SVDDXVDD

1.0 V ±50 mV 0.71W

DDR2 bus GVDD 1.8 V ±90 mV 2.5 W

Ethernet LVDDTVDD

2.5 V ±125 mV 0.24 W

Local bus BVDD 3.3 V ±125 mV 0.33 W

Misc/PCI OVDD 3.3 V ±125 mV 0.33 W

Page 11: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 11

Power and Ground Strategy

Figure 7. Power Plane (Layer 5 of 6)

Page 12: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

12 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

Figure 8. SXVDD Power (Layer 2 of 6)

Figure 9. VDD PLAT (Layer 4 of 6)

Page 13: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 13

Power and Ground Strategy

Figure 10. OVDD, VDD_PLAT, and Rest of SXVDD (Layer 6 of 6—Bottom)

For sensitive supplies (such as XVDD and SVDD), a key requirement for power sharing is that the planes be relatively isolated. One effective strategy is to route the power planes separately and tie them together at the power source. See Figure 11.

Figure 11. Common Source Split Planes

Another strategy is to use a low-pass filter to eliminate coupled noise, as long as there is sufficient current capacity in the components and connections. In either case, once separated, treat the two as independent power planes and route and bypass them separately.

MPC8536E

1.0 V Power Supply

VDD_PLAT

XVDDSVDD

Page 14: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

14 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

6.2 Current DeliveryAn important consideration in the six-layer PCB is ensuring all power rails have sufficient copper for proper current delivery. The two highest power rails on the MPC8536E are VDD_CORE and VDD_PLAT. The max power requirement for VDD_CORE is 7 W and the max power requirements for VDD_PLAT is 5 W.

Within a congested BGA array, the current travels down multiple 11-mil trace segments as it travels to the power pins, assuming the via stackup referenced in Figure 6 is used. The current-carrying capacity of these 11-mil traces is highly dependent on the current model chosen, either IPC2221A or the newer research performed by Johannes Adam of Flomerics Ltd. For greater detail on these two approaches see Section 9, “Current Delivery in the BGA Field.”

In short, Table 5 depicts the current capacity differences between the two approaches assuming a maximum temperature rise of 20°C. Additionally, the last column highlights the current capacity assumed for the MPC8536E six-layer PCB.

Table 5. Current Capacity of an 11-mil Trace Adam’s Model vs. IPC

Taking the last column from Table 5 and the number of 11-mil channels achieved in the six-layer PCB, Table 6 highlights the current capacity for both VDD_CORE and VDD_PLAT.

6.3 PLL FiltersThe MPC8536E has six PLLs which each require a filter circuit. The PLL pins are placed on the package in order to minimize noise and to allow ease during layout. An example layout for the filters are shown in Figure 12. This figure shows the filters for AVDD_PCI, AVDD_DDR, AVDD_CORE, and AVDD_PLAT. The

LocationCopper Plating

(oz.)

11-mil Trace(Adam’s Model)

(A)

11-mil Trace(IPC2221A)

(A)

11-mil Trace(Capacity Assumed for theMPC8536E Six-Layer PCB)

(A)

Outer 0.5 1.210 0.777 1.0

1.0 1.711 1.285 1.5

1.5 2.420 1.730 N/A

2.0 3.422 2.130 N/A

Inner 0.5 1.149 0.390 0.75

1.0 1.625 0.582 1.1

1.5 2.299 0.865 N/A

2.0 3.251 1.065 N/A

Table 6. Current Capacity Achieved in the Six-Layer PCB

Power RailCopper Weight

Used(oz.)

No. of 11-mil TracesSupplying Power

Current per Trace

(A)

Total Current Suppliedin Six-Layer PCB

(A)

Total Current Required

VDD_CORE 1.0 13 1.1 14.3 6.4 A (7 W/1.1 V)

VDD_PLAT 0.5 11 0.75 8.25 5.0 A (5 W/1.0 V)

Page 15: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 15

Power and Ground Strategy

residual filters would be similar. For the exact filter values refer to the MPC8536E PowerQUICC™ III Integrated Processor Hardware Specifications.

To ensure a high quality filter is realized, use the following rules:

• Place the components of the filter as close a possible to their respective pin

• Keep the traces as short as possible

• Use a 10-mil trace width or larger. An area fill is also a possibility.

• Maintain at least 20-mil clearance between the filter and other signals.

Figure 12. Example Layout for AVDD Filters

6.4 Sharing Power SuppliesThe six-layer design referenced in this application note assumes all processor powers referenced in Table 4 are supplied by unique power supplies. If the customer chooses, further sharing of power supplies can be achieved to reduce the number of supplies needed at the board-level. Table 7 shows some acceptable options for sharing MPC8536E power rails.

Filters

Page 16: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

16 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

6.5 Bypass Capacitor PlacementBecause of the high current transients on the VDD_CORE and VDD_PLAT power pins, take care to bypass these power pins and to provide a good connection between the BGA pads and the power and ground planes. In particular, the SMD capacitors should have pads directly attached to the via ring (or even better, within it using via-in-pad methods). Figure 13 shows the dispersion of VDD_CORE and VDD_PLAT power pins along with the ground pattern.

Table 7. MPC8536E Power Requirements

Power Source Symbol Voltage Comments

Core power + PLL filter

VDD_COREAVDD_CORE

1.0 V If core and platform rails are shared, the upper core frequency is restricted. Additionally, there is no option for disabling the core power when the device is in ‘deep sleep’ state and the platform is alive.

PLLs are sourced from RC filter circuit derived from 1.0 V rail.

Platform (internal buses)

+ other PLL filters

VDD_PLATAVDD_PCIAVDD_DDRAVDD_LBIUAVDD_SRDSAVDD_SRDS2

SerDes SVDDXVDD

Separate filtered plane but derived from the same 1.0 V power regulator.

Memory GVDD 1.8 V Unique rail on the MPC8536E device. Could possibly be shared with another 1.8 V device on the board.

Ethernet LVDDTVDD

2.5 V 2.5 V is readily usable by most PHYs; however, 3.3 V is not suitable for RGMII mode.

Local bus BVDD 2.5 V requires low-voltage flash memory and so forth

Or alternatively

Ethernet LVDDTVDD

3.3 V 3.3 V is not suitable for RGMII mode

Local bus BVDD

PCI/Misc OVDD

Page 17: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 17

Power and Ground Strategy

Figure 13. MPC8536E VDD_CORE, VDD_PLAT, and Ground Pattern (Bottom View)

NOTE

This is a bottom view of the center portion of interest within the BGA array.

VDD_PLAT Ground

L M N P R T U

11

12

13

14

15

16

V W Y

17

18

19

20

21

22

23

VDD_CORE

24

Page 18: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

18 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

After the power and grounds are escaped, the SMD 0402 capacitors can be placed so that the capacitor pads attach directly to the power vias on the side. Minimize or eliminate the trace between the via and the capacitor pad. Figure 14 shows three possible attachment methods.

Figure 14. MPC8536E SMD Capacitor Via Placement

Using either of these methods, Figure 15 shows the relative attachment of the SMD 0402 capacitors. Again, this is a view through the top of the board.

Vias Embedded in Pads Vias to the Side of Pads

All are SMD0402

Vias Offset From PadsBest Good OK

Page 19: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 19

Power and Ground Strategy

Figure 15. MPC8536E CORE, PLAT, and Ground SMD 0402 Capacitor Placement (Bottom View)

Other capacitors, such as those required for the other power rails, are not shown but can be attached in the same manner. If the PCB is not permitted to use via-in-pad connections, the capacitors can be shifted to attach to a pad in the area between the BGA pads. In that case, use the same relative pattern, but each capacitor shifts a little.

VDD_PLAT GROUND

L M N P R T U

11

12

13

14

15

16

V W Y

17

18

19

20

21

22

23

VDD_CORE

24

C

C C C C C

C C C C C C

C

C

C C C C C C C

CCC

22

Page 20: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

20 Freescale Confidential Proprietary Freescale Semiconductor

Power and Ground Strategy

6.6 Bulk CapacitorsBulk capacitors can be placed outside the periphery of the MPC8536E die, as close as reasonably possible. Systems with heatsinks and/or sockets probably need some additional spacing, but the high-frequency capacitors handle the fastest transients, allowing the bulk capacitors to be spaced a little further away. Keep them within 2 cm. Figure 16 shows the MPC8536E VDD_CORE and VDD_PLAT bulk capacitor placement.

Figure 16. MPC8536E Bulk Capacitor Placement (Top View)

MPC8536E0.46 mils

Low-ESRBulk Capacitors

0.46 mils

VCORE

Low-ESRBulk Capacitors

VPLAT Power Split

PowerSplit

A28A1

Page 21: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 21

Signal Layer Gerber Plot

7 Signal Layer Gerber PlotFigure 17 through Figure 20 show the signal layers for the six-layer PCB example. Again, the intent is to demonstrate that the MPC8536E signals can be broken in a six-layer PCB and does not include all the decoupling, nor does it show all the necessary pull-ups, AC caps, and other circuitry that would be required outside the BGA fan-out area. This level of detail is captured as part of the MPC8536E development system.

Page 22: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

22 Freescale Confidential Proprietary Freescale Semiconductor

Signal Layer Gerber Plot

Figure 17. Top Gerber Plot (Layer 1 of 6)

Page 23: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 23

Signal Layer Gerber Plot

Figure 18. Signal #2 Gerber Plot (Layer 3 of 6)

Page 24: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

24 Freescale Confidential Proprietary Freescale Semiconductor

Signal Layer Gerber Plot

Figure 19. Signal #3 Gerber Plot (Layer 4 of 6)

Page 25: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 25

Signal Layer Gerber Plot

Figure 20. Bottom Gerber Plot (Layer 6 of 6)

Page 26: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

26 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

8 Fan-Out SchematicsThis section contains the fan-out schematics used to perform the six-layer PCB study. It does not include all the decoupling, nor does it show all the necessary pull-ups, AC caps, and other circuitry that would be required outside the BGA fan-out area. This level of detail is captured as part of the MPC8536E development system.

8536 DDR SECTION

P2

MAPAR_OUT

9C2

10C2

9C2 10C29C2 10C2

9B2 10B2

9C2

9A5 10A5

9A5 10A5

9D2

9A2 10A2

9A5 10A5

9C2 10C2

10C210C29C29C2

9B5 10B59B5 10B59B5 10B59B5 10B59B5 10B59A5 10B59A5 10A59A5 10A5

9A5 10A59A5 10A5

9A5 10A5

9A5 10A59A5 10A59A5 10A59A5 10A5

10C2

9C2

10C210C29C2

10D210D210D210D210D210D29D29D29D29D2

9C2

9D2 10D3

9A2 10B2

9D2 10D2

9C610C6

9B2 10B2

MCS0_B

MCS2_B

8536_FAN_OUT_SCHEMATIC

MRAS_BMCAS_B

MBA<0..2>

5

C11

MCKE0

MDQS2

MDQS3

M4

B4

A28

C5

F6E6H7E5

D12C13F14G14

F11D14G12

E13D13M2N1

M3C1D2J5K5A17B16C18E17B22A22D24C23

R2

K2J2R1P1K1J1P4N4K4J3P3N3L4L5F1E1B3A2G2F2C3B2J4H3G5E4H2G1F3D1

B15A16A19B19B14A15A18B18D16F17F18F19C16E16D19E19A21B21B24A25A20B20A23A24E21D22B25D25D21C22B26A26

F13L2L3C2G4B17D18B23C25

K15H15

G6C4H6D3

H9G10K10H10

J8H8

H13J13B8A8K6J6

H11J11B9A9

E7

B13B5A4

A6A13

F10E10F7D11A12A5B12E9F9A11C10D9A10C8G8B7

U1

C1

R4

R3

GVDD

18

MDIC0

MCK0_B

MECC_<0..7>

MDQS4_B

MWE_B

MODT3MODT2MODT1MODT0

MDQS8_BMDQS8MDQS7_BMDQS7MDQS6_BMDQS6MDQS5_BMDQS5

MDQS4MDQS3_B

MDQS2_B

MDQS1_BMDQS1MDQS0_BMDQS0

MCS3_B

MCS1_B

MCKE3MCKE2MCKE1

MCK5_BMCK5MCK4_BMCK4MCK3_BMCK3MCK2_BMCK2MCK1_BMCK1

MCK0

09

48

3534

12

08

37

MDM<0..8>

01

03

39

47

63

38

2120

11

24

17

43

46

62

10

MDIC1

18

50

5657

40

58

6160

MVREF

123

67

210

43

5

76

2

111213

0102030405

0708

1009

06

0706

02

0405

1314

16

1819

2223

25

29

3233

36

4142

4445

49

5152535455

59

1514

15

MDQ<00..63>

3130

0

MA<00..15>

0.1UF

8

01

00

4

00

26

2827

ENGINEER NAMEENGINEER:

5 6

FREESCALE C fid i l P i42 3

75 642 3

7

PROJECT:

MPC8536

PBGA_28X28X1MM_SKT

DDR_SDRAM

1 OF 10

MECC7MECC6MECC5MECC4MECC3MECC2MECC1MECC0

MWE_B

MVREF

MRAS_B

MODT3MODT2MODT1MODT0

MDQS8_BMDQS8

MDQS7_BMDQS7

MDQS6_BMDQS6

MDQS5_BMDQS5

MDQS4_BMDQS4

MDQS3_BMDQS3

MDQS2_BMDQS2

MDQS1_BMDQS1

MDQS0_BMDQS0

MDQ63MDQ62MDQ61MDQ60MDQ59MDQ58MDQ57MDQ56MDQ55MDQ54MDQ53MDQ52MDQ51MDQ50MDQ49MDQ48MDQ47MDQ46MDQ45MDQ44MDQ43MDQ42MDQ41MDQ40MDQ39MDQ38MDQ37MDQ36MDQ35MDQ34MDQ33MDQ32MDQ31MDQ30MDQ29MDQ28MDQ27MDQ26MDQ25MDQ24MDQ23MDQ22MDQ21MDQ20MDQ19MDQ18MDQ17MDQ16MDQ15MDQ14MDQ13MDQ12MDQ11MDQ10MDQ09MDQ08MDQ07MDQ06MDQ05MDQ04MDQ03MDQ02MDQ01MDQ00

MDM8MDM7MDM6MDM5MDM4MDM3MDM2MDM1MDM0

MDIC1MDIC0

MCS3_BMCS2_BMCS1_BMCS0_B

MCKE3MCKE2MCKE1MCKE0

MCK5_BMCK5MCK4_BMCK4MCK3_BMCK3MCK2_BMCK2MCK1_BMCK1MCK0_BMCK0

MCAS_B

MBA2MBA1MBA0

MAPAR_OUTMAPAR_ERR_B

MA15MA14MA13MA12MA11MA10MA09MA08MA07MA06MA05MA04MA03MA02MA01MA00

DRAWING

BIBIBIBI

BIBI

BIBI

BIBI

BIBI

BIBI

BIBIBIBI

OUT

OUTOUTOUTOUT

OUTOUTOUTOUT

BI

BI

OUT

OUT

OUTOUTOUTOUT

OUTOUT

OUTOUTOUTOUTOUTOUTOUTOUTOUTOUT

BI

OUT

IN

OUTOUT

Page 27: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 27

Fan-Out Schematics

SATA OR SGMIIGMII

SS PCI EXPR

11C3

11C611C6

11C6

11C6

11C311C3

11C311C311C311C311C3

11C311C311D311D311D311D311D311D3

11C611C611C611C611C6

11C611D611D611D611D611D611D6

SD1_TX6_B

AC27SD1_RX7_BSD1_RX7

SD1_RX3_B

SD1_RX4

AA28

N21

TP14

M12M11P12P11

L9L8

N9N8P7P6

M7M6

L7T3

L6R7

T2

U1

Y22Y23W20W21V22V23U20U21

R20R21P22P23N20

M22M23

T23T22

AC28AB25AB26AA27

Y25Y26

T25T26R27R28P25P26N27N28

U27U28

V28V26

AE28M26V27

U1

TP112

TP48

TP142

TP141

TP90

TP89

TP18

TP17

TP4

TP3

TP2

TP1

TP10

TP9

TP6

TP5

TP12

TP11

R10

R9

TP16

TP15

R7

R8

TP13TP8TP7

SD2_RX0_B

SD1_IMP_CAL_RX

SD1_PLL_TPDSD1_PLL_TPA

SD1_IMP_CAL_TX

SD2_TX1_BSD2_TX1SD2_TX0_BSD2_TX0

SD2_TST_CLK_BSD2_TST_CLK

SD2_RX1_BSD2_RX1

SD2_RX0

SD2_REF_CLK_BSD2_REF_CLK

SD2_PLL_TPDSD2_PLL_TPA

SD2_IMP_CAL_TXSD2_IMP_CAL_RX

SD1_TX7_BSD1_TX7

SD1_TX6SD1_TX5_BSD1_TX5

SD1_TX4_BSD1_TX4

SD1_TX3_BSD1_TX3

SD1_TX2_BSD1_TX2

SD1_TX1_BSD1_TX1

SD1_TX0_BSD1_TX0

SD1_TST_CLK_BSD1_TST_CLK

SD1_RX6_BSD1_RX6SD1_RX5_BSD1_RX5SD1_RX4_B

SD1_RX3SD1_RX2_BSD1_RX2SD1_RX1_BSD1_RX1SD1_RX0_BSD1_RX0

SD1_REF_CLK_BSD1_REF_CLK

200

200

100

8536_FAN_OUT_SCHEMATIC

100

DRAWINGENGINEER NAME

ENGINEER:

5 6

SC C f42 3

75 642 3

7

PROJECT:

PBGA_28X28_1MM_SKT

MPC8536SERDES 23 OF 10

SD2_TX1_BSD2_TX1

SD2_TX0_BSD2_TX0

SD2_TST_CLK_BSD2_TST_CLK

SD2_RX1_BSD2_RX1SD2_RX0_BSD2_RX0

SD2_REF_CLK_BSD2_REF_CLK

SD2_PLL_TPDSD2_PLL_TPA

SD2_IMP_CAL_TXSD2_IMP_CAL_RX

AGND_SRDS2

PBGA_28X28_1MM_SKT

MPC8536SERDES 12 OF 10

SD1_TX7_BSD1_TX7

SD1_TX6_BSD1_TX6

SD1_TX5_BSD1_TX5

SD1_TX4_BSD1_TX4

SD1_TX3_BSD1_TX3

SD1_TX2_BSD1_TX2

SD1_TX1_BSD1_TX1

SD1_TX0_BSD1_TX0

SD1_TST_CLK_BSD1_TST_CLK

SD1_RX7_BSD1_RX7SD1_RX6_BSD1_RX6SD1_RX5_BSD1_RX5SD1_RX4_BSD1_RX4

SD1_RX3_BSD1_RX3SD1_RX2_BSD1_RX2SD1_RX1_BSD1_RX1SD1_RX0_BSD1_RX0

SD1_REF_CLK_BSD1_REF_CLK

SD1_PLL_TPDSD1_PLL_TPA

SD1_IMP_CAL_TXSD1_IMP_CAL_RXAGND_SRDS

INININ

INININININ

ININININININININ OUT

OUTOUTOUTOUTOUTOUTOUT

OUTOUTOUTOUTOUTOUTOUTOUT

Page 28: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

28 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

PCI 32 BIT

12B1

12B612B3

12B612B3

12B1 12B3 12B6

12D1 12D3 12D5

12B8 12C3 12C612B6 12B8 12C312B6 12B8 12C312B3 12B6 12B8

12B1 12B3 12B6

12B1 12B3 12B6

12B1 12B3 12B6

12C3 12C6 12C8

12B1 12B3 12B6

12B1 12B3 12B6

12B1 12B3 12B6

12B1

PCI1_REQ0_B

PCI1_REQ2_B

TP23

PCI1_REQ1_B

PCI1_GNT2_BPCI1_GNT1_B

GPIO02_PCI1_GNT3_B

GPIO00_PCI1_REQ3_BGPIO01_PCI1_REQ4_B

PCI1_SERR_B

PCI1_IDSEL

8536_FAN_OUT_SCHEMATIC

0100

0302

04050607

0908

101112

1413

1516171819202122

2423

25

TP145

2726

28

3029

31

PCI1_AD<31..00>

TP25

TP19

U1

Y15AE15

AA15

AE25AF26AG26AF25AC24AG27AD24AG25AE24AG24AH23AH24

AE23AF23AC20AE19AF18AC19AE18AB19AB18AE17AD17AA18AC16AB17AC15AA17Y17AB15

AH25AD22AD20AD18

AH26

AC21

AE20

W18Y16AF14

AE16

AB20

AC22

AB21

AA16W16AF13

AF22

AD21

AF21

AC14

AC23

GPIO03_PCI1_GNT4_B

PCI1_CLK

PCI1_C_BE0_BPCI1_C_BE1_BPCI1_C_BE2_BPCI1_C_BE3_B

PCI1_DEVSEL_B

PCI1_FRAME_B

PCI1_IRDY_B

PCI1_PAR

PCI1_PERR_B

PCI1_STOP_B

PCI1_TRDY_B

TP144

PCI1_GNT0_B

TP22

AD26

DRAWINGENGINEER NAME

ENGINEER:

5 6

SC C f42 3

75 642 3

7

PROJECT:

BIBI

BIBI

PBGA_28X28_1MM_SKT

MPC8536PCI1

4 OF 10

PCI1_GNT0_B

PCI1_TRDY_B

PCI1_STOP_B

PCI1_SERR_B

PCI1_REQ2_BPCI1_REQ1_BPCI1_REQ0_B

PCI1_PERR_B

PCI1_PAR

PCI1_IRDY_B

PCI1_IDSEL

PCI1_GNT2_BPCI1_GNT1_B

PCI1_FRAME_B

PCI1_DEVSEL_B

PCI1_C_BE3_BPCI1_C_BE2_BPCI1_C_BE1_BPCI1_C_BE0_B

PCI1_CLK

PCI1_AD31PCI1_AD30PCI1_AD29PCI1_AD28PCI1_AD27PCI1_AD26PCI1_AD25PCI1_AD24PCI1_AD23PCI1_AD22PCI1_AD21PCI1_AD20PCI1_AD19PCI1_AD18PCI1_AD17PCI1_AD16PCI1_AD15PCI1_AD14PCI1_AD13PCI1_AD12PCI1_AD11PCI1_AD10PCI1_AD09PCI1_AD08PCI1_AD07PCI1_AD06PCI1_AD05PCI1_AD04PCI1_AD03PCI1_AD02PCI1_AD01PCI1_AD00

GPIO03_PCI1_GNT4_BGPIO02_PCI1_GNT3_B

GPIO01_PCI1_REQ4_BGPIO00_PCI1_REQ3_B

BIBIBIBI

BI

BI

BI

BI

BIBI

BIBIBIBIBI

Page 29: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 29

Fan-Out Schematics

LOCAL BUS

13D2

13B2

13C1

13A2

LDP0

LDP3LDP2LDP1

LA<27..31>

SPI_CS3_SDHC_DAT7SPI_CS2_SDHC_DAT6SPI_CS1_SDHC_DAT5SPI_CSO_SDHC_DAT4

SPI_MOSI

SPI_CLKSPI_MISO

SDHC_DAT3SDHC_DAT2SDHC_DAT1SDHC_DAT0

SDHC_CMDSDHC_CLK

LWE3_B_LBS3_BLWE2_B_LBS2_BLWE1_B_LBS1_B

LWE0_B_LBS0_B_LFWE_B

LSYNC_OUTLSYNC_IN

LGPL5LGPL4_LGTA_B_LUPWAIT_LPBSE_LFRB

LGPL3_LFWP_BLGPL2_LOE_B_LFRE_B

LGPL1_LFALELGPL0_LFCLE

LCS7_B_DMA_DDONE2_BLCS6_B_DMA_DACK2_BLCS5_B_DMA_DREQ2_B

LCS4_BLCS3_BLCS2_BLCS1_BLCS0_B

LCLK2LCLK1LCLK0

LBCTL

LALE

GPIO5_SDHC_WPGPIO4_SDHC_CD

LAD<00..31>

TP185

TP132TP131TP130

31

2930

2827

31302928272625

U1

AH11AG10L19

K16K17H17G17

K22L21L22K23K24L24L25K25L28L27K28K27J28H28H27G27G26F28F26F25E28E27E26F24E24C26G24E23G23F22G22G21

J26

J25

J24H25

K18G19H19H20G16H16J16L18

K26G28B27E25

J20K20G20H18L20K19

D27D28

J22H22H23H21

AG13AH10

AG12AH12AH13AG11

AD8

AE8AC10AF9AA10

AD9AF8

H24242322212019181716151413121110

0809

0706050403020100

TP161TP160TP129

TP128TP127TP126

TP124TP125

TP123TP122

TP120

TP121

TP118TP119

TP117

TP26TP46

TP41TP40TP39

TP49TP43

TP45TP42

TP47TP44

TP38

TP36TP37

TP35

TP34TP33TP32TP31TP30TP29TP28TP27

8536_FAN_OUT_SCHEMATIC

ENGINEER NAMEENGINEER:

5 6

FREESCALE Confidential Proprietary42 3

75 642 3

7

PROJECT:

DRAWING

INTERFACESPI & SD

PBGA_28X28_1MM_SKT

MPC8536LOCAL BUS5 OF 10

SPI_CS3_SDHC_DAT7SPI_CS2_SDHC_DAT6SPI_CS1_SDHC_DAT5SPI_CS0_SDHC_DAT4

SPI_MOSI

SPI_CLKSPI_MISO

SDHC_DAT3SDHC_DAT2SDHC_DAT1SDHC_DAT0

SDHC_CMDSDHC_CLK

LWE3_B_LBS3_BLWE2_B_LBS2_BLWE1_B_LBS1_B

LWE0_B_LBS0_B_LFWE_B

LSYNC_OUTLSYNC_IN

LGPL5LGPL4_LGTA_B_LUPWAIT_LPBSE_LFRB

LGPL3_LFWP_BLGPL2_LOE_B_LFRE_B

LGPL1_LFALELGPL0_LFCLE

LDP3LDP2LDP1LDP0

LCS7_B_DMA_DDONE2_BLCS6_B_DMA_DACK2_BLCS5_B_DMA_DREQ2_B

LCS4_BLCS3_BLCS2_BLCS1_BLCS0_B

LCLK2LCLK1LCLK0

LBCTL

LALE

LAD31LAD30LAD29LAD28LAD27LAD26LAD25LAD24LAD23LAD22LAD21LAD20LAD19LAD18LAD17LAD16LAD15LAD14LAD13LAD12LAD11LAD10LAD09LAD08LAD07LAD06LAD05LAD04LAD03LAD02LAD01LAD00

LA31LA30LA29LA28LA27 GPIO5_SDHC_WP

GPIO4_SDHC_CD

OUT

OUT

OUT

BI

Page 30: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

30 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

GIBABIT ETHERNET - RGMII

14C3

14C3

14B3

14B3

14B314B314B314B3

14B314B314B314C3

14C3

14C314C314C314C3

14D3

14D314D314D314D3

14C3

14A114A1

14D3

TSEC3_RXD7

TSEC3_RX_DVTSEC3_RX_ERTSEC3_RX_CLK

EC_GTX_CLK125

TSEC_1588_CLK_OUTTSEC_1588_TRIG_OUT0TSEC_1588_TRIG_OUT1TSEC_1588_PULSE_OUT1

TP167TP166

TSEC3_RXD6

TP178TP179

TSEC3_GTX_CLKTSEC3_TX_CLK

TSEC3_TX_EN

V8U8

W10U11

W7W8

T11V11

V10W9

T12

V9T8T7T5T6

U9V5

U10

U12U13U6V6V1U3U2V3

T4V2

U1

U5T10T9

AA8AA5Y8Y5W3W5W4W6

AB5W1

AB4

AB3AB7AB8Y6

AA2Y3Y1Y2

Y9AA1

AA3

W2AA9AB6

Y11Y10 AA6

U1

TP24TP21TP20

TP180TP181TP182TP183

TP184TP177

TP176TP175TP174TP173

TP172TP162

TP165TP164TP163

TP151TP150

TP149TP148TP147TP146

TP157TP156

TP155TP154TP153TP152

TP50

TSEC3_TXD5

TSEC3_TXD7

TSEC_1588_TRIG_IN1TSEC_1588_TRIG_IN0

TSEC_1588_PULSE_OUT2

TSEC_1588_CLK

TSEC3_TX_ER

TSEC3_TXD6

TSEC3_TXD4TSEC3_TXD3TSEC3_TXD2TSEC3_TXD1TSEC3_TXD0

TSEC3_RXD5TSEC3_RXD4TSEC3_RXD3TSEC3_RXD2TSEC3_RXD1TSEC3_RXD0

TSEC3_CRSTSEC3_COL

TSEC1_TX_ERTSEC1_TX_EN

TSEC1_TX_CLK

TSEC1_TXD7TSEC1_TXD6TSEC1_TXD5TSEC1_TXD4

TSEC1_TXD3TSEC1_TXD2TSEC1_TXD1TSEC1_TXD0

TSEC1_RX_ERTSEC1_RX_CLK

TSEC1_RXD7TSEC1_RXD6TSEC1_RXD5TSEC1_RXD4

TSEC1_RXD3TSEC1_RXD2TSEC1_RXD1TSEC1_RXD0

TSEC1_GTX_CLKTSEC1_CRSTSEC1_COL

EC_MDIOEC_MDC

8536_FAN_OUT_SCHEMATIC

TSEC1_RX_DV

ENGINEER NAMEENGINEER:

75 642 3

PROJECT:

PBGA_28X28_1MM_SKT

MPC8536ETHERNET6 OF 10

TSEC_1588_TRIG_OUT1TSEC_1588_TRIG_OUT0

TSEC_1588_TRIG_IN1TSEC_1588_TRIG_IN0

TSEC_1588_PULSE_OUT2TSEC_1588_PULSE_OUT1

TSEC_1588_CLK_OUTTSEC_1588_CLK

TSEC3_TX_ERTSEC3_TX_EN

TSEC3_TX_CLK

TSEC3_TXD7TSEC3_TXD6TSEC3_TXD5TSEC3_TXD4TSEC3_TXD3TSEC3_TXD2TSEC3_TXD1TSEC3_TXD0

TSEC3_RX_ERTSEC3_RX_DV

TSEC3_RX_CLK

TSEC3_RXD7TSEC3_RXD6TSEC3_RXD5TSEC3_RXD4TSEC3_RXD3TSEC3_RXD2TSEC3_RXD1TSEC3_RXD0

TSEC3_GTX_CLKTSEC3_CRSTSEC3_COL

TSEC1_TX_ERTSEC1_TX_EN

TSEC1_TX_CLK

TSEC1_TXD7TSEC1_TXD6TSEC1_TXD5TSEC1_TXD4TSEC1_TXD3TSEC1_TXD2TSEC1_TXD1TSEC1_TXD0

TSEC1_RX_ERTSEC1_RX_DV

TSEC1_RX_CLK

TSEC1_RXD7TSEC1_RXD6TSEC1_RXD5TSEC1_RXD4TSEC1_RXD3TSEC1_RXD2TSEC1_RXD1TSEC1_RXD0

TSEC1_GTX_CLKTSEC1_CRSTSEC1_COL

EC_MDIOEC_MDC EC_GTX_CLK125

INININ

OUTOUTOUT

OUT

IN

IN

ININININ

OUT

OUT

OUTOUTOUTOUT

IN

BIOUT

IN

IN

OUT

OUT

Page 31: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 31

Fan-Out Schematics

MISC / OTHERS

8536_FAN_OUT_SCHEMATIC

CLK_OUT

AB14

AA12

AF10

AF12

AC12

AD12

AB12

Y12

AE11

AH21

V19W19

AH27

AA13

R5R4

AF28AH28

AG28

AH14

AG19

AF15

AC26AE27

W11W14V12W13W12

V13

Y14

AC25

AA20AA21

AC17

AD14AD13AE13AB22Y19AA22AF16AG17AF19AB23AF17AG22

AG14AH15

AH22AG21

AG15

AG16

AD11AB10

AB11AA11

AE10AD6

AC13W15

AH17AG18

AG20

U1

TP114TP115

TP113

TP159TP158

TP81

TP79TP78TP77TP76

TP75TP74TP73

TP71

TP70TP69TP68

TP61TP62TP63TP64TP65TP66TP67

TP60

TP72

TP80

TP59

TP58

TP57TP56

TP55TP54

TP53TP52

TP51

TP111

TP110

TP109

TP108TP107TP106TP105TP104

TP103TP102

TP101TP100

TP99 TP98

TP97

TP96

TP92TP93TP94TP95

TP91

TP88TP87TP86

TP85TP84

TP83TP82

TEST_SEL_B

UDE_B

UART_SOUT1

UART_SOUT0

UART_SIN1

UART_SIN0

UART_RTS1_B

UART_RTS0_B

UART_CTS1_B

UART_CTS0_B

TRST_B

TRIG_OUT_READY_QUIESCE_BTRIG_IN

TMS

TEMP_CATHODETEMP_ANODE

TDOTDI

TCK

SYSCLK

SRESET_B

RTC

POWER_OKPOWER_EN

MSRCID4MSRCID3MSRCID2MSRCID1MSRCID0

MDVAL

MCP_B

LSSD_MODE_B

L2_TSTCLKL1_TSTCLK

IRQ_OUT_B

IRQ11_DMA_DDONE3_BIRQ10_DMA_DACK3_BIRQ09_DMA_DREQ3_BIRQ08IRQ07IRQ06IRQ05IRQ04IRQ03IRQ02IRQ01IRQ00

IIC2_SDAIIC2_SCL

IIC1_SDAIIC1_SCL

HRESET_REQ_B

HRESET_B

GPIO15_DMA_DREQ1_BGPIO14_DMA_DREQ0_B

GPIO13_DMA_DDONE1_BGPIO12_DMA_DDONE0_B

GPIO11_DMA_DACK1_BGPIO10_DMA_DACK0_B

DDRCLK

CKSTP_OUT_BCKSTP_IN_B

ASLEEP

ENGINEER NAMEENGINEER:

75 642 3

PROJECT:

PBGA_28X28_1MM_SKT

MPC8536MISC

7 OF 10TEST_SEL_B

UDE_B

UART_SOUT1

UART_SOUT0

UART_SIN1

UART_SIN0

UART_RTS1_B

UART_RTS0_B

UART_CTS1_B

UART_CTS0_B

TRST_B

TRIG_OUT_READY_QUIESCE_BTRIG_IN

TMS

TEMP_CATHODETEMP_ANODE

TDOTDI

TCK

SYSCLK

SRESET_B

RTC

POWER_OKPOWER_EN

MSRCID4MSRCID3MSRCID2MSRCID1MSRCID0

MDVAL

MCP_B

LSSD_MODE_B

L2_TSTCLKL1_TSTCLK

IRQ_OUT_B

IRQ11_DMA_DDONE3_BIRQ10_DMA_DACK3_BIRQ09_DMA_DREQ3_BIRQ08IRQ07IRQ06IRQ05IRQ04IRQ03IRQ02IRQ01IRQ00

IIC2_SDAIIC2_SCL

IIC1_SDAIIC1_SCL

HRESET_REQ_B

HRESET_B

GPIO15_DMA_DREQ1_BGPIO14_DMA_DREQ0_B

GPIO13_DMA_DDONE1_BGPIO12_DMA_DDONE0_B

GPIO11_DMA_DACK1_BGPIO10_DMA_DACK0_B

DDRCLKCLK_OUT

CKSTP_OUT_BCKSTP_IN_B

ASLEEP

Page 32: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A S

trategy for R

ou

ting th

e MP

C8536E

in a S

ix-Layer P

CB

,R

ev. 0

32Freescale C

onfidential Proprietary

Freescale Sem

iconductor

Fan

-Ou

t Sch

ematics

PCI EXPRESS RCVR PWR

MISC SIGNALS

ANALOG FILTERS

GIGABIT ETHERNET

DDR POWER

CORE

PCI EXPRESS XMTR PWR

10

10

1

1

10

10

10

LOCAL BUS

PLATFORM

7

Tue Jul 31 12:15:27 2007

AH16

E22

SENSEVSSSENSEVDD

AVDD_SRDS2AVDD_SRDS

AVDD_PLATAVDD_PCI1AVDD_LBIU

AVDD_DDR

AVDD_CORE

SXVDD

VDD_PLAT

BVDD

U1

AH19C28

AH20

AH18 W28 T1L23

J18

J23

J19

F20

F23

H26

J21

B1 B11

C7 C9 C14

C17

D4 D6 R3 D15

E2 E8 C24

E18

F5 E14

C21

G3 G7 G9 G11

H5 H12

F15

J10

K3 K12

K14

H14

D20

E11

M1 N5

AA7

AA4

Y18AG2AD4AB16AF6AC18AB13AD10AE14AD16AD25AF27AE22AF11AF20AF24

R6N7M9

V15

V16

M27N25P28R24R26T24T27U25W24W26Y24Y27AA25AB28AD27

V4 U7

P13U16L16M15N14R14P15N16M13U14T13L14T15

T19

M17

T17

V17

U18

R18

N18

M19

P19

P17

R11N12L11

M21N23P20R22T20U23V21W22Y20AA23

R16

LTVDD

TP134TP133

OVDD

GVDD

VDD_CORE

SXVDD

14

C135

C133

C134

C132

C136

C130

C131

C116

C129C122

C123

C118

C119

C127

C121 C128

C124

C126

C125

C120

C117

R13

R11

R5

R6

R2

R12

R1

VDD_CORE

2.2UF

2.2UF

AVDD_PLAT

AVDD_PCI1

2.2UF

2.2UF

AVDD_LBIU

2.2UF

0.1UF

0.1UF

2.2UF2.2UF

2.2UF

0.1UF

AVDD_CORE

2.2UF

AVDD_SRDS2

3300PF

0.1UF

0.1UF

AVDD_DDR

VDD_PLAT2.2UF 2.2UF

AVDD_SRDS

2.2UF

2.2UF

2.2UF

3300PF

SXVDD

8536_FAN_OUT_SCHEMATIC

X1

7C87C8

7D87D87D8

7C8

7D8

7D5

7D5

7D5

7D5

7D5

7D5

7D5

ENGINEER NAMEENGINEER:

5 6

FREESCALE Confidential Proprietary42 31

A

B

C

D

7 85 642 31

OFPAGE:

8

REV

DATE:

7

PROJECT:

DRAWING

PBGA_28X28_1MM_SKT

MPC8536

POWER

8 OF 10

VDD_PLAT9

VDD_PLAT10

XVDD10

BVDD03

BVDD08

XVDD09XVDD08XVDD07XVDD06XVDD05XVDD04XVDD03XVDD02XVDD01

X2VDD03X2VDD02X2VDD01

GVDD34

GVDD33

VDD_PLAT8

VDD_PLAT7

VDD_PLAT6

VDD_PLAT5

VDD_PLAT4

VDD_PLAT3

VDD_PLAT2

VDD_PLAT1

VDD_CORE14VDD_CORE13VDD_CORE12VDD_CORE11VDD_CORE10VDD_CORE09VDD_CORE08VDD_CORE07VDD_CORE06VDD_CORE05VDD_CORE04VDD_CORE03VDD_CORE02VDD_CORE01

TVDD2

TVDD1

SVDD15SVDD14SVDD13SVDD12SVDD11SVDD10SVDD09SVDD08SVDD07SVDD06SVDD05SVDD04SVDD03SVDD02SVDD01

SENSEVSS

SENSEVDD

S2VDD03S2VDD02S2VDD01

OVDD16OVDD15OVDD14OVDD13OVDD12OVDD11OVDD10OVDD09OVDD08OVDD07OVDD06OVDD05OVDD04OVDD03OVDD02OVDD01

LVDD2

LVDD1

GVDD32

GVDD31

GVDD30

GVDD29

GVDD28

GVDD27

GVDD26

GVDD25

GVDD24

GVDD23

GVDD22

GVDD21

GVDD20

GVDD19

GVDD18

GVDD17

GVDD16

GVDD15

GVDD14

GVDD13

GVDD12

GVDD11

GVDD10

GVDD09

GVDD08

GVDD07

GVDD06

GVDD05

GVDD04

GVDD03

GVDD02

GVDD01

BVDD07

BVDD06

BVDD05

BVDD04

BVDD02

BVDD01

AVDD_SRDS2

AVDD_SRDS

AVDD_PLAT

AVDD_PCI1

AVDD_LBIU

AVDD_DDR

AVDD_CORE

Page 33: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A S

trategy for R

ou

ting th

e MP

C8536E

in a S

ix-Layer P

CB

,R

ev. 0

Freescale Sem

iconductorFreescale C

onfidential Proprietary

33

Fan

-Ou

t Sch

ematics

8

Tue Jul 31 11:49:05 20

USB2_D5

8536_FAN_OUT_SCHEMATIC

X1

USB3_PWRFAULT

AH8

AH9

AG7AG8

AH7AG6AH6AG5AG4AH4AG3AH3

AH5

AD7

AC8

AC7AF7

AE6AC6AF5AE5AF4AE4AE3AD3

AD5

AG1

AH2

AF2AH1

AF1AE2AE1AD2AC2AC1AB2AB1

AD1

R9L13V25K9W17J9R8N10N24W27M25P10J7F12B6R10L10K13D10D7C19

AC9AG9

AC4AC3

U1

Y21W23V20U22T21R23P21N22M24M20

L12N11M10R12

AD28AB27AB24AA26AA24Y28W25V24U26U24T28R25P27P24N26M28

M8N6P9P8

R13N13AA14AB9AE12

Y4U4

AC5Y7V7

A27AE9AG23AD15L15AD23AD19AC11B28

AE21AA19AE26Y13C27V18U19U17U15L17T18T16R19R17R15M14P18P16P5N2

N19N17N15P14M18M16V14T14K8K7

L26K11J27M5

F27J17J15J12C20H4

G25A7

A14C6

G18G15G13H1

F21L1

D17E15E12F16A3F8

K21J14E3

AF3B10D8

E20C15C12D23D26F4

AE7D5 U1

TP171TP170

TP169TP168

1110

2337

8

15

4

12913

16

25

6

5

14

171819202224

12

21

U2

1110

2337

8

15

4

12913

16

25

6

5

14

171819202224

12

21

U4

1110

2337

8

15

4

12913

16

25

6

5

14

171819202224

12

21

U3

ISP1505CBS

USB2_PWRFAULT

GPIO08_USB2_PCTL0GPIO09_USB2_PCTL1

USB2_PWRFAULT

USB3_D1USB3_D2

NC07

NC21NC20NC19NC18NC17NC16NC15NC14NC13

USB3_STP

USB3_NXTUSB3_DIR

USB3_D7USB3_D6USB3_D5USB3_D4USB3_D3

USB3_D0

USB3_CLK

USB2_STP

USB2_NXTUSB2_DIR

USB2_D7USB2_D6USB2_D5USB2_D4USB2_D3USB2_D2USB2_D1USB2_D0

USB2_CLK

USB1_STP

USB1_PWRFAULT

USB1_NXTUSB1_DIR

USB1_D7USB1_D6USB1_D5USB1_D4USB1_D3USB1_D2USB1_D1USB1_D0

USB1_CLK

NC12NC11NC10NC09NC08

NC06NC05NC04NC03NC02NC01

GPIO07_USB1_PCTL1GPIO06_USB1_PCTL0

USB1_D6

USB1_D4

USB1_DIR

ISP1505CBS

USB3_D7

USB3_NXTUSB3_CLK

USB3_D0USB3_D1USB3_D2

USB3_STPUSB3_DIR

USB2_NXTUSB2_CLK

USB3_D3USB3_D4

USB3_D6

USB2_DIRUSB2_STP

USB3_D5

USB1_PWRFAULT

USB1_STPUSB1_NXT

USB1_D7

USB1_D5

USB1_D3USB1_D2USB1_D1USB1_D0

USB2_D0USB2_D1USB2_D2USB2_D3USB2_D4

USB2_D6USB2_D7

USB1_CLK

ISP1505CBS

USB3_PWRFAULT

8B6

8D6

8C6

8B6

8D48D4

8D4

8D48D4

8D48D48D48D48D4

8D4

8D4

8C4

8C48C4

8C48C48C48C48C48B48B48B4

8C4

8A4

8A6

8B48A4

8A48A48A48A48A48A48A48A4

8B4

8B6

8B6

8B6

8C6

8C68C6

8C68C68C6

8C68C6

8C68C6

8C68C6

8C6

8C68C6

8C6

8B6

8B68B6

8B6

8B6

8B68B68B68A6

8B68B68B68B68B6

8B68C6

8B6

8D6

DRAWINGENGINEER NAME

ENGINEER:

5 6

FREESCALE Confidential Proprietary42 3

7 85 642 3

OFPAGE:

8

REV

DATE:

7

PROJECT:

PBGA_28X28_1MM_SKT

MPC8536USB

10 OF 10NC07

NC21NC20NC19NC18NC17

USB3_PWRFAULT

NC16NC15NC14NC13

USB3_STP

USB3_NXTUSB3_DIR

USB3_D7USB3_D6USB3_D5USB3_D4USB3_D3USB3_D2USB3_D1USB3_D0

USB3_CLK

USB2_STP

USB2_PWRFAULT

USB2_NXTUSB2_DIR

USB2_D7USB2_D6USB2_D5USB2_D4USB2_D3USB2_D2USB2_D1USB2_D0

USB2_CLK

USB1_STP

USB1_PWRFAULT

USB1_NXTUSB1_DIR

USB1_D7USB1_D6USB1_D5USB1_D4USB1_D3USB1_D2USB1_D1USB1_D0

USB1_CLK

NC12NC11NC10NC09NC08

NC06NC05NC04NC03NC02NC01

GPIO09_USB2_PCTL1GPIO08_USB2_PCTL0

GPIO07_USB1_PCTL1GPIO06_USB1_PCTL0

PBGA_28X18_1MM_SKT

MPC8536GROUND9 OF 10

GND11

X2GND04

XGND10XGND09XGND08XGND07XGND06XGND05XGND04XGND03XGND02XGND01

X2GND03X2GND02X2GND01

SGND16SGND15SGND14SGND13SGND12SGND11SGND10SGND09SGND08SGND07SGND06SGND05SGND04SGND03SGND02SGND01

S2GND04S2GND03S2GND02S2GND01

GND89GND88GND87GND86GND85GND84GND83GND82GND81GND80GND79GND78GND77GND76GND75GND74GND73GND72GND71GND70GND69GND68GND67GND66GND65GND64GND63GND62GND61GND60GND59GND58GND57GND56GND55GND54GND53GND52GND51GND50GND49GND48GND47GND46GND45GND44GND43GND42GND41GND40GND39GND38GND37GND36GND35GND34GND33GND32GND31GND30GND29GND28GND27GND26GND25GND24GND23GND22GND21GND20GND19GND18GND17GND16GND15GND14GND13GND12

GND10GND09GND08GND07GND06GND05GND04GND03GND02GND01

RESET*

VCC_2VCC_1

VBUS_FAULT

GND_PAD

XTAL2XTAL1

CLOCKNXTSTPDIR

DATA7DATA6DATA5DATA4DATA3DATA2DATA1DATA0

RREF

DM

DP

REG1V8

VCC

REG3V3

RESET*

VCC_2VCC_1

VBUS_FAULT

GND_PAD

XTAL2XTAL1

CLOCKNXTSTPDIR

DATA7DATA6DATA5DATA4DATA3DATA2DATA1DATA0

RREF

DM

DP

REG1V8

VCC

REG3V3

RESET*

VCC_2VCC_1

VBUS_FAULT

GND_PAD

XTAL2XTAL1

CLOCKNXTSTPDIR

DATA7DATA6DATA5DATA4DATA3DATA2DATA1DATA0

RREF

DM

DP

REG1V8

VCC

REG3V3

Page 34: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

34 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

MEMORY CONNECTOR #1

1D6

1D610C2

1C610B2

1B610A2

1B5 10B51B5 10B51B5 10B5

1A5 10A5

1A5 10A5

1B5 10B5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1A5 10A5

1B5 10B5

1B5 10B5

1A21A2

10D21D11A710D2

1A2

1D610C2

1D6

1D6

1D6

10D210D2

1A2

1D61D6

1C610B2

1B610B2

1B2 10C6

1D610D3

1A21A2

1D610C2

Tue

CONN_240_DDR2_VERT_SPECIAL_1OF2

161

233

73

1

238

119120

101240239

76193

18

55

192

1968

77195

45461131141041059293838436372728151667

1312129

236235230229

128

117116111110227226218217108107

123

999821521420920896959089

122

20620520019987868180159158

10

15315240393433150149144143

9

313025241411401321312221

43

164232223211202155146134125

17152

221

138

186

220

137

185

168167162

49484342

74

5419071

17717958180606118263

1731741961765770

183188 P1

1811751707875726256

194191

51

18718417817269676459

197189

53

6650

224212203165156147135126102

P2 GVDD

GVDD

CONN_240_DDR2_VERT_SPECIAL_1OF2

MCS0_B

MWE_B

MA<00..15>

DDR2 DIMM

MECC_<0..7>

MDQS8_BMDQS8MDQS7_B

MDQS4_B

MDQS5_B

MDQS6_B

MDQS2_B

MDQS3_B

MDQS0_B

MDQS1_B

MDQS0

MDQS1

MDQS2

MDQS3

MDQS4

MDQS5

MDQS6

MDQS7

07

MCK2MCK2_B

MAPAR_ERR_BMVREF

MCK1_B

MRAS_B

MODT0

MCS1_B

MODT1

I2C_SDAI2C_SCL

MCK0

MCKE1MCKE0

1

0001

45

7

2

02

06

09

07

050403

MBA<0..2>

MDM<0..8>

654

MDQ<00..63>

0908

06050403020100

23

8536_FAN_OUT_SCHEMATIC

0

7

MAPAR_OUT

11

0

12

6

35

10111213

151617

19202122

24252627

3334

3637

39404142434445464748495051525354555657585960616263

31

14

18

12

10

08

8

3210

3

282930

32

131415

MCK1MCK0_B

MCAS_B

38

DRAWINGENGINEER NAME

ENGINEER:

5 642 3

75 642 3

REV

7

PROJECT:

DQS0n

(DQS16)(DQS17)

(ECC0)(ECC1)(ECC2)(ECC3)

(AP)

(ECC4)(ECC5)(ECC6)(ECC7)

NC

Normally NC on DDR2

165, 203, 212, 224233

102

Not Supported126, 135, 147, 156

(DQS9)(DQS10)(DQS11)(DQS12)(DQS13)(DQS14)(DQS15)

DM8

DQ12

DQ61

DQ48

DQ60

DM5DM4

DQ33

DQ62

DQ18

CK_L0

DQ54

DQ9

A15

DQ51

S1

BA2

CK_L2

DQ36

VDDSPD

DM3

DQS3nDQS4

DM0

DQ53

DQ55

DQS7

ODT0

DQ47

A12

DQ39

DQ14

DQ58

A5

DQ46

RAS

DQ26

DQ23

DQ1

DQ52

DQ45

A11

DQS6n

DQS8

CB5

DQ30

CKE1

DQ43

DQ28

A3A4

CB6

A2

A10

DQ15

DQ38

DQ56

DQ42

CB1

DQ25

DQ41

DM1

RESET

A14

SCL

DQ20

A13

DQS2

DQ3

A8A9

DQ6

DQ44

DQ32

DQ7

WE

DQ4

DM7

A6

CK_H2

CB2

CB4CB3

CK_H0

A1

DQ29

DQ8

DQ63

DQS2n

CAS

CB7

DQ5

DQ0

BA0

SA0

DQ34

DQS7n

DQ22DQ21

DQ13

DQ11

DQ35

DQ49

BA1

DM6

DQ19

CK_L1

DQ59

ODT1

CK_H1

PWR1_SEL_OPT1PWR2_SEL_OPT1

SA2

DQS1nDQS1

DQS0

DQS6DQS5nDQS5

DQS4n

DQS8n

RC

DQ2

S0

DQ40

DQ24

SA1

CB0

VREF

SDA

A0

DQ17

DQ10

DQ57

A7

DQ37

DQ16

DQ50

DQ27

DQ31

DM2

DQS3

CKE0

2, 5, 8, 11, 14, 17, 20,GROUND

225, 228, 231, 234, 237210, 213, 216, 219, 222,169, 198, 201, 204, 207,154, 157, 160, 163, 166,139, 142, 145, 148, 151,124, 127, 130, 133, 136,109, 112, 115, 118, 121,94, 97, 100, 103, 106,79, 82, 85, 88, 91,41, 44, 47, 65,23, 26, 29, 32, 35, 38,

NC10

NC9NC8NC7NC6NC5NC4NC3NC2NC1

PWR2_SEL_OPT2PWR1_SEL_OPT2

VDD4VDD5VDD6VDD7VDD8VDD9VDD10VDD11

VDD1VDD2VDD3

VDDQ1

VDDQ11

VDDQ8

VDDQ2VDDQ3

VDDQ9

VDDQ6VDDQ7

VDDQ5

VDDQ10

VDDQ4

IN

BIBIBIBIBIBIBIBIBIBIBI

BIBI

BIBIBIBIBI

OUT

IN

BI

IN

BIIN

IN

ININININININ

ININ

ININ

ININ

IN

IN

IN

BI

BI

Page 35: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 35

Fan-Out Schematics

MEMORY CONNECTOR #2

9D29D2

1A79D2

1A2

1A21A21A21A2

1A2

1D61D6

1D6

1D61D6

1D6

1D69C2

1D69C21D69C2

1A5 9A51A5 9A5

1B5 9B51B5 9B5

1B5 9B5

1A5 9A51A5 9A5

1B5 9B5

1A5 9A5

1A5 9A51A5 9A5

1A5 9A5

1B5 9A51A5 9A51A5 9A51A5 9A5

1B5 9B5

1A5 9A5

1C69B2

1C69B2

1B69A2

1B69A2

1B2 9C6

1D69D2

9D21D1

Tue Jul 31

83

I2C_SDAI2C_SCL

MVREF

MCK5_B

MCK3_BMCK4MCK4_BMCK5

MCK3

MCKE2MCKE3

MODT3

MCS2_BMCS3_B

MODT2

MCAS_B

MWE_BMRAS_B

MDQS3_BMDQS4

MDQS7MDQS6_B

MDQS8

MDQS2MDQS2_B

MDQS7_B

MDQS0_B

MDQS1_BMDQS1

MDQS0

MDQS6MDQS5_BMDQS5MDQS4_B

MDQS8_B

MDQS3

MA<00..15>

MBA<0..2>

MDM<0..8>

MECC_<0..7>

MDQ<00..63>

MAPAR_OUT

MAPAR_ERR_B

15

DDR2 DIMM

P2188

7057176196174173

63182616018058179177

7119054

74

4243

49161162167168

185

137

220

186

138

221

52171

125134146155202211223

164

34

212213113214014124253031

9

14314414915033343940152153

10

15815980818687199200205206

122

899095962082092142159899

123

107108217218226227110111116117

128

229230235236

1291213

7616152827373684

939210510411411346

19577

6819

192

55

18

19376

239240101

120119

238

1

73

48

183

CONN_240_DDR2_VERT_SPECIAL_1OF2

232

45

14

1213

111009

0708

0605

0304

020100

210

876

45

3210

76

45

3210

63626160

5859

5756

5455

535251

4950

4847

4546

444342

4041

393837

3536

3433

3132

302928

2627

2524

2223

212019

1718

1615

1314

121110

0809

0706050403020100

CONN_240_DDR2_VERT_SPECIAL_1OF2

P1102

233

126135147156165203212224

5066

53

189197

59646769172178184187

51

191194

5662727578170175181

GVDDGVDD

8536_FAN_OUT_SCHEMATIC

X1DRAWING

ENGINEER NAMEENGINEER:

5 642 3

75 642 3

REV

DATE

7

PROJECT:

DQS0n

(DQS16)(DQS17)

(ECC0)(ECC1)(ECC2)(ECC3)

(AP)

(ECC4)(ECC5)(ECC6)(ECC7)

NC

Normally NC on DDR2

165, 203, 212, 224233

102

Not Supported126, 135, 147, 156

(DQS9)(DQS10)(DQS11)(DQS12)(DQS13)(DQS14)(DQS15)

DM8

DQ12

DQ61

DQ48

DQ60

DM5DM4

DQ33

DQ62

DQ18

CK_L0

DQ54

DQ9

A15

DQ51

S1

BA2

CK_L2

DQ36

VDDSPD

DM3

DQS3nDQS4

DM0

DQ53

DQ55

DQS7

ODT0

DQ47

A12

DQ39

DQ14

DQ58

A5

DQ46

RAS

DQ26

DQ23

DQ1

DQ52

DQ45

A11

DQS6n

DQS8

CB5

DQ30

CKE1

DQ43

DQ28

A3A4

CB6

A2

A10

DQ15

DQ38

DQ56

DQ42

CB1

DQ25

DQ41

DM1

RESET

A14

SCL

DQ20

A13

DQS2

DQ3

A8A9

DQ6

DQ44

DQ32

DQ7

WE

DQ4

DM7

A6

CK_H2

CB2

CB4CB3

CK_H0

A1

DQ29

DQ8

DQ63

DQS2n

CAS

CB7

DQ5

DQ0

BA0

SA0

DQ34

DQS7n

DQ22DQ21

DQ13

DQ11

DQ35

DQ49

BA1

DM6

DQ19

CK_L1

DQ59

ODT1

CK_H1

PWR1_SEL_OPT1PWR2_SEL_OPT1

SA2

DQS1nDQS1

DQS0

DQS6DQS5nDQS5

DQS4n

DQS8n

RC

DQ2

S0

DQ40

DQ24

SA1

CB0

VREF

SDA

A0

DQ17

DQ10

DQ57

A7

DQ37

DQ16

DQ50

DQ27

DQ31

DM2

DQS3

CKE0

2, 5, 8, 11, 14, 17, 20,GROUND

225, 228, 231, 234, 237210, 213, 216, 219, 222,169, 198, 201, 204, 207,154, 157, 160, 163, 166,139, 142, 145, 148, 151,124, 127, 130, 133, 136,109, 112, 115, 118, 121,94, 97, 100, 103, 106,79, 82, 85, 88, 91,41, 44, 47, 65,23, 26, 29, 32, 35, 38,

NC10

NC9NC8NC7NC6NC5NC4NC3NC2NC1

PWR2_SEL_OPT2PWR1_SEL_OPT2

VDD4VDD5VDD6VDD7VDD8VDD9VDD10VDD11

VDD1VDD2VDD3

VDDQ1

VDDQ11

VDDQ8

VDDQ2VDDQ3

VDDQ9

VDDQ6VDDQ7

VDDQ5

VDDQ10

VDDQ4

BIBIBI

BIBI

BIBIBI

BIBI

BI

BIBI

BIBI

BIBIBI

IN

OUT

BI

IN

IN

INININ

ININ

ININ

ININ

ININININININ

IN

IN

BI

BI

BI

Page 36: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

36 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

X4 LANE

X4 LANE

X4 LANE

X4 LANE

PCI EXPRESS CONNECTOR

2B7

2B72B7

2B72B7

2B72B7

2B72B7

2B72B7

2B72B7

2B72A7

2B22B2

2B22B2

2B22B2

2B22B2

2B2

2B7

2B2

2B2

2B22B2

2B2

2B22A2

B11 B9

A8

A7

A6

A5B6

B5

A13

A14

B81

B48

B31

B17

A1

B54

B50

B45

B41

B37

B33

B27

B23

B78

B74

B70

B66

B62

B58

B19

B14

B55

B51

B46

B42

B38

B34

B28

B24

B79

B75

B71

B67

B63

B59

B20

B15

A11

A56

A52

A47

A43

A39

A35

A29

A25

A80

A76

A72

A68

A64

A60

A21

A16

A57

A53

A48

A44

A40

A36

A30

A26

A81

A77

A73

A69

A65

A61

A22

A17

B10

J1

8536_FAN_OUT_SCHEMATIC

pciexpress_conn_x16

SD1_TX7

SD1_TX6_BSD1_TX6

SD1_TX5_BSD1_TX5

SD1_TX4_BSD1_TX4

SD1_TX3_BSD1_TX3

SD1_TX2_BSD1_TX2

SD1_TX1_BSD1_TX1

SD1_TX0_BSD1_TX0

SD1_RX7_BSD1_RX7

SD1_RX6_BSD1_RX6

SD1_RX5_BSD1_RX5

SD1_RX4_BSD1_RX4

SD1_RX3_B

SD1_TX7_B

SD1_RX1

SD1_RX3

SD1_RX2_BSD1_RX2

SD1_RX1_B

SD1_RX0_BSD1_RX0

DRAWENGINEER NAME

ENGINEER:

5 642 3

75 642 3

7

PROJECT:

ININ

ININ

OUTOUT

OUTOUT

OUTOUT

OUTOUT

OUTOUT

OUTOUT

OUTOUT

OUTOUT

ININ

ININ

ININ

ININ

ININ

ININ

A27 A28 B29 A31 B32B22 A23 A24 B25 B26B16 B18 A18 A20 B21B4 A4 B7 A12 B13 A15

GND

B1 B2 B3 A2 A3

B80 A82

A75 B76 B77 A78 A79A70 A71 B72 B73 A74

B65 A66 A67 B68 B69

B60 B61 A62 A63 B64A55 B56 B57 A58 A59A49 A51 B52 B53 A54

B8 A9 A10

+12V

+3.3V

B3 B12 B30 A32 A33

NC

A50 B82 A19

B44 A45 A46 B47 B49B39 B40 A41 A42 B43A34 B35 B36 A37 A38

PETn10

PETn8

PERp13

PETn7

PERn1

PERp6

PERp0

TRST

PERp14

PETn3

TDI

PERn3

PERn6

PERn4

PETp7

PERn7

TCK

TMS

PERn5

PERp4

PRSNT1

PERn0

PERp7

PERp8

PRSNT2_1

PERp10

PERn8

PERp9PETp9

PETp8

P3.3V_AUX

PERp12

PETn9

WAKE_N

SMDAT

PERp1

PETn5

PERn9

PRSNT2_3

REFCLKN

PETn0

SMCLK

PERp5

PERn11

PETn4

TDO

PERn10

PERn12

PERp11

PETn2

REFCLKP

PERn13

PETn1

PETn14

PETn15

PERp15

PETn12

PERn14

PETn11

PERST

PERn15

PERp3

PETn13

PRSNT2_2

PETp6

PETp5

PETp4

PETp3

PETp2

PETp1

PETp0

PETp15

PETp14

PETp13

PETp12

PETp11

PETp10

PERn2

PERp2

PRSNT2_4

PETn6

Page 37: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A S

trategy for R

ou

ting th

e MP

C8536E

in a S

ix-Layer P

CB

,R

ev. 0

Freescale Sem

iconductorFreescale C

onfidential Proprietary

37

Fan

-Ou

t Sch

ematics

PCI 32-BIT CONNECTOR PCI 32-BIT CONNECTORPCI 32-BIT CONNECTOR

12

3C612B112B33C612B112B3

3C612B112B33B612B112B33C612B112B33C612B112B33B612B112B3

3B6 12C3 12C8

3B6 12B8 12C33B6 12B8 12C33B6 12B8 12C33B6 12B3 12B8

3B6 12C3 12C6

3B6 12C3 12C63B6 12B6 12C33B6 12B6 12C33B6 12B3 12B6

3D412D112D3

3D412D112D5

3B6 12C6 12C8

3B6 12B8 12C63B6 12B6 12B83B6 12B6 12B83B6 12B6 12B8

3C612B112B6

3C6 3C63C6

3C6

3C612B112B6

3B612B112B63C612B112B6

3B612B112B6

3C612B112B6

3C612B112B6

3D412D312D5

3C612B312B6

3C612B312B63C612B312B6

3C612B312B6

3B612B312B6

3C612B312B63B612B312B6

3C63C6

Tue Jul 31 12:15:30 2007

PCI1_SERR_BPCI1_PERR_B

PCI1_STOP_BPCI1_TRDY_BPCI1_IRDY_BPCI1_DEVSEL_BPCI1_FRAME_B

PCI1_PAR

PCI1_C_BE0_BPCI1_C_BE1_BPCI1_C_BE2_BPCI1_C_BE3_B

PCI1_PAR

PCI1_C_BE0_BPCI1_C_BE1_BPCI1_C_BE2_BPCI1_C_BE3_B

PCI1_AD<31..00>PCI1_AD<31..00>

PCI1_PAR

PCI1_C_BE0_BPCI1_C_BE1_BPCI1_C_BE2_BPCI1_C_BE3_B

B9

B60

14

B59

B19

A59

A16

A10

A1A36 A3

B4A4

B2

A38

B42

A40A41

A15

A60

B18

B11B9

B40

A43

B14B10A19A14

A11

A9

B49

B39

B35

B8A7B7A6

A26

A17

A34B37

B16

B26B33B44A52

A49B52B53A54B55A55

B20A20

B56

B21A22B23A23B24A25B27A28B29A29

A57

B30A31B32A32A44B45A46B47A47B48

B58A58

B60

J7

B59

B19

A59

A16

A10

A1A36 A3

B4A4

B2

A38

B42

A40A41

A15

A60

B18

B11B9

B40

A43

B14B10A19A14

A11

A9

B49

B39

B35

B8A7B7A6

A26

A17

A34B37

B16

B26B33B44A52

A49B52B53A54B55A55

B20A20

B56

B21A22B23A23B24A25B27A28B29A29

A57

B30A31B32A32A44B45A46B47A47B48

B58A58

J6

B59

B19

A59

A16

A10

A1A36 A3

B4A4

B2

A38

B42

A40A41

A15

A60

B18

B11

B40

A43

B14B10A19A14

A11

A9

B49

B39

B35

B8A7B7A6

A26

A17

A34B37

B16

B26B33B44A52

A49B52B53A54B55A55

B20A20

B56

B21A22B23A23B24A25B27A28B29A29

A57

B30A31B32A32A44B45A46B47A47B48

B58A58

B60

J5

5V: 145154-1

PCICONN_3V_32BIT_BLOCK

3V: 145154-1

PCI1_STOP_B

5V: 145154-1

PCICONN_3V_32BIT_BLOCK

PCI1_GNT1_BPCI1_REQ2_BPCI1_GNT2_B

PCI1_REQ1_B

PCI1_PERR_B

VCC_3.3

3V: 145154-1

PCICONN_3V_32BIT_BLOCK

5V: 145154-1

3031

292827

2526

2423

2122

201918

1617

151413

1112

10090807060504

0203

0100

VCC_3.3

3031

292827

2526

2423

2122

201918

1617

151413

1112

10090807060504

0203

0100

PCI1_TRDY_BPCI1_IRDY_B

PCI1_FRAME_B

PCI1_SERR_B

PCI1_DEVSEL_B

PCI1_AD<31..00>

PCI1_DEVSEL_B

PCI1_PERR_BPCI1_SERR_B

PCI1_STOP_B

PCI1_FRAME_B

PCI1_IRDY_BPCI1_TRDY_B

PCI1_REQ0_BPCI1_GNT0_B

0001

0302

04050607080910

1211

131415

1716

181920

2221

2324

2625

272829

3130

3V: 145154-1

VCC_3.3

X1

8536_FAN_OUT_SCHEMATIC

DRAWINGENGINEER NAME

ENGINEER:

5 642 31

A

B

C

D

7 85 642 31

OFPAGE:

8

REV

DATE:

7

PROJECT:

BI

B22 B28 B34 B38 B46B57

B1

+5V

A53 B25 B31 B36 B41B43 B54

NC

B10 B14

A2

B6 B61 B62A5 A8 A61 A62 B5

A9 A11 A14 A19

A21 A27 A33 A39 A45

+12V

VIO: 3.3V or 5V

-12V

A12 A13 B12 B13 A18

GND

A24 A30 A35 A37 A42A48 A56 B3 B15 B17

+3.3V

NC5NC6

NC4NC3

NC2

NC1

ACK64

AD21

AD20

AD2

C_BE3

PRSNT2

AD3

DEVSEL

AD5

AD4

C_BE2

AD26

AD17

AD16

REQ64

AD18

AD19

AD10

PERR

AD12

AD11

LOCK

AD13

CLK

TDO

TDI

TRST

TMS

TCK

AD9

C_BE1

AD15

SERR

AD28

STOP

AD6

AD7

SDONE

AD8

C_BE0

M66EN

AD23

IDSEL

INTA

AD30

AD25

AD27

FRAME

SBO

INTD

RST

IRDY

TRDY

PRSNT1

PAR

AD22

AD24

AD31

REQ

INTC

INTB

GNT

AD29

AD1

AD0

AD14

OUTIN

BI

BIBI

BIBI

BIBI

IN

BIBIBIBI

BI

B22 B28 B34 B38 B46B57

B1

+5V

A53 B25 B31 B36 B41B43 B54

NC

B10 B14

A2

B6 B61 B62A5 A8 A61 A62 B5

A9 A11 A14 A19

A21 A27 A33 A39 A45

+12V

VIO: 3.3V or 5V

-12V

A12 A13 B12 B13 A18

GND

A24 A30 A35 A37 A42A48 A56 B3 B15 B17

+3.3V

NC5NC6

NC4NC3

NC2

NC1

ACK64

AD21

AD20

AD2

C_BE3

PRSNT2

AD3

DEVSEL

AD5

AD4

C_BE2

AD26

AD17

AD16

REQ64

AD18

AD19

AD10

PERR

AD12

AD11

LOCK

AD13

CLK

TDO

TDI

TRST

TMS

TCK

AD9

C_BE1

AD15

SERR

AD28

STOP

AD6

AD7

SDONE

AD8

C_BE0

M66EN

AD23

IDSEL

INTA

AD30

AD25

AD27

FRAME

SBO

INTD

RST

IRDY

TRDY

PRSNT1

PAR

AD22

AD24

AD31

REQ

INTC

INTB

GNT

AD29

AD1

AD0

AD14

OUTIN

BI

BIBI

BIBI

BIBI

IN

BIBIBIBI

BIBIBIBI

IN

OUTIN

BIBI

BIBIBIBIBI

BI

B22 B28 B34 B38 B46B57

B1

+5V

A53 B25 B31 B36 B41B43 B54

NC

B10 B14

A2

B6 B61 B62A5 A8 A61 A62 B5

A9 A11 A14 A19

A21 A27 A33 A39 A45

+12V

VIO: 3.3V or 5V

-12V

A12 A13 B12 B13 A18

GND

A24 A30 A35 A37 A42A48 A56 B3 B15 B17

+3.3V

NC5NC6

NC4NC3

NC2

NC1

ACK64

AD21

AD20

AD2

C_BE3

PRSNT2

AD3

DEVSEL

AD5

AD4

C_BE2

AD26

AD17

AD16

REQ64

AD18

AD19

AD10

PERR

AD12

AD11

LOCK

AD13

CLK

TDO

TDI

TRST

TMS

TCK

AD9

C_BE1

AD15

SERR

AD28

STOP

AD6

AD7

SDONE

AD8

C_BE0

M66EN

AD23

IDSEL

INTA

AD30

AD25

AD27

FRAME

SBO

INTD

RST

IRDY

TRDY

PRSNT1

PAR

AD22

AD24

AD31

REQ

INTC

INTB

GNT

AD29

AD1

AD0

AD14

Page 38: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

38 Freescale Confidential Proprietary Freescale Semiconductor

Fan-Out Schematics

LOCAL BUS LATCHES

4B2

4C2

4B6

4B6

T2P2M2K2H2F2D2B2

R2N2L2J2G2E2C2A2

J3

T6R6P6N6M6L6K6J6

T4T3

J4 T5R5P5N5M5L5K5J5

T1R1P1N1M1L1K1J1

A3

H6G6F6E6D6C6B6A6

H4H3

A4 H5G5F5E5D5C5B5A5

H1G1F1E1D1C1B1A1

1U508

T2P2M2K2H2F2D2B2

R2N2L2J2G2E2C2A2

J3

T6R6P6N6M6L6K6J6

T4T3

J4 T5R5P5N5M5L5K5J5

T1R1P1N1M1L1K1J1

A3

H6G6F6E6D6C6B6A6

H4H3

A4 H5G5F5E5D5C5B5A5

H1G1F1E1D1C1B1A1

1U507

74ALVCH32973KR_LFBGA96

313029

01

0908

070605040302

LAD<00..31>

00

12

8536_FAN_OUT_SCH

23

LA<27..31>

LALE

LBCTL

1514

282930

74ALVCH32973KR_LFBGA96

16

2425

1011

13

2728

17181920

31

2122

2627

ENGINEER NAMEENGINEER:

5 642 3

75 642 3

PROJECT:

IN

IN

IN

IN

GND

B3 B4

R3 R4N3 N4M3 M4K3 K4G3 G4E3 E4D3 D4

pwr pinssee map for

REV 4OCT 23 2002

2B5

2B6

2B7

2B8

2Q1

2Q2

2Q3

2Q4

2A1

2A5

2A4

2A3

2A2

2A8

2A7

2A6

D8

D7

D6

D5

D4

D3

1Q4

1A1

1B4

1B5

1B6

1B7

2TOE

2LE

2DIR

2LOE

1A6

1A7

1A8

1A2

1TOE

1A3

1A4

1A5 1Q5

1Q6

1Q7

1Q8

2Q5

1B1

1B2

1B3

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

1Q2

1Q3

1Q1

1B8

2B1

2B2

2B3

2B4

D1

D2

2Q6

2Q7

2Q8

1LE

1DIR

1LOE

GND

B3 B4

R3 R4N3 N4M3 M4K3 K4G3 G4E3 E4D3 D4

pwr pinssee map for

REV 4OCT 23 2002

2B5

2B6

2B7

2B8

2Q1

2Q2

2Q3

2Q4

2A1

2A5

2A4

2A3

2A2

2A8

2A7

2A6

D8

D7

D6

D5

D4

D3

1Q4

1A1

1B4

1B5

1B6

1B7

2TOE

2LE

2DIR

2LOE

1A6

1A7

1A8

1A2

1TOE

1A3

1A4

1A5 1Q5

1Q6

1Q7

1Q8

2Q5

1B1

1B2

1B3

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

1Q2

1Q3

1Q1

1B8

2B1

2B2

2B3

2B4

D1

D2

2Q6

2Q7

2Q8

1LE

1DIR

1LOE

Page 39: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 39

Fan-Out Schematics

GBE PHY 1 OF 3 GBE PHY 3 OF 3GBE PHY 2 OF 3

5C3

5B6

5C6

5C35C3

5B2

5C25C25C25C2

5B25B25B25B2

5C65C6

5C65C65C6

5B6

5B6

5B6

5B65B6

5C3

5B2

EC_MDIO

TSEC3_GTX_CLK

TSEC3_RXD3

TSEC1_RX_CLKTSEC1_RX_DV

TSEC1_GTX_CLK

TSEC1_RXD3TSEC1_RXD2TSEC1_RXD1TSEC1_RXD0

TSEC1_TXD0TSEC1_TXD1TSEC1_TXD2

C1B1

VSC8244HG

vsc8244_1of3_ports_pbga260

U6

F16

E18

E17

E16

D16

C18

C17

C16

H16

F17

A2

G3

H17

F18

B2

F3

H18

G16

C3

E3

J17

G17

C4

D3

J18

G18

C5

A1

R18

R13

R10

R8

T3

B18

B14

B10

B6

B17

B13

B9

B5

B16

B12

B8

B4

B15

B11

B7

B3

A18

A14

A10

A6

A17

A13

A9

A5

A16

A12

A8

A4

A15

A11

A7

A3

vsc8244_2of3_macs_pbga260

VSC8244HG

TSEC1_TXD3

U6

C2C6C7

C15

D2D1E1E2

E15

G1F1G2

H2

J1J2K1L1L2M1

N1M2

N2P1R1

T1

R2

T2U1U2V1

V15

T11

T7

V2

U15

U11

U7

U3

T16

T12

V8

V4

U16

U12

U8

U4

V16

V12

T8

T4

T15

V11

V7

V3

V17

U13

T9

T5

U17

V13

U9

U5

T18

T14

V10

V6

U18

U14

U10

U6

V18

V14

T10

T6

T17

T13

V9

V5

TSEC3_RX_CLKTSEC3_RX_DV

TSEC3_RXD0TSEC3_RXD1TSEC3_RXD2

TSEC3_TXD0

TSEC3_TX_EN

TSEC3_TXD1

TSEC3_TXD3TSEC3_TXD2

VSC8244HGEC_MDCvsc8244_3of3_sys_pwr_pbga260

U6

R17

M18

L17

L18

P16

P18

N16

N17

N18

P17

C10

C9

M16

M17

K17

J16

K16

K18

L16

D14

D15

E4

F4

H3

J3

M3

N3

R3

C8

F15

G15

L4

R16

D4

D5

D6

D9

D10

D11

D12

D13

K15

L15

H4

H15

J4

J15

P4

R4

R14

R15

R5

R6

R7

R9

R11

R12

C11

G8

G9

G10

G11

G12

H7

H8

H9

H10

H11

C12

H12

J7

J8

J9

J10

J11

J12

K2

K3

K4

C13

K7

K8

K9

K10

K11

K12

L3

L7

L8

L9

C14

L10

L11

L12

M4

N4

N15

P2

P3

P15

D7

D8

F2

G4

G7

M7 M8 M9

M10

M11

M12

M15

D17

D18

8536_FAN_OUT_SCHEMAT

H1

TSEC1_TX_EN

ENGINEER NAMEENGINEER:

5 642 31

75 642 31

7

PROJECT:

0

31

2

TXVNA_1

TXVPD_0

TXVPC_1

TXVNC_0

TXVPC_0

TXVNC_1

TXVND_1

TXVNB_0

TXVPB_0

TXVPD_1

MICRO_REF

TXREF_3

TXREF_2

TXVPC_3

TXVNB_3

TXVPB_3

TXVNA_3

TXVPA_3

TXVND_2

TXVPD_2

TXVNC_2

TXVPC_2

TXVNB_2

TXVPB_2

TXVNA_2

TXVPA_2

TXVPD_3

TXVND_0

TXVPA_1

TXVND_3

TXVNC_3

TXVNB_1

TXREF_0

CMODE7

CMODE6

CMODE5

CMODE4

CMODE3

CMODE2

CMODE1

CMODE0

LED1_3

LED2_3

LED3_3

LED4_3

LED0_2

LED1_2

LED2_2

LED3_2

LED4_2

LED0_1

LED1_1

LED2_1

LED3_1

LED4_1

LED0_0

LED1_0

LED2_0

LED3_0

LED4_0

LED0_3

TXVNA_0

TXVPA_0

TXVPB_1

TXREF_1

ININ

IN

IN

IN

IN

OUTOUTOUTOUT

OUTOUT

NC33NC32NC31NC30NC28

NC29NC27NC26NC25NC23NC24

NC21NC20NC19NC18NC17

NC22

NC01NC02NC03NC04NC05NC06

NC07NC08NC09NC10NC11

NC12NC13

NC16NC15NC14

RX_CTL_3

RXD_2_0

RXD_1_3

RXD_2_3

RXD_0_3

RX_CTL_1

RXD_0_0

TX_CLK_1

TX_CLK_2

RX_CTL_0

RX_CLK_3

RX_CLK_2

TX_CLK_3

RX_CTL_2

TXD_1_0

TXD_2_0

TXD_0_3

TXD_0_0

TXD_3_3

RX_CLK_1

TXD_1_3

RX_CLK_0

TX_CTL_2

TXD_1_1

TX_CTL_1

TX_CTL_0

TXD_0_1

TXD_2_3

TXD_3_1

TX_CTL_3

TXD_2_1

RXD_3_2

RXD_1_2

RXD_3_0

TXD_0_2

TX_CLK_0

RXD_1_1

RXD_3_3

TXD_2_2

TXD_3_2

RXD_0_2

RXD_0_1

RXD_3_1

TXD_1_2

RXD_2_2

RXD_2_1

RXD_1_0

TXD_3_0

ININININ

IN

IN

OUTOUT

OUTOUT

OUTOUT

BIIN

See spec.

NC

VSS_35

VSS_34

VSS_33

VSS_32

VSS_31

VSS_30

VSS_22

VSS_21

VSS_20

VSS_19

MDC

MDIO

VDDIO_MAC_2

VDD33_11

VDD12_5

VDD12_6

VDD12_7

TRST

VDD12_8

VDD12_9

VSS_16

VSS_15

VSS_14

VSS_13

VSSIO_3

VSSIO_2

VSSIO_1

VSS_48

EECLK

SOFT_RESET

VDDIO_MAC_1

VDDDIG_2

VSS_4

VSS_3

VSS_2

VSS_1

VDDDIG_1

VDDDIG_8

VSS_47

VSS_46

VSS_45

VSS_44

MDINT_0

MDINT_1

MDINT_2

MDINT_3

VDDDIG_3

VDDDIG_4

VDDDIG_7

VDDDIG_5

VDDDIG_6

XTAL2

VSS_26

VSS_25

VSS_24

VSS_23

CLK125MICRO

TMS

TDO

TDI

VSS_39

VSS_38

VSS_37

VSS_36

VDD33_5

VDD33_4

VDD33_3

REF_REXT

TCK

REF_FILT

VSS_29

VSS_28

VSS_27

VDD33_1

VSS_12

VSS_11

VSS_10

VSS_9

VDD33_10

VDD33_9

VDD33_8

RESET

VDD33_13

VDD33_12

VSSIO_7

VSSIO_6

VSSIO_5

VSSIO_4

VDD33_2

VDD12_2

VDD12_3

VDD12_4

VSS_8

VSS_7

VSS_6

VSS_5

VDDIO_MAC_3

VDDIO_MAC_4

VDDIO_MAC_5

VDDIO_MAC_6

VDD_MICRO

VDD_CTL

VDD12_1

XTAL1

CLK125MAC

EEDAT

VSS_43

VSS_42

VSS_41

VSS_40

VSS_18

VSS_17

VDD33_7

VDD33_6

Page 40: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

40 Freescale Confidential Proprietary Freescale Semiconductor

Current Delivery in the BGA Field

9 Current Delivery in the BGA FieldThe MPC8536E comes in a 1 mm pitch, 783 BGA package arranged as a 28 × 28 array (with pin A1 missing). The BGA pads and vias usually have the physical parameters listed Table 8.

Keep the following points in mind while reading this section:

• The remainder of this section is based on the padstack dimensions in Table 8. If a different padstack is used, most or all of the numbers derived probably need to be recalculated.

• It is assumed that each BGA connection carries current equally, no matter its proximity to the power supply and/or processor internal power pads. In reality, the current is nonuniformly distributed due to internal BGA-to-die substrate connections and other factors. There are no guaranteeable distributions among the power pins.

All comments in this section about power planes apply equally to the return ground. Multilayer PCBs often have multiple ground planes, so this restriction is occasionally overlooked; however, the ground return path requirements are exactly equal to the power source path requirements.

In addition to bypass capacitor placement, the designer must also consider the wholesale delivery of power to the VDD pins. On most PCBs, the power plane is not actually solid, but is perforated by numerous vias. This is illustrated in Figure 21, where the wide plane is actually only as wide as its narrowest point.

Figure 21. Restricted Current Flow

Table 8. MPC8536E Escape Dimensions

Dimension Size Notes

Drill diameter 10 mils Via drill

Finished hole size (FHS) 7–7.5 mils After plating

Pad 19 mils

Anti-pad 28 mils Clearance from via pads to adjacent plane area-fills

Thermal relief 33 mils2

Via keepout 23 mils As above, but for traces on signal (inner) planes

W=7 Units

W=3 * 1U

PSU

CPU

Power Plane Area-Fill

Effective Width =

Page 41: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 41

Current Delivery in the BGA Field

For many applications, the effect of the vias passing through the power plane on the flow of current is insignificant. However, as the power reaches the outer periphery of the MPC8536E, it must flow through the outer array of signal BGA vias. While some BGA pads may not need vias (outer BGA pads may be able to route out on the top layers); in most cases the number of interfering vias ranges from 8 to 11.

For many layouts, the outer one or two BGA pads do not require vias as these signals are usually “escaped” on the top layer of the PCB. Delivering power properly to the power pins requires planning the flow of current around these vias, or more properly, the antivias or antipads that surround the via and cause a hole on the power plane layer. When coupled with a 1-mm spacing, the cross section of the PCB typically resembles that shown in Figure 6.

The anti-pad is larger than the spacing between the via barrels, which in effect reduces the width and capacity of the trace. In effect, the power plane is not a solid plane but a parallel array of traces with one of the following widths:

• 11.3 mils, when planes must be isolated from both vias

• 19.3 mils, when planes connect to one of the vias

The standard formulae to determine the limits of the copper trace are described in the IPC-2221A standard and are given by:

Eqn. 1

Eqn. 2

Using these formulae, and using an 11-mil trace as a standard (rounded down from the actual 11.3-mil max trace width), for various layout rules the amount of current that can be safely carried, assuming a maximum temperature rise of 20°C, is shown in Table 9.

9.1 Via Current CapacityUnless the power is delivered on the top plane and attaches directly to the BGA pad of the processor (which as noted is fairly difficult to accomplish), power is delivered from one or more PCB planes to the processor through vias. Given the padstack parameters in Table 8 and the number of vias allocated, the next step to

Table 9. Current-Carrying Capacity per Standard IPC2221A

Location Copper Plating(oz.)

11-mil Trace(A)

Outer 0.5 0.777

1.0 1.285

1.5 1.730

2.0 2.130

Inner 0.5 0.390

1.0 0.582

1.5 0.865

2.0 1.065

I Trace, Outer( ) 0.048 maxTempRise( )0.44× viaPlating viaDiameter π××( )0.725×=

I Trace, Inner( ) 0.024 maxTempRise( )0.44× viaPlating viaDiameter π×¥( )0.725×=

Page 42: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

42 Freescale Confidential Proprietary Freescale Semiconductor

Current Delivery in the BGA Field

ensure a quality PDS is to evaluate the individual and aggregate via current capacity using the following formula:

Eqn. 3

Table 10 shows a few via current capacities for given PCB process parameters.

At 1.609 A/via, we have a maximum current capacity of 22.5 A for VDD_CORE (14 vias * 1.609), and 16 A for VDD_PLAT (10 * 1.609).

9.2 Alternate Plane Current CapacityResearch performed by Johannes Adam of Flomerics as preparatory work for a revision to one of the rules of the IPC2221 standard (specifically, design rule 2152), found that the formula for outer traces was based on materials and assumptions no longer prevalent. Additionally, he discovered that the 50 percent derating factor used for inner traces is wholly arbitrary and should be approximately 5 percent. In particular, thermal conduction to adjacent traces and power planes was found to be vastly more important than conduction to free space. Refer to Section 10, “References,” for details on this paper and associated historical data.

At the time of publication, the IPC2221 has not been updated based on these findings, so the designer can either follow the published standards and accept overly conservative numbers or incorporate the pending changes. Freescale cannot recommend one course over the other and advises designers to consult the original source documentation and decide for themselves. Examining the IEEE paper, “case 5” shows an outer trace of variable width over a 35 um (1 oz. copper) plane. This correlates nicely with an external power connection residing over an inner ground plane immediately adjacent to it. Such a plane is desirable not only for power purposes but for routing differential pairs such as those on the SerDes or DDR interfaces. Extracting the data for a 0.3 mm trace (~11 mils), and applying a curve fitting process to the data produces the following formula, which is represented in Figure 22:

Eqn. 4

Table 10. Via Capacity

maxTempRise(°C)

viaPlating(mil)

viaDiameter(mil)

IVIA(A)

Notes

10 1 10 1.609 Standard

10 1 11 1.724 —

10 1 15 2.159 —

10 1.5 10 2.159 —

20 1 10 2.183 —

IVIA 0.048 maxTempRise( )0.44× viaPlating viaDiameter π××( )0.725×=

T trace( ) 19.473 3.228IMAX 4.469IMAX2 0.385IMAX3+ + +=

Page 43: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 43

Current Delivery in the BGA Field

Figure 22. Extrapolated Current Flow

CAUTIONThis curve is valid only for the 0.3 mm trace. The IPC standard will likely include a more complicated curve equation that accepts both current and trace width as a parameter.

Note that the Y-axis is the total trace temperature. Because we are concerned with a maximum 20°C rise, the Y-axis starts at 20 as the ambient temperature is also assumed to be 20°C. The crossover point of 40°C occurs when I = 1.711 A. Using this new data, Table 9 can be updated as shown in Table 11:

Table 11. Current-Carrying Capacity Extrapolated from Adams

LocationCopper Plating

(oz.)A/11-mil Trace

(A)

Outer 0.5 1.210

1.0 1.711

1.5 2.420

2.0 3.422

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5

Current, A

Tra

ce T

emp

, deg

C

0.3 mm (ADAMS)

0.3 mm (curve fit)

Page 44: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

44 Freescale Confidential Proprietary Freescale Semiconductor

Current Delivery in the BGA Field

The IEEE paper included in the references explains why the classic IPC-275/IPC2221A values for inner current layers are extremely misleading. IPC-2152 is not published at the time of this application note.

Inner 0.5 1.149

1.0 1.625

1.5 2.299

2.0 3.251

Table 11. Current-Carrying Capacity Extrapolated from Adams (continued)

LocationCopper Plating

(oz.)A/11-mil Trace

(A)

Page 45: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 45

References

10 ReferencesTable 12 lists useful resources for further reading.

Table 12. References

Document Source

IPC Standards:IPC-D-275IPC-2221AIPC-2152

www.ipc.org

New Correlations Between Electrical Current and Temperature Rise in PCB TracesJohannes Adam,Flomerics Ltd.

20th IEEE SEMI-THERM Symposium

0-7803-8363-X/04/$20.00 ©2004 IEEE

www.flomerics.com/flotherm/technical_papers/t341.pdf

Martin Tarr, University of Bolton www.ami.ac.uk/courses/ami4817_dti/u02/pdf/meah0221.pdf

Decoupling Capacitors, a Designer’s Roadmap to Optimal Decoupling Networks for Integrated Circuits(CSC240_MUCCIOLI)Freescale Semiconductor

http://www.freescale.com/files/ftf_2005/doc/reports_presentations/CSC240_MUCCIOLI.pdf

Interactive trace-width calculator http://circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator

DC Line Resistance and Current Carrying CapacityMerix Inc.

http://www.merix.com/technology.php?section=processes&page=technology/_processes.html

Page 46: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

46 Freescale Confidential Proprietary Freescale Semiconductor

Revision History

11 Revision HistoryTable 13 provides a revision history for this application note.

Table 13. Document Revision History

Rev.Number

Date Description

0 10/07 Initial release.

Page 47: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0

Freescale Semiconductor Freescale Confidential Proprietary 47

Revision History

Page 48: A Strategy for Routing the MPC8536E in a Six-Layer PCB · 2016. 11. 23. · A Strategy for Routing the MPC8536E in a Six-Layer PCB, Rev. 0 8 Freescale Confidential Proprietary Freescale

Freescale Confidential Proprietary

Document Number: AN3444Rev. 010/2007

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc.Technical Information Center, EL5162100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or+1-480-768-2130www.freescale.com/support

Europe, Middle East, and Africa:Freescale Halbleiter Deutschland GmbHTechnical Information CenterSchatzbogen 781829 Muenchen, Germany+44 1296 380 456 (English) +46 8 52200080 (English)+49 89 92103 559 (German)+33 1 69 35 48 48 (French) www.freescale.com/support

Japan: Freescale Semiconductor Japan Ltd. HeadquartersARCO Tower 15F1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064Japan 0120 191014 or+81 3 5437 [email protected]

Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 [email protected]

For Literature Requests Only:Freescale Semiconductor

Literature Distribution Center P.O. Box 5405Denver, Colorado 80217 +1-800 441-2447 or+1-303-675-2140Fax: +1-303-675-2150LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE nnn, nnn,nnn, and nnn are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. Printed in the United States of America. All rights reserved.