a sequence-based genetic map of medicago truncatula and

40
Copyright 2004 by the Genetics Society of America A Sequence-Based Genetic Map of Medicago truncatula and Comparison of Marker Colinearity with M. sativa Hong-Kyu Choi,* ,† Dongjin Kim,* Taesik Uhm, Eric Limpens, Hyunju Lim,* Jeong-Hwan Mun,* Peter Kalo, §, ** R. Varma Penmetsa,* Andrea Seres, § Olga Kulikova, Bruce A. Roe, †† Ton Bisseling, Gyorgy B. Kiss §, ** and Douglas R. Cook* ,1 *Department of Plant Pathology, University of California, Davis, California 95616, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas 77843, Department of Plant Sciences, Wageningen University, 6703HA Wageningen, The Netherlands, § Biological Research Center, Institute of Genetics, H-6701 Szeged, Hungary, **Agricultural Biotechnology Center, Institute of Genetics, H-2100 Godollo, Hungary and †† Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma 73019 Manuscript received August 18, 2003 Accepted for publication December 12, 2003 ABSTRACT A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F 2 population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map. T HE genus Medicago contains in excess of 54 charac- Mediterranean basin and agronomic use particularly in terized species (Lesins and Lesins 1979; Small Australia, M. truncatula has great potential for the study and Jomphe 1988), with the majority of species being of both basic and applied aspects of plant biology. The either diploid annuals or tetraploid perennials. The natural attributes of M. truncatula that make it desirable most important economic species of Medicago is the as an experimental system include its annual habit, dip- tetraploid perennial Medicago sativa, or alfalfa, although loid and self-fertile nature, abundant natural variation, several annual Medicago species are of regional agricul- relatively small 500-Mbp genome, and close phyloge- tural importance either as forage crops or for intercrop- netic relationship to the majority of crop legume species ping as a means to enhance soil nitrogen. M. truncatula (Barker et al. 1990; Cook 1999). Moreover, over the is native to the Mediterranean basin, where the exis- past decade several research groups have developed the tence of numerous native populations has provided an tools and infrastructure for basic research, including important resource for population biology and surveys efficient transformation systems (Trieu and Harrison of natural phenotypic variation (Bonnin et al. 1996a,b). 1996; Trinh et al. 1998; Kamate ´ et al. 2000), collections In addition to its native distribution, M. truncatula has of induced variation (Penmetsa and Cook 2000), well- been cultivated for close to 1 century in Australia, where characterized cytogenetics (Cerbah et al. 1999; Kuli- it was developed on a limited scale as a winter forage kova et al. 2001), and a collaborative research network and for use in ley rotation with wheat (Davidson and (http://www.medicago.org). Research efforts on M. Davidson 1993). Also known by the common name truncatula encompass a broad range of issues in plant “barrel medic,” M. truncatula is well suited as a crop in biology, ranging from studies of population biology areas of nonacidic soils and low winter rainfall. (Bonnin et al. 1996a,b) and resistance gene evolution As a consequence of its native distribution in the (Cannon et al. 2002; Zhu et al. 2002) to the molecular basis of symbiotic interactions (e.g., Penmetsa and Cook 1997; Catoira et al. 2000, 2001; Harrison et al. 2002; 1 Corresponding author: Department of Plant Pathology, University of Ben Amor et al. 2003; Limpens et al. 2003; Liu et al. 2003; California, 1 Shields Ave., Davis, CA 95616. E-mail: [email protected] Mathesius et al. 2003) and micronutrient homeostasis Genetics 166: 1463–1502 ( March 2004)

Upload: dinhnhan

Post on 07-Feb-2017

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Sequence-Based Genetic Map of Medicago truncatula and

Copyright 2004 by the Genetics Society of America

A Sequence-Based Genetic Map of Medicago truncatula and Comparison ofMarker Colinearity with M. sativa

Hong-Kyu Choi,*,† Dongjin Kim,* Taesik Uhm,† Eric Limpens,‡ Hyunju Lim,* Jeong-Hwan Mun,*Peter Kalo,§,** R. Varma Penmetsa,* Andrea Seres,§ Olga Kulikova,‡ Bruce A. Roe,††

Ton Bisseling,‡ Gyorgy B. Kiss§,** and Douglas R. Cook*,1

*Department of Plant Pathology, University of California, Davis, California 95616, †Molecular and Environmental Plant Sciences Program,Texas A&M University, College Station, Texas 77843, ‡Department of Plant Sciences, Wageningen University, 6703HA Wageningen,

The Netherlands, §Biological Research Center, Institute of Genetics, H-6701 Szeged, Hungary, **Agricultural Biotechnology Center,Institute of Genetics, H-2100 Godollo, Hungary and ††Advanced Center for Genome Technology,

University of Oklahoma, Norman, Oklahoma 73019

Manuscript received August 18, 2003Accepted for publication December 12, 2003

ABSTRACTA core genetic map of the legume Medicago truncatula has been established by analyzing the segregation

of 288 sequence-characterized genetic markers in an F2 population composed of 93 individuals. Thesemolecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs,covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primersdesigned to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms weresignificantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to maptranscribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, whichhave been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. Weanticipated that mapping of conserved coding regions would have utility for comparative mapping amonglegumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences acrossa range of legume species. As an initial test of this strategy, we used primers designed against M. truncatulaexon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basisfor a Medicago composite map.

THE genus Medicago contains in excess of 54 charac- Mediterranean basin and agronomic use particularly interized species (Lesins and Lesins 1979; Small Australia, M. truncatula has great potential for the study

and Jomphe 1988), with the majority of species being of both basic and applied aspects of plant biology. Theeither diploid annuals or tetraploid perennials. The natural attributes of M. truncatula that make it desirablemost important economic species of Medicago is the as an experimental system include its annual habit, dip-tetraploid perennial Medicago sativa, or alfalfa, although loid and self-fertile nature, abundant natural variation,several annual Medicago species are of regional agricul- relatively small 500-Mbp genome, and close phyloge-tural importance either as forage crops or for intercrop- netic relationship to the majority of crop legume speciesping as a means to enhance soil nitrogen. M. truncatula (Barker et al. 1990; Cook 1999). Moreover, over theis native to the Mediterranean basin, where the exis- past decade several research groups have developed thetence of numerous native populations has provided an tools and infrastructure for basic research, includingimportant resource for population biology and surveys efficient transformation systems (Trieu and Harrisonof natural phenotypic variation (Bonnin et al. 1996a,b). 1996; Trinh et al. 1998; Kamate et al. 2000), collectionsIn addition to its native distribution, M. truncatula has of induced variation (Penmetsa and Cook 2000), well-been cultivated for close to 1 century in Australia, where characterized cytogenetics (Cerbah et al. 1999; Kuli-it was developed on a limited scale as a winter forage kova et al. 2001), and a collaborative research networkand for use in ley rotation with wheat (Davidson and (http://www.medicago.org). Research efforts on M.Davidson 1993). Also known by the common name truncatula encompass a broad range of issues in plant“barrel medic,” M. truncatula is well suited as a crop in biology, ranging from studies of population biologyareas of nonacidic soils and low winter rainfall. (Bonnin et al. 1996a,b) and resistance gene evolution

As a consequence of its native distribution in the (Cannon et al. 2002; Zhu et al. 2002) to the molecularbasis of symbiotic interactions (e.g., Penmetsa and Cook1997; Catoira et al. 2000, 2001; Harrison et al. 2002;

1Corresponding author: Department of Plant Pathology, University of Ben Amor et al. 2003; Limpens et al. 2003; Liu et al. 2003;California, 1 Shields Ave., Davis, CA 95616.E-mail: [email protected] Mathesius et al. 2003) and micronutrient homeostasis

Genetics 166: 1463–1502 ( March 2004)

Page 2: A Sequence-Based Genetic Map of Medicago truncatula and

1464 H.-K. Choi et al.

(Nakata and McConn 2000; McConn and Nakata variable 5S rDNA loci and two ESTs that appear tohave been the focus of lineage-specific expansion or2002; Ellis et al. 2003). Of importance to these hypothe-

sis-driven investigations is the parallel development of contraction.tools for genome analysis, including a large collectionof expressed sequence tags (ESTs) and an ongoing phys-

MATERIALS AND METHODSical map and whole-genome sequencing effort, as wellas corresponding activities on metabolic profiling and Identification of expressed sequence tags for genetic

marker development: M. truncatula EST sequences were ob-proteomics.tained from the National Center for Biotechnology Informa-A key resource for both classical genetic and genomicstion (NCBI) dbEST and used to query the NCBI databases

efforts in M. truncatula is a genetic map composed of using blastx, blastn, or tblastx. M. truncatula ESTs with highwell-characterized molecular markers. Thoquet et al. similarity to genes discovered in other organisms (principally

Arabidopsis and/or other legumes) were selected for further(2002) have produced a genetic map based primarilyanalysis. Analyses were conducted against public domain se-on the analysis of anonymous sequence polymorphismsquences available at NCBI in February 2000. In the initial[i.e., amplified fragment length polymorphism (AFLP)attempt, we screened �2700 M. truncatula ESTs using blast

and randomly amplified polymorphic DNA (RAPD) and selected 274 ESTs as marker candidates. Oligonucleotidemarkers]. However, the increasing sequence informa- primers were designed from predicted exon sequences using

the Lasergene PrimerSelect software package (DNAStar, Madi-tion for M. truncatula provides an opportunity to mapson, WI) with the following general guidelines. In cases insequence-characterized loci. We have used such a strat-which introns could be predicted by aligning an M. truncatulaegy in previous studies to describe the organization andEST with a corresponding genomic sequence of Arabidopsis,

distribution of resistance gene analog sequences (Zhu primer pairs were designed to anneal in exon sequences andet al. 2002) and as the basis for examining genome to amplify across intron regions. In cases in which an M.

truncatula EST possessed similarity to sequences identified inconservation between M. truncatula and Arabidopsis thali-other legumes (on the basis of blastn), sequence alignmentsana (Zhu et al. 2003).were used to design oligonucleotide primers that would am-The goal of the current study was to develop codomi-plify DNA fragments from each of the corresponding legume

nant genetic markers for the transcribed region of the genomes. The soybean database contributed most of the le-M. truncatula genome. Ancillary goals included provid- gume sequences for sequence comparison due to the relative

abundance of soybean ESTs, and thus a majority of the ESTing a community resource for genetic mapping in M.primer pairs amplify sequences from the soybean genometruncatula and developing a set of conserved genetic(H.-K. Choi and D. Cook, unpublished results).elements for comparative map analysis within the Faba-

Identification of BAC clones for genetic marker develop-ceae. We have emphasized the development of se- ment: RFLP probes previously mapped in crop legumes werequence-based genetic markers, as these are anticipated used to identify homologous M. truncatula BAC clones on the

basis of DNA hybridization. Soybean RFLP clones with highto have wider application among populations within ahomology to genes in the NCBI database (May 1999) basedspecies and between related species. Toward this end,on blastx were selected as probes for Southern blot analysis.we used the extensive collection of ESTs for M. trunca-High-density filters containing five times the coverage of the

tula (e.g., Fedorova et al. 2002) to develop genetic mark- M. truncatula genome were obtained from the Clemson Uni-ers for genes that exhibit high sequence conservation versity Genome Center and hybridized with [32P]dCTP-labeled

probes essentially as described by Nam et al. (1999). Putativewith other legumes or with Arabidopsis. In parallel topositive clones were retrieved from the BAC library, purified,the EST approach, we used DNA hybridization and se-and used for DNA isolation by means of the QIAGEN (La Jolla,quence information to identify and genetically map bac-CA) plasmid kit according to the manufacturer’s instructions.

terial artificial chromosome (BAC) clones containing Purified BAC DNA was digested with HindIII, resolved in agenes of special interest [e.g., M. truncatula resistance 0.6% agarose gel, and used for a second round of Southern

blot analysis. Hybridization patterns were used to confirm thegene analogs, genes expressed during symbiosis, or ho-original hybridization result and to distinguish paralogousmologs of mapped soybean restriction fragment lengthloci on the basis of the size of the hybridizing band and thepolymorphism (RFLP) clones]. The majority of the ge-correspondence between BAC fingerprints. The resulting BAC

netic markers (BAC and EST) are anchored to BAC clones were end sequenced using oligonucleotide primers thatclone contigs, providing an important opportunity to are complementary to the BAC clone polylinker: SQ-BAC-L

(5�-AACGCCAGGGTTTTCCCAGTCACGACG-3�) and SQ-use fluorescence in situ hybridization (FISH) to resolveBAC-R (5�-ACACAGGAAACAGCTATGACCATGATTACG-3�).ambiguities in the genetic map, as well as to increaseTwenty-microliter sequencing reactions contained 500 ng ofthe integration of genetic, cytogenetic, and physicalBAC DNA, 8 �l of ABI BigDye (Perkin-Elmer, Norwalk, CT),

map data. The resulting genetic map defines eight link- and 5 pmol of primer. Sequencing reactions were performedage groups (LGs), corresponding to the eight cytogenet- with a 2-min initial denaturation step at 97�, followed by 40

cycles at 97� for 6 sec and 60� for 5 min. On the basis of BACically defined M. truncatula chromosomes (Kulikova etend sequence information, oligonucleotide primer pairs wereal. 2001). To test the utility of these genetic markersdesigned to PCR amplify the corresponding genomic DNAfor cross-species comparison, we analyzed 68 sequence-fragment from M. truncatula mapping parents, genotypes A17

based markers in a diploid M. sativa (alfalfa) population. and A20.The results demonstrate that the two species are essen- Identification of polymorphic sequences and marker devel-

opment: Parental genomic DNAs (Mt A17 and Mt A20) weretially colinear, with the exception of the notoriously

Page 3: A Sequence-Based Genetic Map of Medicago truncatula and

1465M. truncatula Genetic Map

amplified by the polymerase chain reaction using oligonucleo- and to develop CAPS markers (as described above for M.truncatula). In cases in which CAPS markers could not betide primers designed from ESTs or BAC end sequences, as

described above. Ten-microliter PCR reactions contained the developed, alleles were scored in F2 populations by directsequencing of the PCR products. In such cases, a limitedfollowing reagents: 20 ng of genomic DNA template, 1� PCR

reaction buffer, 2.5 mm MgCl2, 0.25 mm of each dNTP, 5 pmol number of F2 individuals were selected to provide fine discrimi-nation within the desired genetic interval, aided by a color-of each primer, and 0.5 unit of HotStarTaq DNA polymerase

(QIAGEN). PCR thermocycling reactions were performed coded genotype map of the diploid alfalfa population (Kisset al. 1998). In a typical mapping experiment, 138 M. sativawith a 15-min initial denaturation/activation step, followed

by 35 cycles at 94� for 20 sec, 55� for 20 sec, and 72� for 2 F2 individuals were analyzed. The F2 mapping population wasderived from a single F1 plant (F1/1), based on a cross betweenmin, with a final extension step of 5 min at 72�. PCR products

were assessed by gel electrophoresis in 1% agarose, visualized the diploid yellow-flowered M. sativa ssp. quasifalcata and thediploid purple-flowered M. sativa ssp. coerulea (described byby means of ethidium bromide staining. PCR reactions pro-

ducing single bands were selected for sequencing using an Kiss et al. 1993).Genetic distances were calculated by the “classical” max-ABI377 or ABI3730XL automated sequencer and the ABI

PRISM BigDye terminator sequencing ready reaction kit (Per- imum-likelihood method using MAPMAKER/EXP 3.0(Lander et al. 1987; Lincoln et al. 1992). Linkage was deter-kin-Elmer). Sequencing reactions of 10-�l volume contained

10–50 ng of PCR amplicon, 4 �l of ABI BigDye reagent, and mined by the “Group” command set at LOD 3.5 and a distanceof 40 cM based on the Kosambi mapping function. The order5 pmol of primer. Sequencing thermocycling was performed

with a 1-min initial denaturation step at 96�, followed by 35 of the markers was determined by the “Order” command(LOD 3.0, � � 0.40). Raw genotype data were checked usingcycles at 96� for 10 sec, 55� for 5 sec, and 60� for 4 min. DNA

sequence alignments, produced with the Sequencher 3.1.1 the color mapping method as described by Kiss et al. (1998).Color mapping provides a convenient means to visually inspectprogram (Gene Codes, Ann Arbor, MI), were used to survey

the parental alleles for polymorphic sites. Length and codomi- and curate genotypes for each individual of the population,thereby identifying potential genotyping errors and rare re-nant polymorphisms could be assayed directly by means of

agarose gel electrophoresis. Single-nucleotide polymorphisms combination events, and to propose linkage or nonlinkage.Identification of BAC clones for FISH analysis: In cases in(SNPs) were converted to cleaved amplified polymorphic se-

quences (CAPS) by identifying SNPs that confer differential which BAC clones were not previously identified by means ofDNA hybridization, we used the polymerase chain reaction torestriction enzyme sites between the two parental alleles

(Konieczny and Ausubel 1993; Hauser et al. 1998; Michaels identify candidate BAC clones. BAC DNA pools were con-structed either from the 5� coverage BAC library, as describedand Amasino 1998). In cases in which a suitable restriction

enzyme site was not identified, oligonucleotide primers with by Nam et al. (1999), or from a more recently developed 20�coverage BAC library of M. truncatula (D. Kim and D. R. Cook,a single nucleotide mismatch were designed adjacent to the

polymorphic position, such that a restriction site was created personal communication). Candidate BAC clones were puri-fied and cultured overnight on Luria broth agar mediumin the PCR product of one parent, but not the other (so-

called derived CAPS markers, or dCAPS; e.g., Neff et al. 1998). supplemented with 30 �g/ml of chloramphenicol. The iden-tity of BAC clones was confirmed by PCR, with amplified prod-Genotyping and data analysis: Plant genomic DNA was iso-

lated using the DNeasy plant mini kit (QIAGEN) according ucts assessed for size and intensity by means of gel electropho-resis in 1% agarose.to protocols provided by the manufacturer. Two parental lines

of M. truncatula, Jemalong A17 (the primary experimental FISH with BAC clones on prometaphase and pachytenechromosomes: Anthers of M. truncatula A17 flower buds weregenotype used in most investigations to date) and A20, were

chosen previously (Penmetsa and Cook 2000) to facilitate used for producing mitotic prometa-phase (tapetum) and mei-otic pachytene chromosome spreads. A detailed descriptiongenetic mapping and subsequent map-based cloning of genes

defined by their mutant phenotype. The basic mapping popu- of the chromosome preparation procedure and FISH is pro-vided by Kulikova et al. (2001). BAC DNA used as probeslation consisted of 93 F2 progeny derived from a cross of A17

and A20. In regions of specific interests, or where additional was isolated according to the alkaline lysis method and labeledwith either biotin-16-dUTP or digoxigenin-11-dUTP using arecombinants were desired to establish marker order, up to

120 individuals were genotyped. nick-translation mix (Roche). In some cases, BACs were la-beled with a mixture of both dUTPs (in ratio 1:1) to produceFor purposes of marker genotype analysis, the F2 DNAs were

analyzed in parallel with three control DNAs (A17 maternal yellow FISH signals after detection. Two to five probes wereused simultaneously in each hybridization, including BACshomozygous line, A20 paternal homozygous line, and hetero-

zygous DNA) in a structured 96-well microtiter plate format. that were mapped previously (Kulikova et al. 2001) and servedas landmarks for individual chromosomes.Briefly, following PCR �50–100 ng of product (1–2 �l) was

transferred to a new 96-well plate containing 1–5 units of a Biotin-labeled probes were detected with avidin-Texas redand amplified with biotin-conjugated goat-antiavidin andpredetermined restriction enzyme (Table 1) in a total volume

of 8 �l. Digestion was carried out at the manufacturer-specified avidin-Texas red (Vector Laboratories, Burlingame, CA). Di-goxigenin-labeled probes were detected with sheep-antidigoxi-temperature for 2–4 hr. Cleaved DNA fragments were analyzed

by agarose gel electrophoresis and genotypes were recorded genin fluorescein-5-isothiocyanate (FITC; Roche) and ampli-fied with rabbit-anti-sheep FITC ( Jackson ImmunoResearchas follows: homozygous maternal (A17) as “A,” homozygous

paternal (A20) as “B,” heterozygous as “H,” not A as “C,” not Laboratories, West Grove, PA). Chromosomes were counter-stained with 4�,6-diamidino-2-phenylindole (DAPI) in Vecta-B as “D,” and missing data as “—.”

For M. sativa, genetic marker candidates were first scored shield antifade solution (Vector Laboratories) of 5 �g/ml.Some chromosome preparations were reused for FISH withfor polymorphisms in the parental plants (Mscw2 and Msq93)

and their F1 progeny (F1/1). Markers that displayed easily a new set of probes according to the method of Heslop-Harrison et al. (1992). Images were captured for each fluo-scored polymorphisms (e.g., length variation, dominant inheri-

tance, or heteroduplex formation) were genotyped directly rescent dye separately with a cooled CCD camera system (Pho-tometrics, Tucson, AZ) on a Zeiss Axioplan 2 fluorescenceby means of agarose gel electrophoresis. In cases in which

alleles could not be scored directly on agarose gels, the ampli- microscope, pseudocolored, and merged by means of a Cyto-Vision workstation (Applied Imaging). To separate individualfication products were sequenced to identify polymorphisms

Page 4: A Sequence-Based Genetic Map of Medicago truncatula and

1466 H.-K. Choi et al.

chromosomes, each chromosome was digitally excised and a single locus in M. truncatula. On the basis of similarcopied into a new image using Adobe Photoshop 6.0 (Adobe). reasoning, the remaining soybean RFLP clones identi-

fied either two (13%) or three loci (14%). These resultsare likely to represent an underestimate of gene copy

RESULTSnumber in M. truncatula, as not all BAC clones identifiedby a given probe were subjected to Southern blot analy-Development of genetic markers: With the goal of

constructing a core genetic map of M. truncatula en- sis. The corresponding BAC clones were end sequencedand the information was used to develop 60 geneticriched with gene-based genetic markers, we focused on

three distinct classes of sequences: (1) ESTs with high markers. On a more limited scale, RFLP clones pre-viously mapped in alfalfa or pea were also used to screenhomology to genes known in Arabidopsis and/or other

legume species, (2) M. truncatula BAC clones with high the M. truncatula BAC library for homologous loci andto develop genetic markers on the basis of a similarhomology to mapped soybean RFLP probes, and (3)

genes of predicted function. Table 1 provides a com- strategy. In cases in which RFLP clones from other spe-cies were used to identify M. truncatula BAC clones andplete list of all marker information used in this study.

ESTs with similarity to Arabidopsis and legumes: To iden- derived genetic markers, their species affiliation is listedin Table 1.tify M. truncatula ESTs with high similarity to genes in

other legumes or Arabidopsis, we used BLAST (Alt- Markers developed from sequences of predicted function: Asa counterpart to selecting genes on the basis of BLASTschul et al. 1990) to search the NCBI nonredundant

(nr) and EST (dbEST) databases for related sequences, analysis or DNA hybridization, genetic markers were alsodeveloped from sequences selected on the basis of theirusing the following minimum criteria: tblastx against

nr, �e -50; blastn against dbEST to identify ESTs from presumed function. The largest class of this marker typerepresents the nucleotide binding site-leucine-rich repeatother legume species (principally the soybean EST data

set), �e -45; and blastn against the Arabidopsis genome superfamily of resistance gene analogs (see Zhu et al. 2002for a comprehensive analysis). An additional 12 genessequence, �e -30. Where possible, sequences were cho-

sen to represent apparently low- or single-copy-number were selected for mapping on the basis of their possiblerole in plant-microbe interactions, including symbiotic ni-genes, using the Arabidopsis genome as a reference

for gene copy number. In total, 141 EST-based genetic trogen fixation (e.g., leghemoglobin, ENOD40, ENOD16,and rip1) and pathogenic associations (e.g., homologsmarkers were developed on the basis of this approach.

BAC clones with homology to mapped RFLP probes mapped of plant chitinase proteins).Identification of polymorphisms and genotyping:from soybean, alfalfa, or pea: In addition to providing a

genetic context for the analysis of M. truncatula genes, Polymorphic loci were identified following PCR ampli-fication and sequencing of alleles from M. truncatulawe desired to produce a framework for comparison of

the genetic maps of related crop legume species. To genotypes A17 and A20, which served as parents of themapping population used in this study (as selected bytest the feasibility of this strategy for soybean (Gylcine

max), a set of 256 publicly available soybean RFLP clones Penmetsa and Cook 2000). Seventeen length and 14dominant polymorphisms were characterized and couldwas purchased from BioGenetic Services and each clone

was sequenced from both ends. The resulting soybean be mapped by virtue of their inherent fragment sizedifferences, or presence/absence criteria, between pa-sequence information was deposited at NCBI as acces-

sion nos. AQ841751–AQ842207 and AQ842113–AQ84- rental alleles. The remaining 257 polymorphisms weresingle-nucleotide differences between parental alleles.2119. A total of 121 of the soybean RFLP clones, �47%

of the sequenced clones, contained a putative open For the majority of SNPs, alleles were converted to CAPSmarkers. SNPs that could not be converted to CAPSreading frame based on BLASTX and TBLASTX

searches of the NCBI database (as of May 1999). These markers were scored by direct sequencing of PCR prod-ucts amplified from DNA of the segregating progeny.putative protein-coding clones were used to screen a

five-times version of the M. truncatula BAC library (Nam In 60 EST markers, PCR primers were designed toanneal in conserved exon regions and to amplify acrosset al. 1999) on the basis of DNA hybridization. DNA was

isolated from the candidate M. truncatula BAC clones, the more highly diverged intron regions. The closestArabidopsis homolog was used to infer intron positiondigested with restriction enzymes, and analyzed follow-

ing agarose gel electrophoresis by Southern hybridiza- and thereby aid primer design. This “intron-targeted”marker strategy assumes that polymorphisms will betion against the corresponding soybean RFLP clones.

This analysis allowed us to verify the original hybridiza- more frequent in intron vs. exon regions. To test thisassumption for the M. truncatula genotypes under analy-tion result and to identify putatively paralogous loci on

the basis of a hybridization fingerprint. In total, 79 of sis, we compiled intron and exon sequences for 47 ofthe intron-targeted markers. Pairwise alignments be-the 121 soybean RFLP probes analyzed in this manner

hybridized strongly to the M. truncatula BAC library. tween the marker genomic sequences and the M. trunca-tula EST data at NCBI allowed us to distinguish exonSeventy-three percent of these 79 soybean RFLP probes

identified only one BAC contig, which we interpret as from intron sequences and to calculate the relative di-

Page 5: A Sequence-Based Genetic Map of Medicago truncatula and

1467M. truncatula Genetic Map

TA

BL

E1

Att

ribu

tes

ofge

neti

cm

arke

rs

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

11B

2RA

Z75

7871

BE

STA

C14

4473

.36

Res

ista

nce

Bgl

IIC

APS

414

192

�22

2A

AT

CT

TT

CT

AG

CT

TT

GC

GA

AA

AT

TG

gen

ean

alog

CA

AT

GT

AA

AT

CG

AT

CT

AA

TG

GG

TT

CA

AT

TT

C11

N15

LA

Z75

7877

BE

STN

A6

Res

ista

nce

NA

Dom

inan

t40

00

AA

GC

TT

GA

AT

CC

AG

AT

GC

AA

AA

AC

CA

Gge

ne

anal

ogC

AC

TA

TT

TG

AG

AA

AA

GA

AG

AA

TC

CC

11N

17R

AZ

7578

79B

EST

AC

1445

02.3

4R

esis

tan

ceM

nlI

CA

PS10

0�

327

427

CT

AC

TC

CC

TG

CA

CC

GC

AC

AA

TT

AT

TC

AT

gen

ean

alog

TA

AC

CA

TT

CA

CG

CT

CT

TC

CC

AA

A11

O9L

AZ

7578

80B

EST

NA

3R

esis

tan

ceSs

pIC

APS

197

42�

155

CA

TG

GC

AT

CC

AG

AT

TA

TA

GA

CT

TA

GC

CC

gen

ean

alog

CC

CA

CA

TT

CA

AA

GT

AT

TT

CC

C13

B3R

AZ

7578

88B

EST

AC

1306

53.1

63

Res

ista

nce

Bst

NI

CA

PS75

�36

544

0C

TC

GT

TG

TA

AA

AA

AG

TA

TT

CA

TG

TT

AC

AA

C13

5312

.7ge

ne

anal

ogG

CG

TT

AC

CA

AA

CA

AA

AT

AA

AC

GT

CC

AG

AA

TT

GA

G14

33P

AI9

7441

1E

STi

AC

1443

42.7

314

-3-3

-like

480

SNP

T/1

14/F

T/1

14/F

AA

GG

TT

TT

CT

AC

CT

GT

TT

AG

CA

AG

AT

TG

prot

ein

G/1

23/F

T/1

23/F

TA

AG

AT

GA

AG

GC

AG

GC

AC

GA

A/1

33/F

G/1

33/F

GA

G15

J11L

AZ

7578

98B

EST

AZ

7578

981

Res

ista

nce

Dde

IC

APS

190

�72

262

GT

GC

CC

CG

CC

CC

TT

GC

AA

AT

AG

GC

CC

gen

ean

alog

TT

AT

TC

AT

CC

15L

4RA

Z75

7901

BE

STN

A6

Res

ista

nce

Xm

nIC

APS

155

�36

351

8A

AA

TT

TT

AG

AG

AC

CG

TT

TT

AG

TT

TA

Cge

ne

anal

ogT

GA

GA

CA

TT

GG

GC

AT

GA

CT

TT

GC

TC

CT

CT

18A

5RA

Z75

7906

BE

STA

C13

5396

.17

6R

esis

tan

ceB

srI

CA

PS35

012

3�

227

AA

TG

GA

AG

GC

CA

GT

TG

AA

TT

GG

AC

AT

gen

ean

alog

GA

AG

CA

TA

AG

TT

GA

GT

TT

GG

GA

18D

24R

AZ

7579

08B

EST

AC

1308

08.1

33

Res

ista

nce

SspI

CA

PS21

1�

8229

3C

AA

TC

CT

GA

TC

TA

CG

GA

TG

AA

AA

CA

GA

gen

ean

alog

TT

AA

CC

AA

AA

TA

GA

AC

CG

TG

AA

AA

CA

GC

CA

C18

L14

LA

Z75

7909

BE

STA

C13

5160

.15

4R

esis

tan

ceSt

yIC

APS

412

180

�23

2C

GT

AA

CA

TT

CT

CA

TA

AG

TA

AT

CC

GG

TA

C13

7667

.8ge

ne

anal

ogT

AT

CG

CT

GC

TA

TG

AT

TG

AT

TT

TT

CT

CC

19D

7LA

Z75

7911

BE

STN

A5

Res

ista

nce

Cla

IC

APS

212

�49

261

AA

TT

TC

TT

CC

AT

TT

CA

AT

CG

TG

GT

CT

CT

gen

ean

alog

GT

CT

TG

TT

TT

GA

AC

AT

AT

TG

AA

TG

G19

F14R

AZ

7579

13B

EST

AC

1375

08.6

3R

esis

tan

ceB

faI

CA

PS15

7�

318

463

AA

GC

TT

AC

CT

GA

AA

CC

TA

TT

GC

CT

TT

gen

ean

alog

TA

CC

AT

TT

GT

GT

AT

TT

TG

AG

AA

TG

TT

GT

AT

GG

(con

tinue

d)

Page 6: A Sequence-Based Genetic Map of Medicago truncatula and

1468 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

19L

13L

AZ

7579

14B

EST

AC

1338

63.1

53

Res

ista

nce

Mbo

IC

APS

113

�13

524

8T

GT

GT

AC

AA

CA

AC

CA

TG

GT

TA

AA

TG

gen

ean

alog

CA

AC

AA

GA

TA

GA

AG

TA

GT

AA

CG

AG

GA

AC

AT

TT

GC

TC

C19

O4L

AZ

7579

15B

EST

AC

1353

96.1

76

Res

ista

nce

Hin

dIII

CA

PS29

7�

138

435

GG

GA

AT

GA

TA

AT

GC

TA

TG

CC

AG

AC

TG

Cge

ne

anal

ogG

TA

TG

TG

AT

AT

CT

CC

AA

TG

TG

AA

AA

TG

1E19

LA

Z75

8056

BE

STN

A6

Res

ista

nce

Alw

IC

APS

325

136

�14

5A

CC

CG

GT

GC

GA

AT

GC

AA

TG

CT

TG

CC

Age

ne

anal

ogG

TA

AT

GA

GA

AC

TC

CA

1N1R

BH

0010

61B

EST

AC

1364

72.1

52

Con

vert

edB

smA

IC

APS

500

200

�30

0C

AT

AT

TG

TT

AG

AT

GT

GA

GC

GT

TA

AG

TT

AFL

PT

TG

TG

GG

GT

AG

AG

mar

ker

21L

20L

AZ

7579

24B

EST

NA

5R

esis

tan

ceB

srI

CA

PS29

210

5�

187

AG

GT

GG

AA

AA

AC

CC

TG

CA

AA

TA

AA

CC

Cge

ne

anal

ogC

AA

CG

AG

AA

TA

TC

TA

GA

AA

AG

TC

TG

23L

16R

AZ

7579

31B

EST

NA

4R

esis

tan

ceN

AD

omin

ant

300

0C

AA

AT

TC

TC

AA

CC

CG

AA

CC

AA

AT

GA

GC

Cge

ne

anal

ogT

TC

TG

CT

CA

AC

GA

AC

TT

GA

GC

TT

AC

T24

D15

RA

Z75

7932

BE

STN

A3

Res

ista

nce

Hpa

IIC

APS

180

�70

250

AA

TA

AT

TG

AC

GA

GC

TG

GA

TT

TG

AA

TG

Tge

ne

anal

ogT

AC

CA

GC

AT

AT

GG

AT

CT

TT

TG

AT

TA

A25

A23

LA

Z75

7939

BE

STA

C14

4502

.34

Res

ista

nce

Nla

III

CA

PS76

�30

476

�59

�T

TT

TA

TT

TC

GC

GT

TA

CG

CG

CA

GC

AG

Cge

ne

anal

og24

4G

TT

TA

TT

TG

AC

AT

CC

TT

C26

E21

LA

Z75

7942

BE

STN

A6

Res

ista

nce

Dra

IC

APS

120

�29

741

7A

AG

CT

TC

GT

GC

CA

TA

AG

CT

TC

GT

GC

CA

Tge

ne

anal

ogT

GG

TG

AA

TA

CA

TG

GT

GA

AT

AC

A26

G3L

AZ

7579

43B

EST

AC

1306

53.1

63

Res

ista

nce

Rsa

IC

APS

116

�26

838

4T

TC

TG

AC

CA

AT

CC

TG

GG

GT

TA

GA

TT

TA

C13

5312

.7ge

ne

anal

ogG

AA

GA

GC

AG

TG

AT

AG

TT

AC

AT

GT

TT

GA

CA

CA

2M10

LA

Z75

8065

BE

STN

A8

Res

ista

nce

Dra

III

CA

PS28

215

2�

130

TA

TT

TG

CT

CC

TA

GT

AA

GT

TA

AT

GA

TT

TT

gen

ean

alog

TT

TG

GG

TC

AA

GT

CA

CT

TG

CA

GA

AT

AA

G2M

10R

AZ

7580

66B

EST

NA

8R

esis

tan

ceN

laII

IC

APS

78�

183

78�

61�

AC

AA

AG

GG

TC

TG

GC

AC

CC

TG

AT

TT

CC

Cge

ne

anal

og12

2G

CG

AT

GA

GC

AA

GT

GA

33I2

3RA

Z75

7960

BE

STA

C12

1243

.10

2R

esis

tan

ceB

stU

IC

APS

329

214

�11

5C

TC

TT

CA

TT

TA

TG

AT

GA

AT

AG

CC

GT

GT

gen

ean

alog

AG

TG

TA

CT

TG

TC

TT

TG

GT

GG

TT

TC

C

(con

tinue

d)

Page 7: A Sequence-Based Genetic Map of Medicago truncatula and

1469M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

34D

20L

AZ

7579

63B

EST

NA

5R

esis

tan

ceH

paII

CA

PS50

�20

025

0C

TG

TT

TT

GC

AC

TG

AT

GC

TA

TA

CA

GA

AA

Age

ne

anal

ogT

AT

TG

TT

AG

GA

GA

GG

TG

GT

GA

TA

GA

TA

TA

36N

1LA

Z75

7974

BE

STN

A6

Res

ista

nce

Bgl

IIC

APS

277

�12

940

6G

AA

GC

AG

CC

GG

AT

GT

TA

GT

TC

AA

AT

Gge

ne

anal

ogC

AT

TG

GA

CA

CA

GA

TC

TT

CT

AT

GA

GG

TA

T38

K1L

AZ

7579

81B

EST

NA

3R

esis

tan

ceA

flII

CA

PS39

�21

024

9G

GC

TG

GT

AT

GA

AA

AG

TT

TA

AA

TA

AG

GA

gen

ean

alog

GA

AG

AG

CA

GA

AC

CA

GG

AT

GT

TC

G3F

12R

AZ

7580

69B

EST

AC

1348

23.1

26

Res

ista

nce

Rm

aIC

APS

178

�20

738

5C

CA

GA

AT

TC

TT

CG

GA

TA

AG

GG

GT

GA

AC

gen

ean

alog

TT

GA

TG

AT

GT

TT

AA

TT

GT

GA

TG

TT

GA

CT

CT

TG

A3F

15R

AZ

7580

71B

EST

NA

3R

esis

tan

ceB

stU

IC

APS

478

56�

422

AT

GT

CA

CG

AA

AA

GT

GA

TG

TT

GC

TT

Cge

ne

anal

ogT

AA

GC

AT

AC

AA

AC

AG

AT

GA

AT

GT

CC

TT

CT

GG

3N6L

AZ

7580

72B

EST

NA

8R

esis

tan

ceX

hoI

CA

PS15

4�

7322

7A

AG

AG

AC

TT

AA

GA

AC

TT

GG

GT

TG

GT

CT

gen

ean

alog

AT

TT

TC

GA

TG

GG

AT

GG

TG

CT

GG

AT

GC

40H

12L

AZ

7579

85B

EST

NA

8R

esis

tan

ceB

srI

CA

PS28

015

2�

128

GA

GC

TG

GA

AG

GT

TA

AG

AG

AA

AT

GA

AT

Tge

ne

anal

ogT

AT

AT

AA

AT

AT

GT

CT

TA

TG

TC

TC

TG

CC

CG

TG

TG

TG

40L

12R

AZ

7579

88B

EST

NA

3R

esis

tan

ceN

laII

IC

APS

302

96�

206

AT

GA

CA

TA

CT

TC

AA

TC

CA

AA

TC

CC

AT

Cge

ne

anal

ogA

GA

AA

TA

AA

CC

TC

CA

AC

AG

GA

CC

AG

41F2

3LA

Z75

7991

BE

STN

A5

Res

ista

nce

Bsm

AI

CA

PS19

510

3�

92C

CC

CC

GC

AT

GT

AA

TC

GC

AA

TT

GC

AA

Cge

ne

anal

ogG

GA

TG

TT

TT

GT

CC

AC

41O

18L

AZ

7579

93B

EST

NA

4R

esis

tan

ceA

luI

CA

PS26

816

7�

101

AG

AT

AT

AT

CA

GA

AA

AT

AC

CC

TT

CC

Cge

ne

anal

ogA

AA

AC

TA

AC

CC

TT

TC

CT

TC

CC

AA

CC

TT

42J1

6RA

Z75

7996

BE

STA

C14

4341

.10

3R

esis

tan

ceH

incI

IC

APS

227

�24

246

9A

CC

TC

TT

CT

AT

AG

AG

AT

AA

AC

TG

GC

AT

Tge

ne

anal

ogG

AT

AA

CT

TG

TG

TC

CA

TG

AC

TT

TC

AA

GC

AA

G43

I21L

AZ

7579

98B

EST

NA

4R

esis

tan

ceN

laIV

CA

PS14

7�

232

�45

�37

9G

CT

TT

TG

TT

TT

AA

TG

GA

GC

CT

CA

TG

Tge

ne

anal

og45

TG

CA

TT

TC

TT

AG

TT

TC

AA

AC

GG

TG

TT

TC

44D

11L

AZ

7579

99B

EST

AC

1381

99.5

6R

esis

tan

ceA

seI

CA

PS48

117

0�

311

TC

TT

AC

AA

AC

TA

CC

AA

AA

TT

AT

TA

Tge

ne

anal

ogC

AA

TA

TC

AC

AG

CA

TT

TG

GT

TA

GC

AG

GA

CT

AA

AA

TT

A

(con

tinue

d)

Page 8: A Sequence-Based Genetic Map of Medicago truncatula and

1470 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

48N

18L

AZ

7580

17B

EST

NA

6R

esis

tan

ceB

smA

IC

APS

510

130

�38

0T

CT

TT

TC

CT

CC

GA

TA

GG

CT

TG

CT

TG

CT

gen

ean

alog

TT

CT

TG

AT

TC

TC

GT

TG

GT

TG

TA

50O

1RA

Z75

8020

BE

STA

C12

6790

.20

6R

esis

tan

ceN

AD

omin

ant

300

0C

GA

CA

TC

CC

TT

AC

AT

TG

CG

AC

CA

TG

GA

gen

ean

alog

TG

TT

GC

CA

CT

TA

TT

TG

TG

AG

GA

51J1

RA

Z75

8021

BE

STN

A6

Res

ista

nce

Hin

cII

CA

PS23

3�

163

396

CG

GT

TG

CA

GG

GG

TC

GG

TT

GC

AG

GG

GT

gen

ean

alog

CA

AA

TG

TA

AT

CA

AA

TG

TA

AT

5J9L

AZ

7580

81B

EST

NA

3R

esis

tan

ceH

infI

CA

PS35

923

5�

124

TC

CT

TT

GG

GA

AG

AC

TC

TG

AA

GA

AG

TA

gen

ean

alog

AT

GG

TA

GA

GG

TT

TT

CC

TT

CC

TT

GA

C6M

23L

AZ

7578

52B

EST

AC

1422

23.4

3R

esis

tan

ceM

seI

CA

PS50

�26

517

0�

95�

GT

TA

GT

TT

AC

CA

CT

TT

AA

TG

TT

AG

AG

AT

gen

ean

alog

50T

TT

GA

GT

AG

TG

TT

GA

AG

GT

GA

GA

GA

AG

CA

CA

AA

C74

O5R

AZ

7580

32B

EST

AC

1443

41.1

03

Res

ista

nce

Cla

IC

APS

228

131

�97

AG

TT

CA

TT

AC

TT

GA

AG

TC

TA

GA

AT

GG

AA

gen

ean

alog

TT

AG

CA

CA

CT

TG

CA

CG

TT

GT

TT

AC

AT

CG

75D

1LA

Z75

8033

BE

STA

C12

4955

.21

4R

esis

tan

ceN

laII

IC

APS

220

�43

263

AA

GC

TT

CC

AA

TG

AT

GT

GG

TA

TC

AT

TA

Gge

ne

anal

ogT

AG

AT

GA

TC

GT

TC

CT

TC

TC

AT

CA

GA

AG

G78

B21

LA

Z75

8038

BE

STA

C13

4824

.15

6R

esis

tan

ceN

AL

engt

h38

030

0T

TA

GA

AA

TT

GA

AT

TG

CG

AT

GG

TG

TC

Age

ne

anal

ogA

AG

CG

TG

TA

TG

GA

AA

TG

TA

CC

79H

20R

AZ

7580

47B

EST

NA

5R

esis

tan

ceN

AD

omin

ant

380

0G

CT

TC

GT

GA

GG

TT

GT

GC

TC

AT

GT

TA

gen

ean

alog

GA

TA

GA

TC

TA

AT

TG

GT

TT

GG

TG

AG

AT

GA

CG

TA

T79

P21R

AZ

7580

49B

EST

NA

6R

esis

tan

ceD

deI

CA

PS21

1�

298

211

�87

�G

CT

AC

TG

CA

AC

GT

TT

CT

AA

AT

AT

GC

GT

Gge

ne

anal

og20

0C

CC

TC

TC

AC

AG

GT

TG

TT

CT

AA

AG

TG

TT

7G13

RA

Z75

7859

BE

STA

C12

3574

.20

6R

esis

tan

ceR

saI

CA

PS35

629

2�

64A

AT

TG

CA

CA

TA

TT

TT

TT

CT

TC

TT

AT

AA

gen

ean

alog

CA

TT

TG

AG

TT

GA

AA

AA

TG

GT

GA

AG

AA

GG

TA

TT

GT

G7H

15L

AZ

7578

60B

EST

AC

1340

49.1

45

Res

ista

nce

Alu

IC

APS

30�

250

280

TT

TC

AT

CT

TC

TG

CG

CC

TA

TG

GA

GG

Tge

ne

anal

ogC

TC

AT

TT

GG

TC

GA

GG

AT

TT

GG

8C10

RA

Z75

7865

BE

STA

C12

6790

.20

6R

esis

tan

ceB

SPH

CA

PS38

724

3�

168

TG

CA

GT

CT

CG

AG

TC

TC

GG

GT

GG

TG

AT

gen

ean

alog

TA

CA

AC

AA

AT

GG

AT

GA

CT

CT

GA

AA

TA

A66

1025

AA

6610

25E

STi

NA

8R

esis

tan

ceEc

oRV

CA

PS35

1�

277

628

CA

AA

CC

AT

AC

TT

AC

TT

CG

GA

CC

TT

CA

Gge

ne

anal

ogA

GC

AA

AC

CT

AC

CA

AA

AC

AC

AG

AA

TG

C

(con

tinue

d)

Page 9: A Sequence-Based Genetic Map of Medicago truncatula and

1471M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

AA

SA

W17

1678

EST

eA

C12

9091

.11

2A

ceto

lact

ate

400

SNP

C/2

57/F

T/2

57/F

GA

TG

GT

GA

TG

GA

AA

CT

TA

TC

CT

GC

Csy

nth

ase

AG

TT

TT

AT

GA

AT

CG

CC

CT

CG

Gpr

ecur

sor

TG

AT

TA

AA

TA

A66

0344

EST

iA

C12

6783

.10

5A

lan

ine

Apo

IC

APS

500

�50

030

0�

200

�T

GC

TT

CA

CG

AT

GC

TC

CG

AC

AT

TA

GG

AT

amin

o-50

0C

AC

CA

AC

AT

CA

AG

TA

GG

tran

sfer

ase

AC

CO

AI9

7423

0E

STi

AC

1212

36.1

42

1-A

CC

oxid

ase

Mnl

IC

APS

290

40�

250

GA

AG

AT

GG

CG

CA

CG

AT

GT

GT

CG

TG

TA

C12

2163

.16

AA

AA

GA

AA

GT

CA

TC

TC

GT

TA

AG

TT

CC

CT

AC

LA

A66

0349

EST

iA

C13

2565

.82

AT

Pci

trat

eB

clI

CA

PS30

�27

0�

1200

AA

GG

TT

AA

GA

CC

GA

GT

CC

AA

AT

TC

GT

lyas

e90

0T

AT

TT

AT

TC

CA

CC

CC

AC

TG

AC

AA

GT

AW

1260

02E

STi

NA

7Pu

tati

ve10

00SN

PC

/303

/FT

/303

/FG

AT

TT

GG

GC

CT

CA

CC

TG

AA

GG

GG

GA

4-

-glu

can

o-G

/304

/RA

/304

/RT

TC

CT

TC

TT

GT

AA

AT

TG

CC

CA

Ctr

ansf

eras

eG

TG

CA

AT

TG

AA

I974

451

AI9

7445

1E

STi

NA

8R

esis

tan

ceH

phI

CA

PS47

040

0�

70C

GA

TG

GG

TT

TT

TC

GC

AA

CA

AG

AG

TC

Age

ne

anal

ogC

AG

TT

TT

CT

AT

AA

TT

CA

GT

TC

CA

TA

CA

AI9

7451

9A

I974

519

EST

eN

A2

Res

ista

nce

NA

Dom

inan

t30

00

GC

TG

AA

TT

AG

TA

GC

TA

TG

GT

TT

GC

Cge

ne

anal

ogG

CT

GG

GA

TG

TC

GA

AG

GA

TT

TG

AIG

PA

W12

5928

EST

iN

A3

Aux

in-in

de-

460

SNP

G/9

9/R

C/9

9/R

CT

GA

TA

GG

GC

CA

GG

TT

TT

TT

AG

CA

TT

Tpe

nde

nt

GA

GG

CA

GG

GA

GG

AC

GA

AT

GG

Tgr

owth

AG

AT

GG

Tpr

omot

erA

PXA

A66

0806

EST

iA

C12

1235

.16

4A

scor

bate

SpeI

CA

PS20

0065

0�

1350

AT

CT

TC

GC

CA

TT

TT

GC

TT

TG

CC

AA

AC

Ape

roxi

dase

CC

TT

CT

TA

GC

AT

CC

CT

CA

PYR

1A

A66

0474

EST

eN

A7

Mt

apyr

ase1

Alu

IC

APS

95�

3814

3A

AC

CC

TT

GC

CT

TT

TT

CT

GA

AA

TT

AT

CA

GG

CT

GG

AT

TT

GT

AG

CC

GA

AA

TA

AT

GG

GT

GT

GA

SN2

AW

2080

61E

STi

NA

5A

spar

agin

e40

0SN

PG

/103

/FC

/103

/FT

AA

AA

AA

AG

AT

GA

AC

AA

AG

AT

CA

TT

CT

Gsy

nth

etas

eG

/152

/FA

/152

/FG

GA

CG

AA

TT

GA

TA

GT

AG

TA

TG

CG

AA

GT

TC

CT

ASN

EP

AW

2081

87E

STi

NA

1A

spar

agin

yl70

0SN

PA

/239

/FT

/239

/FG

AA

GA

AA

AA

AC

AT

AT

CT

TT

AA

CC

AA

TT

endo

pep-

GC

TT

CT

GG

AT

CA

TA

TA

TT

GC

TG

Gti

dase

TA

TA

TG

CA

(con

tinue

d)

Page 10: A Sequence-Based Genetic Map of Medicago truncatula and

1472 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

ASP

PA

W12

6301

EST

iN

A7

Asp

arti

c90

0SN

PC

/250

/FT

/250

/FG

GT

GG

TG

AA

TT

AG

AC

AT

AA

AC

CA

AC

TT

prot

ease

TT

TT

TG

GT

GG

TG

GT

GA

AC

AG

AC

prec

urso

rT

TG

AG

TC

AA

TC

PA

W20

7998

EST

iN

A3

Aqu

apor

in-

900

SNP

G/2

90/R

A/2

90/R

AA

CC

AA

TT

GG

TA

TT

TT

CC

TT

GC

CA

AG

Alik

ech

ann

elG

CA

GC

TC

AG

AA

CA

AA

CC

GA

AT

prot

ein

GC

CA

GT

CA

AT

P2A

I974

613

EST

iN

A1

AT

Psy

nth

ase

10

00SN

PA

/58/

FC

/58/

F:/

AT

TG

CT

AT

GG

AT

GT

GG

TA

TG

GT

GC

AA

�-c

hai

n,

T/2

73/R

273/

RC

TA

CT

GA

AG

GT

GC

AG

GT

CA

Am

itoc

hon

dria

lC

/442

/RT

/442

/RG

TT

Gpr

ecur

sor

AW

1259

82A

W12

5982

EST

eA

C13

4049

.14

5R

esis

tan

ceM

boII

CA

PS13

3�

166

299

GC

TT

CA

AC

CT

CA

TT

CC

TT

AC

CA

GG

TC

TG

gen

ean

alog

CC

CA

AC

AA

CT

TC

GC

AA

CT

TC

TC

TA

AT

AT

CA

W25

6557

AW

2565

57E

STe

NA

1R

esis

tan

ceA

lwN

IC

APS

334

300

�34

GA

TA

TT

TT

CA

TT

AC

TG

CT

TC

AT

CC

CA

Cge

ne

anal

ogT

CA

GC

AA

CT

TT

TT

AT

CA

TC

AA

TT

CA

CA

GT

AC

CA

W25

6637

AW

2566

37E

STi

AC

1446

58.4

4R

esis

tan

ceSc

aIC

APS

525

404

�12

1T

TC

AC

CT

AA

TT

TC

TA

TT

TG

TT

AG

CT

TT

gen

ean

alog

CA

TC

TA

TA

CC

AA

GT

GA

TC

GC

TT

CC

AT

GT

GC

TA

CA

CA

W25

6656

AW

2566

56E

STi

AC

1254

80.2

04

Res

ista

nce

Bsm

AI

CA

PS50

519

0�

315

CC

CA

GA

CA

AC

AT

TC

CA

AG

TA

GT

AG

GC

gen

ean

alog

TC

CT

TA

CT

AT

CA

AA

AC

CC

AA

CG

TC

AA

AA

TT

AW

2570

33A

W25

7033

EST

eN

A8

Res

ista

nce

Mbo

IIC

APS

314

260

�54

TG

CG

TC

AT

TA

AC

CC

CA

AC

AG

TA

AC

AT

Cge

ne

anal

ogA

AA

GA

TG

AT

GT

CC

CA

AA

GA

CA

AT

GT

AA

TA

TT

CA

W25

7289

AW

2572

89E

STi

NA

4R

esis

tan

ceB

smA

IC

APS

341

�13

747

8C

TT

CG

GA

CC

TT

CA

CG

GG

TG

AC

AG

AT

gen

ean

alog

GC

AA

AA

CA

CA

GT

AT

TT

GG

TG

AC

AT

CA

W68

4911

AW

6849

11E

STe

AC

1378

25.1

76

Res

ista

nce

NA

Dom

inan

t35

00

TC

TA

AA

CC

AA

GT

GG

TG

TT

AT

TA

TG

CC

gen

ean

alog

GG

GA

GT

AT

CG

CA

AG

GA

GT

TT

GA

TG

TA

W68

8464

AW

6884

64E

STe

NA

3R

esis

tan

ceN

AD

omin

ant

350

0T

GA

TT

TG

AA

GG

CA

AA

AA

TT

GA

AG

TC

Cge

ne

anal

ogT

GG

GT

TT

GT

GT

AC

TC

TG

TT

AT

GT

CT

AC

AW

6965

88A

W69

6588

EST

eN

A6

Res

ista

nce

NA

Dom

inan

t40

00

GA

TT

CC

CA

TA

TT

TT

CA

TC

AT

CA

GG

TC

CC

gen

ean

alog

CT

GC

CA

AC

TA

TG

TC

AT

CA

AG

AA

G

(con

tinue

d)

Page 11: A Sequence-Based Genetic Map of Medicago truncatula and

1473M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

AW

6966

80A

W69

6680

EST

eA

C14

4502

.34

Res

ista

nce

NA

Dom

inan

t35

00

GG

GA

AG

AC

AA

CT

CG

TC

AT

AT

GT

CA

AA

gen

ean

alog

TG

GC

TA

CT

GC

TC

TC

CT

CA

TA

AT

CA

CT

AW

7361

36A

W73

6136

EST

eN

A7

Res

ista

nce

NA

Dom

inan

t38

00

AT

CT

TC

CA

AC

CC

TA

TA

GC

CC

AA

AG

AA

gen

ean

alog

CA

TC

AT

CA

AT

TA

GA

TG

TG

AA

AG

AG

CT

AW

7367

03A

W73

6703

EST

iN

A3

Res

ista

nce

Taq

IC

APS

160

�29

045

0A

GC

AA

GG

TA

TT

CA

GC

AA

AT

AT

TT

CT

Tge

ne

anal

ogA

CT

TC

TT

TT

CA

TA

CC

AG

TT

AG

TT

CT

TT

GT

GC

AW

7740

53A

W77

4053

EST

eN

A3

Res

ista

nce

Hin

dIII

CA

PS36

525

0�

115

CC

GG

GT

AG

TA

GG

CA

CA

GC

CA

TT

TT

Age

ne

anal

ogG

TC

AT

CA

TT

AC

AT

TA

TC

TC

CT

CT

CA

AC

AW

7748

49A

W77

4849

EST

eN

A6

Res

ista

nce

EcoR

VC

APS

258

82�

176

TG

AA

AG

TC

AC

GG

AA

CG

GT

GG

AT

TT

Tge

ne

anal

ogG

GG

AG

CA

CA

TG

AT

GG

AC

TC

BA

DH

AW

1262

56E

STi

NA

4B

enzy

l-70

0SN

PA

/226

/FG

/226

/FG

TG

AT

GA

TT

GG

AC

TA

CA

GC

CC

GA

CC

GA

alco

hol

C/5

8/R

T/5

9/R

TG

GC

AC

AA

GC

TG

CT

AT

TT

TT

CC

Tde

hyd

ro-

gen

ase

BE

1875

90B

E18

7590

EST

eN

A3

Res

ista

nce

Bam

HI

CA

PS37

080

�29

0A

TG

CG

GA

TA

GA

AG

CA

AT

TG

TC

CG

GT

CT

gen

ean

alog

GG

CT

GA

TG

AG

CT

CT

TC

CB

E32

5283

BE

3252

83E

STe

NA

6R

esis

tan

ceB

srI

CA

PS72

�27

535

7G

TC

CA

TC

AA

TT

TC

AT

CG

CA

TT

CA

AT

TC

Tge

ne

anal

ogA

TG

TT

CC

TG

TT

TC

TT

CC

TT

GC

BG

AL

AW

1262

29E

STi

NA

1�

-Gal

acto

-60

0SN

PC

/130

/FA

/130

/FA

GA

CT

TG

TC

TT

GG

AA

TA

TG

AT

AC

CA

TT

sida

seA

/362

/FG

/362

/FC

AG

AA

AT

GG

TC

TT

CT

GT

GT

TG

GT

TT

AC

AC

TC

CA

BiP

AA

W12

5959

EST

eN

A4

BiP

isof

orm

A40

0SN

PT

/284

/FC

/284

/FG

AG

GA

GT

CT

CA

CA

GG

TT

TT

TC

AT

GT

TG

AA

GG

AT

TG

CT

AG

AC

AT

AG

GT

TT

CA

CA

FA

A66

0318

EST

eA

C13

6449

.98

Caf

feoy

l-CoA

Bsi

EI

CA

PS19

530

�16

5A

AT

TA

CA

AC

CA

GA

TG

GA

AA

TT

GG

TG

TC

O-m

eth

yl-

AA

TT

AA

GT

AT

TC

TA

CA

CT

GG

CT

AC

tran

sfer

ase

GA

CC

CA

KA

A66

0544

EST

iA

C13

5795

.37

Cal

cium

-A

poI

CA

PS34

5�

200

�54

5�

210

�T

TC

AA

CC

CC

TC

TG

CA

TC

TA

TA

GC

AA

TT

depe

nde

nt

210

�11

011

0C

GA

AC

CG

CT

GT

TG

TC

AT

CT

prot

ein

kin

ase

(con

tinue

d)

Page 12: A Sequence-Based Genetic Map of Medicago truncatula and

1474 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

CA

LT

LA

W12

6242

EST

iN

A1

Cal

reti

culin

440

SNP

C/1

08/F

T/1

08/F

GT

GG

AA

GG

CA

CC

AT

CT

TC

TT

CT

CA

GC

A/1

99/F

T/1

99/F

TT

GA

TT

GA

CA

AC

CT

CT

TC

AA

AT

GC

C/2

87/F

T/2

87/F

A/3

40/F

G/3

40/F

CD

C16

AI9

7447

0E

STe

AC

1212

41.1

58

Cel

ldi

visi

onA

lwI

CA

PS26

021

0�

50C

CT

CC

CG

CT

TC

AC

GG

TA

AT

GG

TG

GC

Cco

ntr

olT

TC

AC

TT

TG

AG

GA

AT

Apr

otei

n16

CD

C2

AW

1717

50E

STi

AC

1444

81.3

1Pu

tati

vecd

c282

0SN

PT

/310

/FC

/310

/FC

AA

CT

TT

GC

AA

GG

AC

TA

AC

AC

CT

GG

CC

kin

ase

GT

GT

TG

CT

TT

CT

AC

AC

AT

CT

TC

Acg

O00

8FE

STi

2G

ibbe

relin

340

0SN

PT

/113

/FC

/113

/FT

CG

CT

CG

TA

TC

TC

AG

TT

TG

GC

CA

TT

AG

�-h

ydro

xy-

T/2

48/F

C/2

48/F

TT

CC

TT

CT

TC

CT

AC

CG

TC

AC

Cla

se,

Vr

AZ

2542

16cg

P137

FA

W25

7467

EST

eN

A1

Un

know

n40

0SN

PT

/354

/FC

/354

/FT

GT

TA

AC

CT

CA

GT

AG

GA

TG

CA

AT

CA

AG

prot

ein

TA

CT

GC

AA

CA

GA

CA

TA

TA

TC

TT

GA

chit

1Y1

0373

GS

AC

1212

39.1

23

Mt

Ch

itin

ase

IN

AL

engt

h98

95G

GT

AA

GG

TA

AT

GC

CT

TA

CG

GA

TG

AA

AT

CT

AT

CT

TA

AT

CG

GT

AT

TG

TT

TC

CC

NG

C4

AW

1260

67E

STi

NA

8C

yclic

380

SNP

T/1

97/F

A/1

97/F

AG

AG

AT

GA

GA

AT

CA

TG

AT

GA

AG

AG

Cn

ucle

otid

e-G

/201

/FT

/201

/FC

AA

GA

GG

AG

GG

AT

TT

CG

TC

CA

Cre

gula

ted

A/2

82/F

G/2

82/F

AT

GC

AT

GG

Aio

nch

ann

elC

oA-O

AI9

7454

6E

STi

AC

1194

08.5

8A

cyl-C

oAA

poI

CA

PS10

�41

0�

10�

410

�T

TT

GG

GG

GA

AA

TC

TC

GG

GC

AA

TG

TT

oxid

ase

60�

210

270

AA

TG

GA

AG

TC

TG

AA

AA

AT

C(A

CX

1)C

P450

AW

1716

93E

STe

NA

4C

ytoc

hro

me

310

SNP

A/1

34/F

G/1

34/F

AG

TG

TG

AG

AT

CA

AT

CA

TC

AT

CA

CC

TT

TP4

50G

/152

/FT

/152

/FG

GT

TA

TG

TG

AT

CC

AA

TA

TT

TG

TC

CT

/158

/FG

/158

/FC

PCB

2A

W19

1283

EST

iN

A2

Puta

tive

600

SNP

T/4

20/F

A/4

20/F

AG

AA

AG

AG

TG

AA

GG

GA

TG

AA

CA

GC

CA

coat

omer

TC

TG

TG

GA

TC

TA

CA

CA

CC

TA

AT

GT

prot

ein

CA

TC

AA

TC

com

plex

,�2

CPO

X2

AW

1274

42E

STe

NA

8C

atio

nic

per-

300

SNP

A/1

00/R

T/1

00/R

GA

TA

AT

GG

CC

TT

GG

CT

CA

GA

CA

AG

CT

oxid

ase

2T

TA

TG

AA

TT

AC

TC

TT

CT

TG

TG

GA

TA

CA

CrS

AI7

3762

4E

STi

AC

1227

24.1

36

Cys

tath

ion

ine-

NA

Len

gth

750

950

CA

AA

TG

GT

GC

TT

TT

TA

AA

AA

AG

TA

GA

gam

ma-

GG

AG

AT

TG

AT

CT

GA

AG

TG

TT

Gsy

nth

ase

AC

CA

prec

urso

r

(con

tinue

d)

Page 13: A Sequence-Based Genetic Map of Medicago truncatula and

1475M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

CT

PA

W12

6130

EST

eN

A2

Puta

tive

300

SNP

G/8

0/F

A/8

0/F

GT

TT

CG

AC

CC

GG

AT

GG

AA

AT

GA

CC

AT

carb

oxyl

-C

CA

CC

AT

AA

TA

GT

TC

TA

GG

AT

AC

term

inal

GA

AG

TA

TG

GC

pept

idas

eC

YSA

A66

0257

EST

eA

C13

9601

.47

Cys

tein

eA

poI

dCA

PS30

�21

030

�55

�C

GA

AG

CA

TA

TT

TT

AC

CT

TA

AT

AT

TG

Asy

nth

ase

155

TA

TT

TA

CA

GC

RA

TT

GC

AT

GT

GA

TC

TC

AA

GT

CYS

KA

W20

7985

EST

iN

A5

Cys

tein

e40

0SN

PG

/305

/FA

/305

/FG

GA

AT

TG

CT

AA

AG

AA

TG

AG

GA

CA

CT

CT

syn

thas

eA

TG

TT

AC

AG

AG

TC

CA

GG

TG

TG

AA

TT

GA

CYS

PA

W12

5930

EST

iN

A1

Cys

tein

e50

0SN

PC

/233

/FT

/233

/FA

AA

GG

AC

TA

TG

CT

CA

CA

TA

CA

TT

TC

GG

prot

ease

TA

CA

CC

GG

AA

CC

TC

TG

CA

GG

AG

AA

TC

TC

ysPr

1A

I974

595

EST

eN

A3

Cys

tein

eA

clI

CA

PS23

060

�17

0G

AG

AA

TT

CA

AA

GA

GA

AG

AA

TT

CA

TG

GG

prot

ein

ase-

AG

AA

AT

TA

AG

AG

AG

CA

AA

GT

like

prot

ein

CA

AA

GA

Cys

Pr2

AI9

7463

5E

STe

NA

1T

hio

lpro

teas

eSp

eIC

APS

240

30�

210

CC

AA

AA

AC

TT

GC

TG

AC

AA

AA

CC

CA

CC

TC

TA

TA

CT

CT

TC

AC

AG

AC

AA

AT

CA

TT

CA

CT

AG

CYS

SA

W12

7154

EST

iN

A5

O-a

cety

l-l-

640

SNP

T/2

32/F

A/2

32/F

CT

GA

TG

CA

GA

AG

AC

CA

AT

TC

AG

CT

CC

Ase

rin

eT

/254

/FC

/254

/FG

AA

GG

GG

CT

TA

AA

GC

TA

AT

AG

A(t

hio

l)-ly

ase

G/3

94/F

A/3

94/F

AT

CA

AT

GA

DE

NP

AI9

7430

8E

STe

NA

4D

enti

nN

AL

engt

h19

522

2A

GA

AT

TG

GA

CT

TC

CG

GA

TG

AA

AA

GC

Cph

osph

oryn

TT

CT

CA

CT

CA

CG

TG

AA

GA

TA

AG

TC

[Hom

osa

pien

s]D

K00

3RA

Q84

1082

BE

STN

A5

Pea-

PTO

-like

NA

Len

gth

350

900

TC

TG

CG

GT

CA

TG

AG

AT

AT

AT

AG

GT

GA

Tki

nas

eG

GT

GG

TT

TT

GG

TT

TC

TA

CT

AA

DK

006R

AQ

8410

74B

EST

NA

5Pe

a-PT

O-li

keN

AL

engt

h45

042

0G

AA

CA

TA

AC

CC

CG

GA

GT

TT

GG

GA

AC

AA

kin

ase

AA

GT

GG

AT

AA

TT

AG

TA

TG

AT

DK

009R

AQ

8410

79B

EST

NA

5M

s-sy

nta

xin

-D

raI

CA

PS45

028

0�

170

TA

GC

AT

CA

TC

TT

TG

GG

CA

GG

CA

GC

AC

CG

13C

CC

AT

AC

AA

CA

GA

TA

DK

012L

AQ

8410

80B

EST

AC

1407

72.7

5M

t-rR

NA

gen

eD

raI

CA

PS20

0�

3023

0A

GC

TT

CT

TT

CC

AT

GG

AA

AG

TT

AG

GG

GA

C13

7509

.9T

AT

TC

CT

TC

CT

GC

TA

AA

AC

TT

GC

TT

TT

TA

A

(con

tinue

d)

Page 14: A Sequence-Based Genetic Map of Medicago truncatula and

1476 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

013L

AQ

8410

55B

EST

AC

1407

72.7

5M

t-rR

NA

gen

eR

saI

CA

PS11

0�

300

410

AA

GC

TT

AT

CT

AT

GC

CG

AA

AA

TG

GT

TA

CA

C13

7509

.9C

AT

CT

CG

TT

TT

TT

AA

GA

TG

CD

K01

5RA

Q84

1060

BE

STN

A5

Ms-

U22

4-1

NA

Len

gth

100

90A

TT

TC

AC

GT

GT

AT

GC

AT

CA

TA

TC

TT

CA

CA

AG

AT

TA

TA

TG

CC

CA

AA

GT

CT

TA

DK

018R

AQ

8410

66B

EST

NA

5M

s-U

492

NA

Len

gth

230

220

TG

AT

AC

AT

GT

GG

AC

TG

CA

TT

TG

GT

TG

AG

CC

TT

GA

AG

CG

GA

TG

TA

TT

CG

DK

020R

AQ

8410

84B

EST

NA

2M

tT

L4

prob

eN

AL

engt

h14

015

0T

CC

AT

AT

TC

AA

GC

AT

AC

AA

AA

TG

TT

AC

CA

CC

AA

TT

CC

CA

TA

CT

AA

AA

CA

CG

AT

AD

K02

4RA

Q84

1087

BE

STA

C13

9670

.10

4M

t-TL

4PC

RB

glII

CA

PS44

013

0�

310

GC

CG

CG

CC

AT

CT

GA

CG

AT

TT

TA

CC

Cpr

oduc

tT

TA

TT

GA

TT

TA

TC

TA

AG

CD

K03

9RA

Q84

1114

BE

STN

A5

Pea-

PTO

-like

Dra

IC

APS

370

�80

450

CA

AT

TA

CT

AG

AT

CA

CC

AC

AA

GC

AG

AG

Gki

nas

eT

AT

TT

TA

TT

TT

GA

GG

AT

AG

TC

AA

GC

DK

043R

AQ

8410

97B

EST

NA

4M

t-exp

ansi

nI

Rsa

IC

APS

40�

310

350

GG

GA

CT

AA

TT

AA

AC

GC

GT

GA

GC

CT

CT

TA

GA

GA

GA

AA

AA

GG

AG

CT

TG

AT

GC

AA

AA

DK

045R

AQ

8410

99B

EST

NA

2M

t-ch

itin

ase

Hin

fIC

APS

60�

270

330

TG

GC

AA

TA

TC

CA

CC

GA

AC

CC

AC

GA

CC

III

CA

AA

TC

AA

AA

CA

AG

GD

K04

9RA

Q84

1103

BE

STN

A1

Mt-c

hit

inas

eN

AL

engt

h40

037

0G

TG

AT

TC

TC

AT

GT

CG

TT

GG

AT

AA

AC

CC

III

GC

TC

TG

AT

GC

TA

GA

CA

AG

AT

AT

TD

K10

3LA

Q84

1172

BE

STN

A4

MtH

isto

ne

H3

Bgl

IIC

APS

430

80�

350

GA

AA

CT

GC

GC

TG

CT

CG

AT

CC

CA

AA

AT

CT

GG

AA

TC

TC

CG

AA

AA

CT

CC

DK

128L

AQ

8417

26B

EST

AC

1235

71.5

5M

tE

ST-

Bsm

AI

dCA

PS33

030

0�

30A

AA

GT

CG

TT

CC

CC

AC

AT

AT

TT

GA

GG

AA

A66

0812

TC

AT

TG

TT

GC

GT

TA

TT

CT

TT

GC

TA

GT

CD

K13

2LA

Q84

1734

BE

STN

A3

Mt

EST

-X

mnI

dCA

PS32

029

0�

30T

GG

AC

CT

AA

GA

CT

CC

TA

TT

AA

GC

AT

AT

AA

6605

21T

CA

AA

GA

TT

CT

TG

CA

GC

AT

GA

AA

GA

CA

AT

TT

DK

139L

AQ

8417

33B

EST

NA

5U

nkn

own

EcoR

VC

APS

260

130

�13

0C

TA

GC

AA

AA

CT

CA

CG

TT

TT

AG

AG

GA

AA

GA

AA

AC

CA

AG

AA

TA

TG

AT

GA

GC

AD

K14

0LA

Q84

1738

BE

STA

Q84

1738

1U

nkn

own

Alw

NI

CA

PS13

929

�11

0A

CC

AT

GG

CC

AA

TG

AA

AT

GA

AT

CT

GA

GC

GA

GT

TA

CT

TG

GT

AA

CG

CC

AG

TA

T

(con

tinue

d)

Page 15: A Sequence-Based Genetic Map of Medicago truncatula and

1477M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

201R

AQ

9171

59B

EST

NA

3G

mD

raII

IdC

APS

110

30�

80G

GA

CG

CG

AG

AA

AA

GA

CT

AT

TG

GT

GA

RFL

P-A

352,

TG

GC

AA

AC

TT

TC

AT

TG

CA

CG

AQ

8417

55,

AA

GT

AQ

8420

22D

K20

2RA

Q91

7161

BE

STN

A3

Gm

NA

Len

gth

285

300

CT

GT

AT

TT

AT

CT

CC

AA

AA

TG

AT

AA

TT

RFL

P-A

352,

CT

TT

GC

GA

GA

AT

AT

GC

AC

GT

AA

AA

AQ

8417

55,

GT

AG

TA

AG

AQ

8420

22D

K22

4RA

Q91

7190

BE

STA

C13

9355

.57

Gm

EcoR

IdC

APS

80�

3011

0C

GA

AA

CA

AT

AA

TA

TC

TT

GT

TT

AT

AT

RFL

P-A

235,

CA

CA

AA

AC

AA

AG

TG

TT

TG

TT

GA

AA

Q84

1798

,T

CA

GG

AC

AG

AA

TT

AQ

8420

64D

K22

5LA

Q91

7191

BE

STN

A7

Gm

Nco

IC

APS

270

60�

210

TG

TC

CT

TG

CT

TC

TA

GC

AG

CA

CA

AC

AA

CR

FLP-

A23

5,T

AT

CC

TT

CC

TT

CA

TT

AC

AA

CA

AC

TC

AQ

8417

98,

AQ

8420

64D

K22

9LA

Q91

7196

BE

STN

A6

Gm

StyI

CA

PS25

020

0�

50T

GG

CA

AG

TG

GA

GA

CC

AG

CC

AG

AA

AT

CR

FLP-

A23

5,G

AG

AA

GA

CG

GA

AA

CA

GA

AA

Q84

1798

,A

Q84

2064

DK

236R

AQ

9172

02B

EST

AC

1227

26.1

78

Gm

Mw

oIdC

APS

125

25�

100

GC

AA

TT

TA

AA

TG

TG

TA

TT

GT

AT

TG

TG

RFL

P-A

381,

AA

TC

CA

TT

GA

AA

AG

GG

CA

TT

GC

TA

Q84

1805

,C

CA

AG

TA

AQ

8420

52D

K23

8RA

Q91

7205

BE

STN

A2

Gm

SacI

CA

PS50

�25

030

0G

CA

AT

TT

AA

AT

GT

TT

AT

GC

TT

CT

GA

TT

RFL

P-A

315,

AA

TC

CA

TT

GA

CT

AA

CT

AA

CC

CC

AA

Q84

1810

,A

CC

AA

Q84

2017

DK

242R

AQ

9172

11B

EST

NA

5G

mH

incI

IC

APS

230

�10

033

0C

GT

AT

GT

TT

AA

TG

CT

TG

CT

TA

GA

TA

TR

FLP-

A94

7,C

CG

TT

AG

TC

CG

TT

GG

CA

CT

TC

AA

Q84

1815

,T

CT

TA

Q84

1993

DK

258L

AQ

9170

77B

EST

NA

3G

mX

baI

CA

PS47

010

0�

360

GT

AT

TC

AG

GG

AT

TA

CA

AA

AT

CC

GT

GG

RFL

P-K

007,

GA

GT

AA

GA

AA

AT

GT

AT

AA

AA

GA

Q84

1948

,A

AG

GA

TG

TA

AQ

8421

89

(con

tinue

d)

Page 16: A Sequence-Based Genetic Map of Medicago truncatula and

1478 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

264L

AQ

9170

83B

EST

AC

1271

67.1

64

Gm

Bsr

IC

APS

290

�11

040

0G

GG

GA

GT

GT

TG

TG

AT

CG

AG

GA

AR

FLP-

A68

8,A

GA

TA

TG

CG

TC

CA

AA

AT

AA

AG

AQ

8419

12,

AA

TA

AA

AQ

8421

49D

K26

5RA

Q91

7086

BE

STA

C12

6783

.10

5G

mH

incI

IC

APS

50�

140

190

GT

GT

GT

CT

AA

TA

AT

TA

CA

TT

TA

TT

TC

RFL

P-B

139,

GA

AA

TG

AA

TG

CA

CT

GC

CT

AA

TC

AQ

8419

29A

CG

AA

AA

AA

AC

DK

273L

AQ

9170

94B

EST

NA

3G

mB

cgI

CA

PS30

�10

0�

350

TA

TG

CC

TG

GT

CT

GT

GC

CC

GT

CC

AC

CG

CR

FLP-

K30

0,22

0T

CT

TT

CT

TT

AC

GT

TT

TA

AQ

8419

61,

AQ

8422

03D

K27

4LA

Q91

7096

BE

STN

A7

Gm

NA

Dom

inan

t38

00

TG

CA

TA

AG

CT

CA

AG

TA

GA

TA

AG

CC

CA

RFL

P-K

390,

AA

AA

TA

AG

TC

CA

TA

AG

CT

CA

AA

Q84

1966

,A

AT

CC

AA

TA

AQ

8421

13D

K27

7RA

Q91

7103

BE

STN

A2

Gm

Mnl

IdC

APS

35�

165

190

CT

CA

AA

TT

CT

CT

AG

GG

CT

GT

AG

TA

TT

RFL

P-A

748,

GT

TT

CA

AC

AT

GG

TA

TA

CC

TG

AG

TT

AQ

8419

17,

TA

TC

AA

GT

GA

GA

Q84

2154

DK

287R

AQ

9171

23B

EST

NA

7G

mD

deI

CA

PS27

013

5�

135

AG

CC

GC

CC

TC

TT

TA

GC

TG

CA

AC

AA

AR

FLP-

K39

0,G

AA

CC

TC

CG

AA

AC

CA

AA

AC

CA

Q84

1966

,A

Q84

2113

DK

293R

AQ

9171

33B

EST

AC

1212

46.1

92

Gm

Dra

IC

APS

80�

210

290

AC

TT

AC

AA

GG

TT

AG

CT

AT

CC

CA

CC

TT

AR

FLP-

A74

8,G

CG

TC

AT

TC

TC

CA

AA

TT

TC

TT

CA

Q84

1917

,A

TC

AC

AA

AQ

8421

54D

K29

6LA

Q91

7136

BE

STN

A7

Gm

NA

Len

gth

380

670

GA

AA

GG

AT

GA

GA

AT

CG

TC

GA

TG

AA

AR

FLP-

K39

0,G

CG

GG

GA

TA

CA

AG

TA

CC

AA

TA

AQ

8419

66,

GA

AA

Q84

2113

DK

297L

AQ

9171

38B

EST

AC

1246

09.1

22

Gm

Xba

IC

APS

350

310

GG

GA

AA

CA

CA

TG

GC

AT

AG

CA

AA

AC

CR

FLP-

A65

6,A

GC

GA

AG

GA

GT

AC

AA

TC

TA

AC

CA

AQ

8419

06,

AQ

8421

43

(con

tinue

d)

Page 17: A Sequence-Based Genetic Map of Medicago truncatula and

1479M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

298R

AQ

9171

41B

EST

AC

1267

83.1

05

Gm

Bsu

36I

CA

PS43

021

5�

215

AT

AA

GA

TA

AG

GG

CG

AA

AC

TT

GA

GA

GT

RFL

P-B

139,

CA

AC

AT

AA

GT

AG

AA

GA

AA

GT

GA

AQ

8419

29G

AA

AA

TA

GA

AC

DK

302L

AQ

9171

44B

EST

NA

7G

mA

seI

CA

PS30

�20

023

0G

CA

TG

GA

AA

TA

GT

CT

GA

TA

AA

TG

CA

TA

RFL

P-A

681,

TT

GG

GT

TA

GT

AG

TT

TT

CA

AC

AT

AT

AQ

8418

14,

TT

AG

TG

AA

TT

AA

AQ

8420

66D

K31

3LA

Q91

7231

BE

STA

C12

2728

.16

3G

mN

AL

engt

h26

524

0G

CC

AA

AC

AT

AG

GT

GA

CA

CA

TA

AA

TT

RFL

P-A

059,

CT

AA

GT

GT

GA

AG

TT

AG

CA

TC

TG

AA

Q84

1836

,A

AA

AG

GA

Q84

2008

DK

321L

AQ

9172

45B

EST

AC

1227

30.1

76

Gm

Msl

IC

APS

120

�25

037

0G

AG

CG

AG

CT

CA

GT

CC

CA

CC

TC

CA

AT

TR

FLP-

A23

3,G

AT

AG

AC

TT

TA

TG

TA

GA

CG

AT

AQ

8418

44,

GA

AA

Q84

2071

DK

322L

AQ

9172

47B

EST

NA

7G

mD

deI

CA

PS90

�17

590

�30

�G

GA

CC

GA

AC

TG

GG

GC

AC

CG

AG

AT

CC

AC

RFL

P-A

023,

145

TC

AA

CA

AT

CA

AC

AA

CT

TA

Q84

1847

,A

Q84

2074

DK

326R

AQ

9172

54B

EST

NA

2G

mD

deI

CA

PS13

0�

220

80�

130

�C

CA

GC

AT

GT

AA

AG

TT

GA

AC

GG

CT

TA

RFL

P-A

064,

140

CA

AT

TG

AA

AG

AA

TA

TC

GC

AC

TA

AQ

8418

51,

GC

AA

Q84

2078

DK

332R

AQ

9172

64B

EST

NA

2G

mD

raI

CA

PS90

�12

0�

90�

260

GG

AA

AA

TT

AT

AA

GG

AT

GA

TA

AC

AA

TC

GR

FLP-

A09

5,14

0C

CA

AA

CA

AC

AG

GG

GA

AA

AT

AA

TG

AQ

8418

60,

TA

AA

GA

Q84

2087

DK

340R

AQ

9172

78B

EST

NA

1G

mSw

aIdC

APS

230

205

�25

GA

GA

GA

GA

GA

AG

GT

CT

TT

TT

TT

TA

AG

RFL

P-A

636,

AA

AT

AG

TT

TG

GA

GT

TT

TT

CT

AG

AQ

8419

03,

TT

TT

GC

TT

AG

AT

TT

AA

AA

Q84

2140

DK

347L

AQ

9172

86B

EST

AC

1384

49.8

2G

mB

siH

KA

IC

APS

390

40�

350

AG

AT

TT

CA

TA

CC

AT

TT

AG

GT

GA

TG

GR

FLP-

A06

3,G

AC

GG

AG

GA

TT

GG

CG

TT

GT

TC

AQ

8417

54,

AG

TT

CA

Q84

2009

(con

tinue

d)

Page 18: A Sequence-Based Genetic Map of Medicago truncatula and

1480 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

348L

AQ

9172

88B

EST

AC

1212

42.1

57

Gm

Xm

nIC

APS

125

25�

100

TT

GA

GA

GC

TC

GG

GC

TA

AT

GT

GT

AA

AC

CR

FLP-

A57

2,T

CA

CA

TT

TC

CT

AA

TG

TT

TC

AA

AQ

8417

60,

CA

GA

AQ

8419

86D

k351

LA

Q91

7294

BE

STN

A8

Gm

Bfa

IC

APS

50�

280

�33

0�

140

TG

CT

TG

GG

CT

TG

AC

TG

TT

TG

GG

TA

TT

AR

FLP-

A11

0,14

0G

CT

TT

TA

GA

AG

TT

TT

TG

TT

GG

GA

Q84

1767

,A

Q84

1975

DK

353L

AQ

9172

98B

EST

NA

4G

mSp

hIC

APS

90�

240

330

CC

AT

GC

CA

TG

GA

GC

AA

GA

AC

CA

GA

TA

RFL

P-A

110,

AG

GG

TG

TT

TC

CC

TT

GA

CA

TT

TA

Q84

1767

,A

Q84

1975

DK

355L

AQ

9173

02B

EST

AC

1221

65.2

45

Gm

Msl

IC

APS

25�

175

200

AA

CT

AA

CT

CT

AA

CA

AA

AC

AT

TC

AT

CC

RFL

P-A

135,

GA

TG

CC

AC

AT

GC

CT

AT

MC

CA

CA

Q84

1786

,T

AT

AG

GC

TC

TC

AA

Q84

2014

DK

358L

AQ

9173

08B

EST

NA

2G

mEc

oNI

CA

PS70

�23

030

0G

TT

TG

CG

CC

AC

TT

GT

CA

CC

AT

GT

GG

RFL

P-A

363,

TA

AG

GT

TA

TC

TC

AC

AT

TC

AT

TA

Q84

2067

,C

AT

TA

Q84

2107

DK

360R

AQ

9173

13B

EST

AC

1312

39.1

63

Gm

Mbo

IC

APS

45�

305

350

AA

GA

TA

GT

GC

GC

TT

TA

GC

CC

AT

TT

GT

AR

FLP-

A36

3,G

GT

GT

GT

CA

TT

AT

TT

GG

TC

TT

TT

AQ

8420

67,

AQ

8421

07D

K36

3LA

Q91

7316

BE

STN

A4

Gm

NA

Dom

inan

t38

00

TT

TG

TT

TT

GT

AT

GG

TT

TA

GG

TT

AT

GC

RFL

P-A

006,

TA

TA

TG

AA

TG

GC

TT

GG

GA

AT

GA

AQ

8418

23,

AA

TA

AC

TT

GA

Q84

2006

DK

368L

AQ

9173

24B

EST

AC

1221

71.1

21

Gm

NA

Dom

inan

t42

00

AG

CT

TG

TG

CA

CT

TC

CT

CT

CT

TA

AG

CT

GR

FLP-

A45

0,T

TC

CG

TT

TT

AC

TT

TA

TT

TT

TG

TA

Q84

1842

,C

TA

TA

Q84

2069

DK

369R

AQ

9173

27B

EST

NA

1G

mN

laIV

CA

PS15

0�

160

310

GG

AA

CG

TG

GA

GT

TG

AT

GT

AA

AA

AC

CT

TR

FLP-

A45

0,G

TT

GA

TG

GT

AT

TA

CA

CT

TG

AT

TG

AQ

8418

42,

TA

TA

TT

GA

Q84

2069

(con

tinue

d)

Page 19: A Sequence-Based Genetic Map of Medicago truncatula and

1481M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

377R

AQ

9173

35B

EST

NA

1G

mB

faI

CA

PS36

0�

55�

325

�35

�A

GC

AG

CT

AG

CA

CC

CG

AC

TA

AT

TA

TC

AR

FLP-

A48

7,85

55�

85G

TG

TC

CT

TT

GA

AT

AT

TG

TC

AA

CA

Q84

1888

,T

AC

AT

CT

AQ

8421

23D

K37

9LA

Q91

7338

BE

STA

C11

9416

.14

4G

mC

laI

CA

PS50

�40

�50

�40

�80

AG

CT

TG

TT

GA

GG

TG

TG

TG

TA

TG

AG

TG

TR

FLP-

A48

7,80

�70

��

240

GG

AA

GG

AA

GT

CC

GT

AA

GC

CC

CT

AQ

8418

88,

170

AQ

8421

23D

K38

1LA

Q91

7341

BE

STA

C11

9416

.14

4G

mH

infI

CA

PS25

0�

8040

�21

0�

TG

TT

AC

AA

AA

AG

AG

TG

CA

CT

TT

TC

AA

TR

FLP-

A48

7,80

GT

TG

GT

TG

TC

GT

TG

TC

CA

TC

AT

AA

Q84

1888

,T

TC

AQ

8421

23D

K38

2LA

Q91

7343

BE

STA

C12

2162

.19

3G

mB

clI

CA

PS25

022

0�

30G

GA

TG

GA

GA

GG

GA

CT

CT

AA

AA

AT

AG

CR

FLP-

A48

7,C

AG

GA

GG

AG

AA

TG

AC

TG

AC

AQ

8418

88,

TG

TG

AT

AQ

8421

23D

K40

7LA

Q91

7366

BE

STA

C12

3898

2G

mA

luI

CA

PS32

025

0�

70T

TA

AT

TT

TA

TC

AA

CC

AG

TG

CT

GG

AA

AA

RFL

P-A

086,

CC

CA

CC

AT

AT

TA

GA

CA

AT

CA

AT

CA

Q84

1762

,G

TC

AA

AQ

8420

11D

K41

2LA

Q91

7373

BE

STN

A8

Gm

Bsm

IC

APS

390

170

�22

0G

CT

GC

AT

TC

CT

TC

GG

CG

CC

AT

TC

TT

RFL

P-A

538,

CA

AA

AC

TT

CA

CA

CC

TT

AT

AQ

8418

96,

TC

AA

Q84

2132

DK

413L

AQ

9173

75B

EST

NA

4G

mSp

eIdC

APS

170

�30

200

TG

AT

TG

AC

CC

CT

GG

TC

AG

GT

TT

GT

TG

TR

FLP-

A53

8,C

TT

TG

AT

GC

TT

GT

TT

TT

TC

TT

GC

AQ

8418

96,

AC

TA

AQ

8421

32D

K41

7LA

Q91

7383

BE

STA

C12

1232

.16

3G

mB

bvI

CA

PS41

018

0�

230

AC

TC

GT

CG

CC

TA

GA

AT

TC

CA

TA

TC

CR

FLP-

A68

5,A

CA

AT

AT

CA

AC

AA

CA

CC

TT

TA

GA

Q84

1911

,C

AG

AC

TT

AA

Q84

2148

DK

419R

AQ

9173

88B

EST

AC

1212

32.1

63

Gm

NA

Dom

inan

t42

00

CA

TC

AG

AA

GT

TG

CG

CT

TT

GG

TG

CC

GT

TR

FLP-

A68

5,C

AA

GC

TA

TC

AG

TC

AG

AA

GT

AA

Q84

1911

,G

AG

AQ

8421

48

(con

tinue

d)

Page 20: A Sequence-Based Genetic Map of Medicago truncatula and

1482 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

427R

AQ

9173

98B

EST

AC

1379

86.8

7G

mB

smA

IC

APS

60�

440

500

CC

AA

AC

AA

GG

AA

AT

GA

GA

AA

CT

TT

TR

FLP-

B04

6,A

AG

TG

TT

GG

TG

GA

AA

TT

TA

GG

AT

AQ

8418

33T

CA

AC

GA

TA

GD

K43

9LA

Q91

7416

BE

STN

A7

Gm

Bcg

IdC

APS

60�

32�

810

0G

CA

TT

TT

CT

CT

TC

TC

AG

AG

CA

AT

AA

RFL

P-K

070,

GA

AC

AA

AT

TA

TC

AC

AG

AT

CG

AT

AQ

8419

52,

AG

TA

GT

CG

TT

AT

TT

AQ

8421

93D

K44

5RA

Q91

7427

BE

STN

A2

Gm

PmlI

CA

PS41

035

0�

60A

AA

GG

CG

AG

CG

AA

GC

AC

GC

GA

CG

CA

RFL

P-K

102,

CA

GT

AG

CA

GC

AA

AT

AA

CT

AQ

8419

53,

GA

CA

Q84

2194

DK

447R

AQ

9174

30B

EST

AC

1351

60.1

4G

mB

glI

CA

PS10

0�

270

370

GT

GG

AC

GG

CG

AC

TG

AG

CA

AA

TT

TC

AC

1376

67.8

RFL

P-K

365,

CA

CT

TT

GA

GA

TT

TA

CC

CA

Q84

1964

,C

TT

AQ

8422

06D

K45

3LA

Q91

7438

BE

STN

A5

Gm

Xm

nIC

APS

150

�32

047

0G

AG

AT

CC

GA

AA

CA

GG

CA

CT

AC

CC

AA

CT

RFL

P-K

494,

AC

GT

CC

AA

AA

AT

CA

GC

AA

AC

TA

Q84

1971

,A

Q84

2118

DK

455L

AQ

9174

42B

EST

NA

8G

mB

spH

IC

APS

330

220

�90

AA

GG

TT

GT

GT

TG

CA

CA

TA

CA

GA

GT

TR

FLP-

A06

0,C

AG

GC

GG

TT

TT

TC

CA

GG

AT

TA

CA

Q84

1826

AG

TC

AT

TD

K46

0RA

Q91

7453

BE

STN

A7

GM

prob

ePv

uII

CA

PS40

�36

040

�16

0�

GT

AC

CC

GC

AC

GC

CC

AT

GG

AG

CT

AC

AT

200

GA

CT

TT

TT

TC

AC

AA

CA

CT

TC

Dk4

73L

AQ

9174

74B

EST

AC

1221

72.1

93

Gm

Bcl

IC

APS

130

�23

036

0A

AC

TG

GT

TA

AC

TC

CA

AT

CC

TA

AA

CC

TC

RFL

P-A

635,

GC

TA

AT

TG

CT

AC

CA

AA

AA

GC

AQ

8419

02,

CA

TA

AQ

8421

39D

K49

0LA

Q91

7504

BE

STN

A2

Gm

Hin

fIC

APS

350

100

�25

0T

GG

TT

CC

AA

AT

TC

AA

AA

AT

TG

TG

TT

GT

RFL

P-A

611,

CA

CT

CA

AA

AG

CG

GT

TT

AG

TG

GT

AA

Q84

1776

,G

AC

AQ

8419

88D

K49

7RA

Q91

7515

BE

STA

C12

3547

.14

2G

mM

seI

CA

PS20

�60

�20

�60

�G

GG

AA

AA

AG

CC

AA

AA

AT

GT

GA

AG

GG

TG

RFL

P-A

073,

400

110

�29

0A

GG

GA

AT

GA

AG

GT

GG

AT

AG

GA

TA

Q84

1751

,G

AT

AA

Q84

1973

(con

tinue

d)

Page 21: A Sequence-Based Genetic Map of Medicago truncatula and

1483M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

DK

500R

AQ

9175

21B

EST

AC

1414

14.2

3G

mA

poI

CA

PS40

�28

032

0T

GC

AA

CA

AA

GC

TG

GT

AA

GC

CA

TC

AR

FLP-

A59

7,T

AA

GA

AA

TA

GC

AC

TT

TT

TC

AA

Q84

1900

,G

AG

AT

CA

AA

Q84

2136

DK

501R

AQ

9175

23B

EST

AC

1414

14.2

3G

mA

poI

CA

PS20

0�

220

420

TA

TT

TG

GG

AT

GT

GC

TT

TA

AA

GG

AR

FLP-

A59

7,G

AA

GC

TA

TG

TG

AA

GG

TA

GA

TA

Q84

1900

,T

GA

TT

GG

GA

TG

AT

AQ

8421

36D

K50

5RA

Q91

7527

BE

STN

A8

Gm

Ase

IC

APS

200

�18

038

0G

CC

GC

CG

CT

CC

CC

AA

TT

CC

CT

CC

GR

FLP-

B21

2,A

AA

CT

TG

CG

TC

AC

TT

AQ

8417

89,

AQ

8420

50D

K51

1LA

Q91

7538

BE

STA

C12

6779

.10

5G

mN

AL

engt

h40

036

0T

AA

AT

CC

GA

GC

TT

CC

AA

AC

CA

TA

CC

CR

FLP-

A70

2,T

CA

AA

CC

AA

CT

TT

AA

TT

AC

TG

AA

Q84

1800

,C

AC

GC

AT

AQ

8419

91D

MY

AA

6607

09E

STe

NA

6Pu

tati

veD

raI

CA

PS13

0�

243

130

�66

�T

CA

AA

GT

CT

CT

TT

AC

AA

TA

TA

AC

AA

AT

prot

ein

177

TG

CC

GA

AC

AT

TT

GA

GG

TC

TA

TG

CD

NA

BP

AI7

3752

4E

STi

NA

4SA

RD

NA

-A

flII

CA

PS28

0�

580

�86

0�

260

CC

CT

AT

GA

GC

TT

GC

TC

AT

GG

CA

TA

CG

bin

din

g26

0G

GT

TT

GT

CT

TG

TT

CA

GC

prot

ein

DSI

AA

6609

79E

STi

NA

1D

isul

fide

SspI

CA

PS51

010

0�

410

CC

AA

GA

CA

TC

TT

TA

CT

GC

AG

AA

TC

AC

isom

eras

eG

GT

TT

CA

TC

CT

TG

CC

GA

GT

TP5

pre-

curs

orD

SIP

AI9

7424

8E

STi

NA

3Pr

otei

n96

0SN

PT

/104

/FA

/104

/FT

CC

TT

CT

CA

GA

TC

CT

TA

AT

GG

TT

GG

disu

lfide

-G

/137

/FT

/137

/FT

TC

GC

TG

AG

GA

AG

AA

TC

CC

TT

Ais

omer

ase

TC

AA

CA

TC

Apr

ecur

sor

EIF

5AA

I974

513

EST

iA

C12

2160

.14

8E

ukar

yoti

cD

deI

CA

PS98

036

0�

620

CG

CG

CA

GA

GA

AA

GC

AC

AA

TT

GT

GG

GA

init

iati

onC

AT

CA

AC

GA

AG

GA

AC

fact

or5A

3E

NO

D16

X99

466

GS

AC

1369

53.4

8M

tEN

OD

16M

seI

dCA

P10

075

GT

GT

CC

CG

AT

GA

AA

GG

AC

AC

TC

TT

CC

AC

TA

TT

TA

AG

AA

GC

AC

AC

TT

TG

AT

TC

AG

AT

A

(con

tinue

d)

Page 22: A Sequence-Based Genetic Map of Medicago truncatula and

1484 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

EN

OD

40X

8026

2G

SN

A5

Ear

lyn

odul

inN

AL

engt

h13

617

7A

AC

CA

AT

GC

CA

CT

AG

AC

TC

TT

GC

GA

G40

TT

TC

AC

TT

TG

CT

GC

TA

CC

AT

TT

CT

CC

GA

CC

EN

OD

8A

F064

775

EST

iN

A1

En

od8

ScaI

CA

PS90

040

0�

500

CC

AT

GC

CC

AT

TC

CG

TG

GA

TT

CC

AC

GT

AC

TT

TT

CA

GA

CT

TT

AC

TT

AC

TE

NO

LA

A66

0534

EST

iN

A7

En

olas

eSp

hIC

APS

450

�10

5015

00T

TC

CA

TC

AA

GG

CC

TT

GC

AC

CA

AC

CC

CG

TC

AG

AC

AT

TC

AT

TE

PSA

A66

1012

EST

iN

A4

3-Ph

osph

o-B

glII

CA

PS16

2010

50�

570

GC

TG

TT

GT

GG

AA

AC

GA

CA

TA

CG

GA

shik

imat

eG

GC

AG

TG

GA

CA

GA

AA

TC

AG

T1-

carb

oxy-

vin

yltr

ans-

fera

seE

ST15

8A

A66

0289

EST

eN

A2

Vac

uola

rso

rt-

Bgl

IdC

APS

180

25�

155

TT

AC

AA

AC

CA

CA

CT

TG

GT

GA

CA

AC

TG

ing

rece

p-C

AT

AA

TT

GC

CA

AC

AC

GA

AT

GA

AA

tor-

like

AA

TT

GC

TA

Cpr

otei

nE

ST40

0A

A66

0514

EST

iN

A3

Un

know

nSa

cIC

APS

500

�50

010

00G

GT

GG

CT

GT

CC

CA

AA

TG

CT

TG

TG

TT

AC

TG

AT

TA

TG

TA

TG

CG

GA

GA

GE

ST67

1A

A66

0779

EST

eN

A8

Hyp

oth

etic

alB

glI

dCA

PS24

020

�20

0G

GT

GT

TA

TC

TA

TG

TG

TC

CT

TG

GG

TA

T71

.3-k

DA

AA

GA

GG

CC

TG

TA

GA

AA

AG

CC

Tpr

otei

nC

AT

TG

GT

CA

CE

ST71

8A

A66

0824

EST

eN

A4

Hyp

oth

etic

alSc

aIC

APS

180

�90

270

CG

GC

GG

CA

TG

CT

TC

TT

GG

AA

TG

CC

T15

.4-k

DT

AG

TG

GT

TG

AA

TG

AA

TA

prot

ein

EST

758

AA

6608

63E

STe

NA

1H

ypot

het

ical

SpeI

CA

PS23

080

�15

0T

CA

CT

TC

CC

CT

AA

CT

TA

AT

TT

CA

GC

Tpr

otei

nA

TA

CG

CT

TC

TG

CC

AT

TT

CA

AC

EST

763

AA

6608

68E

STi

NA

1H

ypot

het

ical

Hin

fIC

APS

130

�25

155

CA

CT

CT

AA

AA

AG

GC

TT

AT

GA

CC

AA

TA

prot

ein

CC

CA

GA

AG

GT

TG

TC

TG

TT

CC

AT

GA

CT

CT

CE

ST94

8A

A66

1051

EST

iA

C14

5021

.54

Hyp

oth

etic

alH

aeII

dCA

PS25

�19

021

5G

CA

GG

GG

TT

TC

GA

AC

TT

AA

TG

AA

T33

.4-k

DC

TC

CA

GT

GG

AT

TG

GA

AG

Gpr

otei

nT

TT

AG

CG

EX

RN

AI9

7485

5E

STi

NA

2Pu

tati

veex

o-91

0SN

PC

/160

/RG

/160

/RG

TT

GG

TG

GT

GG

AA

AC

CT

AG

AT

AT

GT

Tri

bon

ucle

-A

GT

GA

TG

GA

TC

TC

GG

GT

AA

GA

TA

ase

CT

GG

AC

TT

GA

(con

tinue

d)

Page 23: A Sequence-Based Genetic Map of Medicago truncatula and

1485M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

FAL

AA

6610

05E

STi

AC

1227

27.1

35

Fruc

tose

-1,6

-B

clI

CA

PS45

011

0�

340

TT

AT

CG

CC

AA

TG

CA

TG

AT

AA

GT

AT

GC

bisp

hos

-C

GC

CT

AC

AA

TG

TT

CA

GA

Gph

ate

aldo

-T

CA

lase

FEN

RA

W12

7593

EST

iA

C13

8010

.95

Ferr

edox

in-

670

SNP

T/2

8/F

C/2

8/F

AT

GC

TT

AT

GC

CA

CT

CA

CA

GC

AA

AG

TC

NA

DP

AA

AG

AT

CC

AG

AG

CC

TG

AA

GT

redu

ctas

eA

AT

GC

prec

urso

rFI

S-1

AI9

7452

2E

STi

AC

1227

26.1

78

fis1

prot

ein

Bbs

IC

APS

1280

�90

140

�11

40�

TC

AG

TG

AT

TG

AG

CT

GT

TT

CA

TC

AA

CT

90G

GT

TT

TT

CT

TC

AG

CA

AC

TT

TA

CG

GH

1A

I974

251

EST

eN

A8

GH

1pr

otei

nB

smI

CA

PS21

025

�18

5G

AG

CA

AT

CA

GA

CG

GT

CT

GT

TT

AA

TC

AA

TC

CG

AG

GT

AT

TT

CT

GC

CA

AT

GC

AT

TG

H3

AW

1259

47E

STi

NA

8G

H3-

like

530

SNP

C/3

37/F

T/3

37/F

CC

TG

TC

TC

GC

AA

TT

CT

CT

AA

AA

TA

GG

prot

ein

GC

AA

AC

GT

TG

AA

AC

TT

TT

GT

AA

AT

AT

AG

CG

LN

AA

W12

5915

EST

iA

C13

9882

.33

Glu

tam

ate-

540

SNP

T/1

84/F

C/1

84/F

GA

AT

GG

TG

CT

GG

TG

GT

GG

TG

TC

TG

Cam

mon

iaT

/314

/FG

/314

/FT

GC

TC

AC

AC

AA

AT

CA

TG

GA

AG

ligas

eA

/163

/RG

/163

/RC

/165

/RA

/165

/RG

LO

3A

A66

0821

EST

eA

C13

7670

.58

Puta

tive

Hin

cII

dCA

PS21

0�

3024

0T

TT

AC

TT

TT

GA

TT

GT

GA

TA

AG

AA

TT

TG

prot

ein

CA

TG

AA

TT

AA

GC

GA

AG

TT

AG

AA

CG

TG

TC

AA

CT

GA

TG

LU

TA

I974

518

EST

iN

A8

Puta

tive

10

00SN

PA

/209

/FG

/209

/FT

AC

AA

GG

CA

GG

GA

TT

AT

TC

TC

CA

GA

CA

gluc

osyl

T/2

13/F

A/2

13/F

AT

CT

TA

AA

TC

CC

AG

CA

GT

TC

CA

tran

sfer

ase

TG

CA

GSb

Y102

68G

SA

C13

9882

.33

Glu

tam

ine

Hin

dIIi

CA

PS13

0�

5018

0C

TA

TG

AG

AG

AA

GA

GG

AG

AG

AA

CA

AT

AT

syn

thet

ase

TG

GT

GG

CT

AT

GT

AT

TA

TT

TG

CT

AA

GT

CA

TC

TT

GT

AC

CH

RIP

AW

1263

32E

STi

NA

1N

icot

ian

aH

R60

0SN

PT

/67/

FC

/67/

FG

GA

AA

AA

TT

TA

TC

AA

AA

AT

AG

CA

GT

Gle

sion

-G

/68/

FA

/68/

FC

TC

CA

AA

TT

GG

GC

AC

CA

AA

AA

GT

indu

cin

gG

GT

AG

CT

GO

RF

HYP

TE

116

AI7

3748

9E

STe

NA

4U

nkn

own

Bsr

IC

APS

250

�12

037

0A

AC

AC

AG

AG

GT

AG

TC

GG

GT

CA

AG

AT

Cpr

otei

nC

GT

TT

GG

TT

TA

TT

CG

TT

CA

A

(con

tinue

d)

Page 24: A Sequence-Based Genetic Map of Medicago truncatula and

1486 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

HYP

TE

3A

I974

791

EST

iN

A4

Hyp

oth

etic

al35

0SN

PC

/83/

RT

/83/

RT

CG

TC

TC

AT

GG

TG

TT

CC

TC

CT

TT

AA

Apr

otei

nA

/174

/RG

/174

/RG

AA

TC

GT

GA

TC

AA

GC

AA

AT

TG

GT

GG

AIS

OFR

AW

1259

03E

STi

AC

1376

69.4

5Is

oflav

one

370

SNP

A/1

52/R

T/1

52/R

GA

AG

GA

GT

TC

CT

TG

TT

CC

TC

TG

AA

redu

ctas

eT

AC

AC

TT

AC

CT

AC

AT

AA

GT

TT

TT

TG

TC

TC

AA

GA

JUN

BP

AW

2081

51E

STi

AC

1400

26.6

3JU

Nki

nas

e11

50SN

PC

/49/

FT

/49/

FT

CT

TC

GT

CA

TC

AT

GG

AT

GT

GA

AT

GA

acti

vati

onC

TT

CG

GC

GA

TA

GT

AC

CA

TC

CC

Ado

mai

nC

AC

AC

GA

CA

bin

din

gpr

otei

nK

CoA

TA

I974

864

EST

iN

A1

3-K

etoa

cyl-C

oAEa

rIC

APS

400

130

�27

0T

GC

TA

CT

GC

GG

GC

TC

CA

GC

AC

CA

Tth

iola

seT

GG

TA

GA

TT

TA

CA

CT

CA

CC

TL

B1

X57

732

GS

NA

5L

egh

emog

lo-

VspI

CA

PS21

017

0�

40T

TT

TA

AA

GA

AT

AT

GG

AG

CG

AA

AA

TG

Tbi

nA

AT

GG

CT

TG

TT

AC

CT

AA

AA

TT

GG

AG

GA

AG

MA

AP

AI9

7480

0E

STi

NA

8M

embr

ane

990

SNP

T/1

96/F

A/1

96/F

TA

CC

TA

AG

AC

TG

CA

TC

AC

CA

AC

AC

alan

ylam

ino-

T/2

05/F

C/2

05/F

CA

CA

TG

CT

AT

GG

CT

TT

AC

AG

TG

pept

idas

eT

AT

CG

GC

TM

DH

2A

I974

363

EST

iA

C12

2171

.13

1M

alat

ede

hy-

Dra

IC

APS

70�

100

�70

�11

80C

TT

CC

AT

TT

TC

GA

GC

AT

GC

CT

CG

AC

AA

C12

2161

.11

drog

enas

e10

80T

TC

CT

TT

CA

TT

AC

AT

CA

GT

MPP

AA

6606

58E

STi

NA

4M

itoc

hon

dria

lB

stB

IC

APS

110

�33

044

0T

CC

CC

GA

AA

CA

AT

GC

AA

AT

GT

GT

AG

Cpr

oces

sin

gC

CT

CA

TC

TG

CC

CA

AA

AG

TT

Ape

ptid

ase

MR

SA

A66

0381

EST

iA

C14

2222

.78

Met

hio

nyl

-D

deI

CA

PS21

0�

856

�21

0�

720

�G

TC

TG

TG

GT

GG

GA

TT

TT

GA

CC

GG

TT

CA

C14

4806

.6tR

NA

5513

6�

55T

CA

TG

GA

GT

CA

AG

TA

GA

GT

AG

syn

thet

ase

Ms/

L27

AW

5742

58E

STi

NA

6T

rans

latio

nally

410

SNP

T/5

6/F

A/5

6/F

AT

GT

TG

GT

TT

AC

AT

CA

TC

AT

GC

AT

GC

con

trol

led

CA

GG

AT

CT

CC

TC

TC

AC

CA

AC

Atu

mor

TT

Apr

otei

nM

s/L

83A

W58

4613

EST

iN

A7

Ald

o/ke

to-

1000

SNP

C/1

77/F

T/1

77/F

AT

CC

CC

GC

TT

CC

AA

AG

GG

AT

TT

AT

AC

redu

ctas

eA

/368

/FG

/368

/FA

AG

CT

GA

GA

AC

TT

TC

AG

GT

TG

AG

Afa

mily

,M

sC

/441

/FT

/441

/FA

J410

092

(con

tinue

d)

Page 25: A Sequence-Based Genetic Map of Medicago truncatula and

1487M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

Ms/

U13

1A

J388

687

EST

iN

A4

Hyp

oth

etic

al41

0SN

PC

/177

/RA

/177

/RA

TG

CT

AT

TG

GG

AC

GG

AA

TT

GC

AC

TA

TA

prot

ein

,M

sG

/192

/RA

/192

/RT

CA

AC

AC

TC

TG

AC

AG

AT

GA

TA

GG

AA

J410

096

T/1

95/R

C/1

95/R

C/2

45/R

T/2

45/R

Ms/

U14

1A

W58

7077

EST

iN

A8

Hyp

oth

etic

al75

0SN

PA

/152

/FG

/152

/FT

TG

AT

CA

GC

CA

CA

GC

CT

CC

CA

CA

AA

Gpr

otei

n,

Ms

C/2

84/F

T/2

84/F

GA

AA

TA

TA

AA

TA

AC

AA

GT

TT

CA

J410

097

G/2

93/F

T/2

93/F

CC

AC

/331

/FG

/331

/FM

s/U

336

X60

386

GS

AC

1357

96.1

18

Phyt

ohem

ag-

560

SNP

C/8

6/R

T/8

6/R

AG

AC

GT

GG

CT

AA

CG

AG

CT

TG

AA

AC

AT

glut

inin

,M

sA

/242

/RC

/242

/RT

TC

GA

AA

CA

CT

TA

GC

AT

TG

TT

GA

J410

117

C/2

66/R

G/2

66/R

TT

AA

/517

/RG

/517

/RM

s/U

515

EST

i3

3-PG

Ade

hy-

850

SNP

C/1

55/F

G/1

55/F

GT

TA

AG

GG

AA

CC

AC

AT

TC

AT

TG

TC

Adr

ogen

-T

/439

/FC

/439

/FT

GA

CA

AC

CA

CA

TA

CC

AA

GC

AA

ase,

Ms

CC

AA

J41-

0128

MtE

IL1

AQ

8411

99B

EST

NA

3E

thyl

ene

EcoR

IC

APS

310

255

�55

GA

CA

TG

TA

TC

GG

AC

AC

CT

GC

GA

GG

TA

inse

nsi

tive

TT

CT

CA

CG

AG

CT

TC

AA

AC

TG

TA

AM

tEIL

2B

H15

3075

BE

STA

C12

4972

.18

5E

thyl

ene

FOK

IC

APS

160

�14

530

5G

GA

GC

AT

CC

AT

AG

TA

TC

TT

TT

AT

TT

Cin

sen

siti

veC

CA

CT

GT

TG

GG

TA

TT

CA

TC

TC

CA

MT

U04

AA

6607

21E

STi

NA

5H

ypot

het

ical

Nsi

IC

APS

310

�85

511

65A

TG

GG

AA

GA

GG

AT

AA

GC

GA

AC

AT

TT

Tpr

otei

nT

GC

TG

TG

AT

AT

GG

CA

TC

TA

CM

TU

07A

I737

610

EST

eN

A4

Un

know

nH

infI

dCA

PS27

�15

318

0C

AG

AC

AC

CC

AA

AG

GA

TG

AC

CA

GA

GC

Cpr

otei

nA

AT

TA

CC

AG

AA

TA

AT

AC

TA

TT

TA

TG

AC

TM

TU

10A

I974

637

EST

eN

A8

Un

know

nN

AL

engt

h20

025

0C

AT

CA

AT

TT

GT

CA

TG

GG

TT

CA

AG

AA

Gpr

otei

nG

TA

CT

TC

GG

TT

GG

AA

GT

AA

AT

CA

GA

AT

NA

MA

I974

744

EST

eN

A6

NA

MM

seI

CA

PS13

0�

7�

130

�7

�A

TT

CA

GT

GG

CT

CT

AA

CC

TA

AG

TA

CA

C(n

oap

ical

120

�15

3�

96G

AT

TG

GT

TC

AT

GT

AA

CT

AA

Tm

eris

tem

)-33

�96

CT

AT

TT

Clik

epr

otei

nN

CA

SA

A66

0915

EST

iA

C13

9709

.81

Neu

ron

alA

ciI

CA

PS44

080

�36

0T

TC

CC

AA

GC

CC

AC

AT

CA

CC

AG

GC

CA

Tca

lciu

mA

AT

CC

TA

AT

CA

TC

AT

AA

GT

sen

sor

1

(con

tinue

d)

Page 26: A Sequence-Based Genetic Map of Medicago truncatula and

1488 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

NPA

CA

I737

554

EST

iN

A3

Puta

tive

na-

SspI

CA

PS34

0�

130

�47

0�

270

�T

GG

CT

CC

AG

GT

CT

CG

GC

TC

TT

CT

TC

TC

scen

tpo

ly-

270

�50

050

0C

AG

TT

AT

TG

AG

CT

TC

Tpe

ptid

e-as

soci

ated

prot

ein

NR

T2

AW

2256

22E

STe

NA

4Pu

tativ

ehi

gh-

360

SNP

T/1

16/F

A/1

16/F

GG

AA

GC

TC

CA

TG

AT

TG

CA

CC

CA

TT

Gaf

fini

tyC

/248

/FA

/248

/FC

AT

GG

AG

TA

CA

AG

CC

TT

GA

GA

nitr

ate

tran

spor

ter

NT

RB

IA

I974

835

EST

iA

C11

9410

.48

Ret

ino-

EcoR

VC

APS

428

�13

256

0C

AC

GA

CT

CT

GC

AA

CC

CT

TG

TT

GC

GA

Gbl

asto

ma-

CG

CT

TT

GT

TA

TC

AT

TT

Gre

late

dpr

otei

nN

UM

1A

A66

0969

EST

iN

A4

Hom

olog

ofT

aqI

CA

PS48

�29

�48

�27

2G

AT

GC

TG

CT

CC

TG

TA

AA

AC

AA

AG

TA

AA

mam

mal

ian

243

TG

TT

GT

TT

CA

AC

AA

TA

TC

TT

Tn

ucle

olin

AA

AA

AT

CO

XG

AW

1261

22E

STi

NA

6O

xyge

nas

e72

0SN

PG

/311

/FA

/311

/FA

GG

TG

TA

GC

AA

GA

TT

TG

GT

GG

TG

CA

TC

C/3

67/F

T/3

67/F

TA

TA

AC

CA

AT

TC

CA

AA

CA

GA

GA

T/4

11/F

C/4

11/F

CA

GG

AA

AG

PAE

AA

6608

02E

STi

NA

8Pe

ctin

acet

yl-

FokI

CA

PS61

0�

190

340

�27

0�

CT

AA

AA

GC

AG

CA

GG

AT

CC

GG

TC

AA

GG

Ces

tera

se19

0A

AG

GG

GT

TA

CA

AG

TA

GT

Tpr

ecur

sor

PCT

AI9

7445

4E

STe

AC

1312

48.5

4C

hol

inep

hos

-R

saI

CA

PS24

015

0�

90T

TG

GC

AA

AA

AC

GA

CA

CG

GC

AC

AT

CT

GG

phat

eT

AA

AC

CT

GT

AA

TA

AC

TT

cyti

dyly

l-tr

ansf

eras

ePE

SR1

AA

6605

26E

STe

AC

1221

66.1

47

Pect

ines

tera

seA

ciI

CA

PS23

717

6�

61C

AT

CT

GA

AC

AA

AC

CG

CT

GT

TA

AT

TC

GG

CC

AT

CT

CC

AG

TT

TG

APF

KA

A66

0630

EST

iN

A2

Ppi-d

epen

dent

SspI

CA

PS50

080

�42

0T

CC

CA

CT

GC

AA

AT

AC

AC

AA

GT

GG

AT

AT

phos

pho-

CA

TG

TC

AA

AA

CT

GA

TG

GT

TA

Gfr

ucto

kin

ase

AC

TA

C�

-sub

unit

PGD

HA

W12

6358

EST

iN

A7

Phos

pho-

490

SNP

A/1

89/F

C/1

89/F

GA

GT

TG

AA

GC

TG

TG

TA

TG

AG

CA

CC

gluc

onat

eC

AA

AG

GT

CT

TG

AA

GT

AG

TC

TC

deh

ydro

-T

AA

AT

CA

GT

TG

Age

nas

e

(con

tinue

d)

Page 27: A Sequence-Based Genetic Map of Medicago truncatula and

1489M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

PGK

IA

A66

0202

EST

iN

A2

Phos

pho-

Dra

IC

APS

550

210

�34

0G

AT

GA

CT

GT

AT

TG

GT

TC

GA

CA

CG

GC

glyc

erat

eG

CG

AG

GA

AG

TT

CC

AA

CT

Aki

nas

ePN

DK

N1

AW

1271

13E

STi

NA

8N

ucle

osid

e

1000

SNP

G/3

37/F

A/3

37/F

GG

CC

GA

AC

AA

AC

TC

CA

GG

CT

CG

GA

TT

diph

os-

TT

CA

TC

AT

GA

GA

GC

AG

GG

TT

phat

eT

CA

TG

Tki

nas

eI

PPD

KA

I737

496

EST

eN

A8

Pyru

vate

NA

Len

gth

250

230

CA

GC

AG

GG

CA

TA

GA

AT

CC

AC

AT

AA

GT

Tph

osph

ate

TC

AA

AT

AA

GG

CA

CC

GT

AA

GA

GT

diki

nas

ePP

GM

AA

6608

93E

STi

AC

1242

15.1

37

Phos

pho-

Bbv

IC

APS

165

�21

037

5A

AA

GA

AA

GA

TG

GA

CC

AA

GC

GC

GT

TA

glyc

erat

eG

AA

GC

AC

TG

TG

AC

CA

Am

utas

eA

TT

ppPF

AI9

7468

5E

STe

NA

1Pp

i-dep

ende

ntB

stN

IC

APS

130

30�

100

TC

TC

GC

CA

CC

AA

AA

AA

AT

TG

TT

CA

Tph

osph

o-C

AA

CA

AC

TA

CG

AA

CA

CT

CA

CT

fruc

toki

nas

eT

GA

AG

CC

Asu

bPR

OF

AW

1263

18E

STe

AC

1227

30.1

56

Prof

ucos

idas

e32

0SN

PT

/197

/FC

/197

/FA

GA

AG

TC

AA

AA

AT

CA

AA

TC

TT

CC

AA

GG

TC

TA

CC

AG

TA

TC

CA

AA

CA

AT

GA

GT

AG

GA

PRT

SA

I737

609

EST

eA

C14

1863

.63

20S

prot

eo-

Bsa

JIC

APS

200

�50

250

CA

TA

GC

TA

CT

TG

AT

GG

TG

AA

CT

TC

AC

som

eT

CT

GA

AA

AC

TT

GT

AC

CA

TT

AC

A�

-sub

unit

AC

AA

CC

PTSB

AW

1271

08E

STi

NA

5Pr

otea

som

e37

0SN

PA

/80/

FT

/80/

FA

CT

AA

AC

AA

CA

CG

AT

GC

CT

AG

CA

GA

�-s

ubun

itC

TA

AT

TG

GT

CT

CA

AA

AC

CT

TC

CC

AT

GC

AQ

OR

likB

EST

4M

t-apy

2R

saI

CA

PS11

9�

290

409

GA

TG

GT

CT

GG

CA

AA

GG

GA

GG

AC

TT

TT

CT

GT

CT

TA

GR

BB

PA

A66

0276

EST

iA

C12

1243

.10

2W

D-4

0re

peat

Bgl

IIC

APS

220

�86

010

80C

AA

GA

GG

AC

GC

AC

AC

AA

TT

CG

CA

AT

prot

ein

AA

CC

TA

AA

CC

CA

CC

AA

AG

TA

TM

SI4

RE

PA

A66

0953

EST

iN

A8

Poly

(A)�

RN

AH

aeII

IC

APS

30�

690

30�

105

�C

TC

CA

TT

TC

CC

GT

CA

CC

GG

TT

GC

CC

Tex

port

585

TC

GT

TC

GC

CA

GA

Cpr

otei

nri

p1U

1672

7G

SN

A5

Pero

xida

seSs

pIC

APS

81�

320

�81

�32

0�

GC

AA

TG

CG

TT

GC

AG

TT

TA

TA

AA

GA

Gpr

ecur

sor

37�

134

�17

1�

53T

AG

GG

AT

TA

AT

GT

AA

CA

CA

CA

TC

59A

TG

TG

AC

CT

CA

CC

(con

tinue

d)

Page 28: A Sequence-Based Genetic Map of Medicago truncatula and

1490 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

RL

13A

A66

1027

EST

eN

A2

Rib

osom

alM

seI

CA

PS35

�10

�35

�10

5�

GC

CA

AG

CA

GG

TA

TC

CG

GT

AC

AC

AA

CA

Tpr

otei

nL

1330

�65

�40

40T

AT

TC

TT

CA

TC

TA

AC

CC

TA

AA

AT

CA

RL

3A

I974

458

EST

iN

A1

Rib

osom

alPa

cIC

APS

250

�10

0�

250

�60

�G

AC

AC

GG

TT

CT

TT

GC

CT

GG

CT

TT

TC

GA

Cpr

otei

nL

323

040

�23

0G

GA

TT

TC

TC

TT

CT

CT

GA

CR

LPO

AI9

7431

1E

STi

NA

360

Sac

idic

Bsp

HI

CA

PS32

0�

740

1060

TC

TT

GG

CC

CT

TT

AA

AA

CC

TT

GT

AT

TT

Ari

boso

mal

TT

TC

CT

CT

CG

CA

AC

TT

CT

TC

Apr

otei

nPO

CT

GR

NA

HA

I974

503

EST

iA

C12

3899

.13

7A

TP-

Apa

IC

APS

940

280

�66

0G

CT

TC

CA

CC

AG

CT

TT

AG

CC

CT

AG

CA

Ade

pen

den

tG

AT

AC

AC

GG

AA

TG

TC

AC

TG

RN

Ah

elic

ases

SAM

SA

I974

327

EST

iN

A2

S-ad

enos

yl-

Bst

BI

CA

PS10

5052

5�

525

CA

TA

GC

AA

AG

CG

GG

GT

CA

GC

AT

CA

AG

AC

met

hio

nin

eT

TC

AA

TC

TC

AA

CA

TC

AT

Csy

nth

ase

2SA

TA

W12

6397

EST

iN

A1

Sulf

ate-

810

SNP

::/26

0/R

CA

/260

/RG

TA

TC

AT

GA

TG

GA

AG

CC

TT

TG

CA

TG

Cad

enyl

ylC

TT

GA

TC

AT

TT

CA

CT

GC

AC

CT

CA

tran

sfer

ase

TC

GT

CSC

PA

A66

0552

EST

eN

A1

Seri

ne

Hin

cII

dCA

PS10

030

�70

CA

CC

AG

CA

GG

AG

AT

CG

AT

TC

GT

AC

CC

carb

oxy-

AT

CA

AG

GA

AC

AA

TT

TG

TT

TT

TC

pept

idas

eII

AA

TT

GT

TSD

P1A

I974

323

EST

iN

A8

Seed

prot

ein

SspI

CA

PS76

�82

9�

76�

726

�T

GG

CT

CT

AA

AT

CA

TG

TG

AC

GG

TT

GA

Apr

ecur

sor

6210

3�

62G

GG

GA

AG

AA

TA

TA

TC

TG

AA

TG

TT

TSQ

EX

AA

6607

11E

STi

NA

8Sq

uale

neEc

oRV

CA

PS81

0�

260

190

�62

0�

TG

CC

GC

TA

TA

AC

AA

TT

CA

CC

CA

CA

mon

o-26

0A

AA

GT

AA

AC

AA

AT

TC

TA

TC

AG

Gox

ygen

ase

AG

AA

SUSY

AW

1263

51E

STi

AC

1357

98.1

88

Sucr

ose

500

SNP

T/1

03/F

C/1

03/F

TC

GC

AA

TG

AA

CC

AG

TC

CA

AC

CT

TG

Csy

nth

ase

C/1

36/F

T/1

36/F

CA

CA

GA

TT

TC

AC

AT

GG

TG

AA

GA

TA

TB

B2

AW

1912

76E

STi

AC

1444

74.1

4T

ubul

in�

-245

0SN

PC

/147

/RT

/147

/RT

GT

GG

GA

TT

CC

AA

TT

CA

TA

CT

CA

TC

CT

chai

nG

AA

CA

TG

AT

GT

GC

CT

CT

GC

AG

TA

TC

MO

AW

1275

21E

STi

AC

1419

23.7

5T

rans

-cin

na-

880

SNP

A/1

30/R

G/1

30/R

GT

CT

AC

GG

CG

AA

CA

AT

TG

CA

GC

AA

CA

mat

e4-

A/1

62/R

T/1

62/R

CA

TT

GG

CG

TA

AT

TG

AT

GT

TC

TC

mon

o-C

/220

/R,

A/2

20/R

,A

AT

GC

AA

CA

oxyg

enas

eet

c.et

c.

(con

tinue

d)

Page 29: A Sequence-Based Genetic Map of Medicago truncatula and

1491M. truncatula Genetic Map

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

TE

001

AI7

3753

8E

STi

AC

1309

63.1

36

CC

CH

-type

Xm

nIC

APS

500

�50

010

00C

GG

CG

CC

GG

AG

AT

AA

TC

AC

AA

AC

CC

AC

zin

c-fi

nge

rT

AC

AC

TG

CC

AA

CA

TC

TG

prot

ein

TE

011

AI7

3747

8E

STi

NA

4SC

AR

EC

RO

WA

clI

CA

PS11

40�

410

1140

�22

0G

GA

GA

GA

AA

CC

GC

AA

GA

AG

AA

GC

CC

gen

e�

190

GA

CT

GA

AG

AA

TA

GT

CC

TC

CA

TT

regu

lato

rA

CA

TE

013

AI7

3748

4E

STi

AC

1309

63.1

36

Sam

eas

TE

001

Xm

nIC

APS

320

�50

082

0T

CC

GC

AT

GT

AC

GA

AA

AT

CA

CA

AA

CC

CG

TT

CA

AG

AT

AA

GA

CC

CA

AC

AT

CT

E01

6A

I737

494

EST

iA

C13

8016

.84

Cya

nog

enic

SalI

CA

PS13

0040

0�

900

TC

CC

CA

GG

CC

TT

AA

AA

CA

CT

CC

CA

CG

T�

-glu

co-

CA

AG

AT

GA

TT

AT

CG

CA

CT

AA

Gsi

dase

TE

019

AI7

3750

0E

STi

AC

1376

66.7

5U

nkn

own

Afl

IIC

APS

150

�95

011

00G

CA

TG

TG

AC

CG

AT

TT

TT

AG

AA

TC

AA

Cpr

otei

nG

AG

GA

AA

CC

AA

TG

CA

AC

CA

GA

AG

TG

DH

AA

6607

42E

STi

NA

4dT

DP-

gluc

ose

Mnl

IC

APS

340

60�

280

CG

GT

GG

CT

TC

AT

CG

AC

GT

GT

AT

TG

TA

4-6-

deh

y-G

GT

TC

TA

TC

AG

CA

GG

Adr

atas

eG

TA

TG

FRIP

AW

2256

17E

STe

AC

1249

57.1

22

Puta

tive

320

SNP

T/2

54/F

C/2

54/F

AT

TC

TG

AT

GA

AA

GC

AA

GC

TT

AT

CA

CC

TG

F-�

GC

CA

CG

AG

AG

GA

AC

AG

AG

AA

Are

cept

orC

CA

TC

GA

inte

ract

ing

prot

ein

tRA

LS

AW

1262

82E

STi

AC

1254

76.9

4C

ytos

olic

330

SNP

A/5

2/R

G/5

2/R

GG

TC

TG

CG

AG

CT

GG

CA

AT

TC

CC

TC

CT

tRN

A-A

laT

TT

TT

GG

AG

AA

GC

AG

CT

AA

AA

GT

Gsy

nth

etas

eT

RPT

AA

6603

62E

STe

AC

1221

70.1

63

Tri

osep

hos

-D

deI

CA

PS29

060

�23

0A

AC

CA

CA

AT

CT

TT

AA

CA

TT

CA

AA

GC

Cph

ate

TC

TC

CC

AT

CT

TC

AC

CA

AG

TT

tran

sloc

ator

TU

PA

A66

0945

EST

iA

C13

6288

.12

1T

rans

latio

nally

Bcl

IC

APS

620

230

�39

0G

AA

TG

GG

AT

GC

TA

TG

GA

TC

AG

TG

GC

Aco

ntr

olle

dT

GG

GA

AG

TG

CC

AT

CT

TT

AT

tum

orpr

otei

nU

DPG

DA

I974

577

EST

iA

C11

9411

.37

UD

P-gl

ucos

eM

nlI

CA

PS13

5023

0�

1120

CA

AA

AG

CG

TT

TC

AA

TC

GT

CA

AG

GC

CA

6-de

hyd

ro-

TC

AC

TC

AT

CT

CT

GG

TT

CA

TA

Gge

nas

e

(con

tinue

d)

Page 30: A Sequence-Based Genetic Map of Medicago truncatula and

1492 H.-K. Choi et al.

TA

BL

E1

(Con

tinu

ed)

A17

A20

rest

rict

ion

rest

rict

ion

Tem

plat

eR

estr

icti

onfr

agm

ent

frag

men

tse

quen

ceSe

quen

ced

Puta

tive

enzy

me

orpa

tter

npa

tter

nM

arke

rac

cess

ion

BA

CL

inka

gefu

nct

ion

frag

men

tof

CA

PSor

ofC

APS

orFo

rwar

dpr

imer

Rev

erse

prim

ern

ame

no.

Typ

eac

cess

ion

no.

grou

por

prob

esi

ze(b

p)M

eth

odSN

Ppo

siti

onSN

Ppo

siti

onse

quen

cese

quen

ce

UN

K16

AI9

7467

2E

STe

NA

4H

ypot

het

ical

FspI

CA

PS33

015

0�

180

CC

TT

CC

AA

TA

TC

CG

AA

GA

AA

AT

GA

TG

prot

ein

CT

CC

CA

CA

TA

AA

AG

CC

AA

AA

GU

NK

21A

I974

840

EST

iN

A7

Hyp

oth

etic

alEa

rIC

APS

90�

830

920

TC

GC

CT

CC

AT

GT

CG

GC

CT

TG

CT

AA

Apr

otei

nC

CA

CC

TC

TC

AG

TC

AG

UN

K27

AW

2256

06E

STe

NA

4dT

DP-

gluc

ose

320

SNP

T/4

7/F

C/4

7/F

GG

CT

TC

AT

CG

GT

TC

TG

TA

AT

CA

GC

AG

G4-

6-de

hyd

ra-

C/8

0/F:

/T

/80/

FT

CA

TC

TC

TG

CG

AA

GT

AC

AA

AT

TG

Cta

se22

0/F

T/2

20/F

AG

CC

AA

/259

/FC

/259

/FU

NK

29A

W17

1637

EST

iN

A1

Un

know

n

1000

SNP

C/3

28/R

T/3

28/R

CT

AA

CT

AA

TT

CT

GT

GG

AG

TG

AT

TA

TA

Tpr

otei

nA

TC

TT

CG

AG

AA

TT

GT

CG

GC

TG

AA

GA

GG

CA

TA

UN

K3

AI9

7427

1E

STi

NA

4V

AM

P-M

boII

CA

PS47

080

�39

0C

AC

CG

GA

AA

TT

CA

GA

CC

TA

GG

CA

AC

Aas

soci

ated

AC

AG

CA

AC

CA

AC

TC

CA

TT

Apr

otei

nU

NK

7A

I974

400

EST

iN

A5

Puta

tive

Xho

IC

APS

1250

�17

014

20A

AA

AA

GC

AG

CA

AG

GA

GA

AT

CT

TT

CT

Cpr

otei

nA

GA

AA

TG

TC

AA

TC

AT

CG

TA

TC

TT

AC

TT

VB

P1A

I974

413

EST

iA

C12

2169

.12

7T

GA

-type

Drd

IC

APS

950

110

�84

0C

TG

GA

GA

GC

AG

AC

GC

GA

AA

GC

CT

CC

AA

basi

cC

CA

TT

CA

AT

TC

CA

Cle

ucin

ezi

pper

prot

ein

WPK

4A

A66

0716

EST

eN

A5

Seri

ne/

SpeI

dCA

PS22

019

0�

30A

GC

AA

CT

AC

AA

AT

TG

CT

GT

AT

GA

GC

Tth

reon

ine

AG

TT

AT

GC

AA

AG

CA

CT

TG

TC

TG

kin

ase

AG

AC

TA

zwili

kB

H15

3068

BE

STN

A1

Zw

ille-

like

Xm

nIC

APS

475

350

�12

5A

TT

TG

AG

TG

TA

CC

TT

TT

GA

AG

AT

TT

AT

gen

eC

AT

TG

AG

AT

TT

GT

AG

AG

TA

EST

e,ex

on-d

eriv

edm

arke

rs;E

STi,

exon

-der

ived

/in

tron

-spa

nn

ing

mar

kers

;BE

ST,B

AC

end-

sequ

ence

-tagg

edm

arke

rs.M

arke

rsde

rive

dba

sed

onge

net

icm

arke

rsin

oth

erle

gum

esp

ecie

sar

ein

dica

ted

byth

epr

efixe

sG

m(G

.m

ax),

Ms

(M.

sativ

a),

and

Vr

(V.

radi

ata)

unde

rth

e“P

utat

ive

fun

ctio

nor

prob

e”co

lum

n.

Wh

ere

poss

ible

,G

enB

ank

acce

ssio

nn

umbe

rsar

eal

sogi

ven

for

the

corr

espo

ndi

ng

legu

me

hom

olog

.NA

,not

avai

labl

e.In

the

case

ofSN

Pm

arke

rs,t

he

nom

encl

atur

ein

dica

tes

the

nat

ure

ofth

eba

sech

ange

and

its

posi

tion

inth

eam

plic

onre

lati

veto

the

forw

ard

orre

vers

epr

imer

.T

hus

,“A

/259

/F”

refe

rsto

aden

ine

atpo

siti

on25

9re

lati

veto

the

forw

ard

prim

er.

Page 31: A Sequence-Based Genetic Map of Medicago truncatula and

1493M. truncatula Genetic Map

TABLE 2 the estimated correlation between the physical and ge-netic distance is 970 kbp/cM, in practice this value variesIntron analysis for EST markersaccording to the specific regions under analysis, withprevious analyses of five distinct euchromatic chromo-Total no. of loci analyzed 47somal regions yielding values ranging from 200 to 1100Total length analyzed (bp)

Exon 10,693 kb/cM (Ane et al. 2002; Gualtieri et al. 2002; SchnabelIntron 12,599 et al. 2003).

Intron size (bp) A total of 177 codominant markers with completeMinimum/maximum 78 � 747genotype information were designated as “framework”Mean size 161markers (Figure 1). The majority of framework markersTotal no. of polymorphisms

Exon 21 segregated as expected for codominant (1:2:1) alleles;Intron 89 however, 32% (56/177) of the markers exhibited dis-

Average no. of nucleotides/polymorphisms torted segregation, with the expected frequency of het-Exon 509erozygous individuals but overrepresentation of one ho-Intron 142mozygous state and underrepresentation of the other.Polymorphism ratio of exon/intron 1:3.6

No. of mutations in exons In all cases, distorted marker segregation identified re-Synonomous 17 gions of multiple markers with abnormal ratios of al-Nonsynonomous 4 leles. In addition to linkage groups 4 and 8, which are

discussed in greater detail below, three markers (i.e.,ppPF, NCAS, and TUP) on the short arm of chromo-some 1 exhibited an excess of A17 homozygotes; 11vergence of each (Table 2). On the basis of this limited

survey, the average intron size in M. truncatula was 161 contiguous markers on the long arm of chromosome 3(i.e., GSb through DK273L) exhibited an excess of A20bp, with a range of 78–747 bp, and the GT-AG rule

for intron junctions was strictly conserved. As expected, homozygotes; and two markers on the long arm of chro-mosome 7 (i.e., VBP1 and ENOL) exhibited an excesspolymorphisms were more frequent in intron sequences

(on average, 1 SNP every 142 bp) than in the adjacent of A17 homozygotes.In the initial analysis, six well-defined linkage groupscoding regions (on average, 1 SNP every 509 bp), with

80% of exon SNPs predicted to represent synonymous could be identified. These linkage groups were charac-terized by normal Mendelian segregation of marker locichanges. In the case of 40 marker genes, we analyzed

the correspondence between 64 empirically determined (with the exception of the regions noted above), asshown by example for linkage group 2 (Figure 2a). TheM. truncatula introns and the number and position of

introns in the Arabidopsis homologs. We identified only integrity of each of these six linkage groups (i.e., linkagegroups 1, 2, 3, 5, 6, and 7) was confirmed previouslya single discrepancy, namely a first intron in marker

gene ASN2, present in Medicago but absent from the (Kulikova et al. 2001) by FISH studies in which multipleBAC clone probes from each linage group could beArabidopsis homolog (At3g47340). The same first in-

tron was present in six additional legume species (i.e., assigned to a single pachytene chromosome.In contrast to the situation for the six linkage groupsM. sativa, Pisum sativum, Phaseolus vulgaris, Vigna radiata,

Lotus japonicus, and G. max) from which the ASN2 PCR mentioned above, the 55 additional marker loci re-solved unexpectedly into four linkage blocks. A majorityproduct was sequenced (data not shown), indicating

that the intron is ancestral to this group of Papilionoid of these loci exhibited distorted segregation ratios, withan excess of A20 homozygotes and an underrepresenta-legumes.

Genetic map construction: The genetic map shown tion of A17 homozygotes, as shown in Figure 2, b andc. Two lines of genetic evidence suggest that these 55in Figure 1 was derived from the analysis of 274 codomi-

nant and 14 dominant PCR-based genetic markers. In genetic markers belong to two linkage groups. First, wemapped 26 of these loci on the genetic linkage map oftotal, 93 F2 individuals from a cross between M. trunca-

tula ecotypes A17 and A20 were genotyped. A skeleton the closely related M. sativa, where they resolved intotwo well-defined linkage groups (Ms LG4 and Ms LG8,version of this map was used previously to develop an

integrated cytogenetic and genetic map of M. truncatula respectively), as described below. Second, selectedmarker loci from within the distorted regions were geno-genotype A17 (Kulikova et al. 2001), and thus the eight

genetic linkage groups correspond to the individual typed in the M. truncatula segregating population de-rived from genotypes A17 and DZA315 used by Tho-chromosomes, with chromosome numbering derived

from the corresponding linkage groups in M. sativa quet et al. (2002) for construction of an AFLP- andRAPD-rich genetic map. In each case, the markers(Kiss et al. 1993; Kalo et al. 2000), as determined below.

By convention, the cytogenetically determined short mapped to M. truncatula linkage groups that had beenpreviously determined to correspond to the counter-chromosome arms define the top of each linkage group.

The 288 genetic markers span 513 cM with an average parts of M. sativa linkage groups 4 and 8 (G. Kiss,personal communication).distance between markers of 1.8 cM (Table 3). Although

Page 32: A Sequence-Based Genetic Map of Medicago truncatula and

1494 H.-K. Choi et al.

Figure 1.—Core geneticmap of M. truncatula. A totalof 288 molecular markersand 5 phenotypic markerswere positioned on eightlinkage groups, as follows.A total of 177 codominantmarkers are classified as“framework” markers, des-ignated by horizontal linesconnecting to the linkagegroup diagram. Frameworkmarkers shown in bracketscould not be separated ge-netically from the adjacent,leftward framework marker.Markers that were geneti-cally inseparable from morethan one framework marker(e.g., those with incompletegenotype information ordominant markers) areplaced to the right of a verti-cal bar; the position of thevertical bar designates theextent of the genetic inter-val containing the marker.EST-based markers areshown in boldface type;nodulation-related markersare shown in red; BAC end-sequence-tagged (BEST)markers are preceded bythe initials “DK” [with theexception of BEST resis-tance gene analog (RGA)markers]. RGA markers areshown in blue, with the pre-fix “R-” signifying BESTmarkers and “R-EST” signi-fying EST-based markers.

To test the assumption that these markers correspond mosomes. One of these chromosomes, containing34J06, could be identified as chromosome 4 accordingto loci on chromosomes 4 and 8, respectively, of M.

truncatula genotype A17, we used FISH to determine to our knowledge of centromere position and locationof a diagnostic repeat, MtR1, in the pericentromericthe physical location of 16 of these markers in pachytene

chromosome spreads (Figure 3, a–e). As a prelude to heterochromatin of the short arm (data not shown). Afirst series of hybridizations was performed with fivethis analysis, each genetic marker was converted to a

corresponding BAC clone contig by hybridizing PCR BACs, four of which, namely 10F20, 1P05, 5K15, and41H08, were mapped in a previous study (Kulikova etfragments to high-density filters of the M. truncatula

BAC library (Nam et al. 1999) or by PCR analysis of a al. 2001). In a second series of hybridizations, a newset of probes, including 15B23, 06B09, 66M02, 34J06,BAC library DNA multiplex. A total of 16 BAC clones

were used as probes for FISH analysis, as highlighted 47M03, 70L14, and 11C13, was used. All of these BACclones mapped to chromosome 4. The individual hy-in Figure 3, b and c. Initially, we observed that BAC

clones 34J06 and 43B05 gave signals on different chro- bridization patterns are shown in Figure 3, a–c, while a

Page 33: A Sequence-Based Genetic Map of Medicago truncatula and

1495M. truncatula Genetic Map

Figure 1.—Continued.

composite diagram integrating genetic and cytogenetic cies, which allowed the direct application of geneticmarkers in either direction. Of 81 markers analyzed, 68data for linkage group 4 is shown in Figure 3f. On the

basis of a similar set of analyses, five BAC clones, 43B05, were successfully mapped. For the remaining 13 mark-ers, 4 primer pairs failed to amplify M. sativa DNA, 222O13, 69K21, 50M17, and 10M16, were positioned on

chromosome 8. The individual hybridizations are shown markers lacked polymorphism, and 7 markers gener-ated uninterpretable sequence (probably mixtures ofin Figure 3, c–e, with a composite summary of the ge-

netic and cytogenetic data for linkage group 8 shown multiple loci). As shown in Figure 4, the marker align-ment between the two Medicago maps reveals an ex-in Figure 3g.

Comparative linkage analysis between M. truncatula tremely high level of synteny between M. truncatula andM. sativa, including the distorted regions of M. trunca-and M. sativa: Constructing a comparative map between

M. truncatula and M. sativa was facilitated by the high tula linkage groups 4 and 8, described above.Despite the overall high level of similarity, severallevel of nucleotide conservation between these two spe-

Page 34: A Sequence-Based Genetic Map of Medicago truncatula and

1496 H.-K. Choi et al.

TABLE 3

Distribution of marker types by linkage group

No. of markers Distance (cM)

LG Total EST BEST RGA Phenotypic Total Average

1 31 22 7 2 0 64.3 2.012 32 14 15 2 1(dmi1) 60.9 1.973 47 15 14 18 0 78.2 1.784 47 25 11 10 1(sunn) 56.5 1.235 39 16 15 7 1(dmi2) 76.5 1.966 31 8 2 21 0 47.3 1.487 28 15 11 1 1(skl) 54.5 2.028 38 26 5 6 1(dmi3) 75.0 2.08Total 293 141 80 67 5 513.2 1.78

EST, expressed sequence tag marker; BEST, BAC end-sequence-tagged marker; RGA, resistance gene analogmarkers. Phenotypic markers represent nodulation mutations mapped on the basis of the segregation ofnodulation phenotypes in F2 progeny of genotype A17 mutant lines crossed with A20 wild type.

differences were noted. One apparent difference was tion pattern of the NUM1 probe in M. sativa was com-plex, generating 30 bands. The deduced genotypesthe position of a 5S rDNA locus. In M. truncatula, a 5S

rDNA locus mapped to LG5, while in M. sativa a 5S generated at least five polymorphic loci, of which one(Ms-NUM1) mapped to LG4 and the other (Ms-NUM2)rDNA locus was mapped to LG4. However, cytogenetic

analysis indicates the presence of three 5S rDNA loci mapped to LG8. The middle repetitive-like hybridiza-tion patterns of PCT in M. truncatula and of NUM1 inin M. truncatula genotype A17 on LG2, LG5, and LG6

(Kulikova et al. 2001), while the number of 45S rDNA alfalfa suggest that PCT and NUM sequences may haveevolved differently in these two closely related plantloci has been observed to vary between genotypes of M.

truncatula (T. Bisseling and O. Kulikova, personal species.communication). The position and number of 5S rDNAloci has also been observed to vary between ecotypes of

DISCUSSIONA. thaliana (Fransz et al. 1998), so it should not besurprising to find such a difference between species of In this study, we positioned 288 sequence-based mark-

ers on the genetic map of M. truncatula, covering 513the same genus.We noted two additional differences that are likely cM. Each linkage group contained an average of 36

markers, with a range of 27–47 (Table 3). Thoquetto be more substantive than those of the rDNA loci,described above. The PCT primers listed in Table 1 et al. (2002) recently published a genetic map of M.

truncatula that spans 1125 cM and is composed of 289,identified a single locus on M. truncatula linkage group4. However, Southern blot analysis of M. truncatula geno- predominantly RAPD and AFLP, genetic markers. The

difference in total genetic distance covered by the twomic DNA using the PCT PCR fragment as probe identi-fied four putative paralogous sequences that hybridized mapping efforts may derive from inherent differences

in mapping parents [A17 and DZA315 in the case ofto the PCT marker. One of these loci was polymorphicand mapped to linkage group 2 (Figure 4), while the Thoquet et al. (2002) and A17 and A20 in the present

study] and also from the marker types used. Thus, inother three fragments were not polymorphic for theenzymes used. In M. sativa, only one hybridizing locus contrast to mapping expressed genes as codominant

markers, which was the focus of the current study, thewas evident, corresponding to a polymorphic, singlelocus at the syntenic position on linkage group 2 (Figure AFLP and RAPD strategy used by Thoquet et al. (2002)

maps anonymous loci that typically exhibit dominant4). In a second case, the NUM1 gene was mapped toLG4 in M. truncatula by means of NUM1-specific primer inheritance. Although it is likely that the two strategies

surveyed different regions of the genome, both effortspairs. Using the same primers in M. sativa, an �2-kbpnonpolymorphic fragment was amplified. The gel-puri- produced eight well-resolved linkage groups that could

be readily aligned with the eight genetically definedfied fragment was used as a probe to map NUM loci inboth M. truncatula and M. sativa by means of RFLP. linkage groups of diploid M. sativa (Kalo et al. 2000;

Thoquet et al. 2002). Efforts to link the two geneticThe hybridization pattern of M. truncatula identifiedtwo loci, Mt-NUM1 on LG4 and Mt-NUM2 on LG8. The maps of M. truncatula based on simple sequence repeat

markers derived from ESTs and sequenced BAC cloneslocation of the Mt-NUM1 locus on LG4 correspondedto the locus mapped by CAPS. By contrast, the hybridiza- are currently underway.

Page 35: A Sequence-Based Genetic Map of Medicago truncatula and

1497M. truncatula Genetic Map

genome by means of FISH (Kulikova et al. 2001; O.Kulikova and T. Bisseling, personal communication).These results indicate a high level of correspondencebetween euchromatin and transcribed genes, reminis-cent of the relationship observed in A. thaliana where96% of the transcribed genes are contained withineuchromatic regions of the genome (Arabidopsis Ge-nome Initiative 2000). Consistent with this hypothesis,the average predicted gene density for the 92 geneticallymapped and sequenced, EST-containing BAC clonesis �1 gene/6 kbp (B. A. Roe and D. Kim, personalcommunication). Thus, the correspondence of se-quenced BAC clones with genetically mapped loci ex-pands the total number of ESTs and predicted geneson the genetic map to �1800. The accession numbersfor these sequenced BAC clones are given in Table 1.

In addition to the mapping of ESTs or BAC clonesselected strictly on the basis of homology criteria, thegenetic positions of five phenotypic markers associatedwith nodulation, dmi1, dmi2, dmi3, sun, and skl, areshown in Figure 1. Map positions were determined byvirtue of the fact that the genetic markers developed inthis study were used to map the respective loci in F2

populations of mutant A17 � wild-type A20. With theexception of the skl locus (Penmetsa and Cook 1997),located on the long arm of chromosome 7, the maplocations of the other loci have been previously reported(Ane et al. 2002; Endre et al. 2002; Schnabel et al. 2003)and the information is included here for purposes ofintegration. Interestingly, recent evidence from physicalmap data and complete sequencing of a 500-kb BACcontig indicates that dmi1 is immediately adjacent to thetelomere (Ane et al. 2004), and thus this locus defines agenetic and physical terminus of this linkage group. Inaddition to genes implicated in nodulation based onphenotypic criteria, we also mapped several genes whoseFigure 2.—Segregation ratios for markers on linkageexpression patterns are correlated with nodule develop-groups (a) 2, (b) 4, and (c) 8. The primary feature of segraga-

tion distortions on linkage groups 4 and 8 is an overrepresenta- ment or function. Several of these genes, includingtion of genotype A20 homozygotes and a corresponding un- ENOD40 (Yang et al. 1993; Crespi et al. 1994), thederrepresentation of genotype A17 homozogotes. Values on Rhizobium-induced peroxidase (rip1; Cook et al. 1995),the horizontal axis correspond to the genetic position of mark-

and the leghemoglobin gene LB1 (Gallusci et al.ers in the respective Figure 1 linkage groups.1991), map to LG5, which also contains dmi2 (Endreet al. 2002) and the syntenic counterpart of the Sym2region of P. sativum (Gualtieri et al. 2002; Limpens et al.2003). Despite the apparent abundance of nodulation-Because the genetic markers used in this study are

primarily expressed sequences or BAC clones that con- associated genes on linkage group 5, several nodulationgenes (nodule expressed transcripts and phenotypicallytain predicted genes, their position in the genome can

be considered to provide a rough definition of the “gene mutant loci) are distributed elsewhere in the genome,including a cluster of ENOD8-like genes on linkagespace” of M. truncatula. On the basis of cytogenetic anal-

ysis (Kulikova et al. 2001), the structure of M. truncatula group 1 (Dickstein et al. 2002), ENOD16 on linkagegroup 8, a cluster of apyrase genes on linkage group 7chromosomes is apparently relatively simple, with con-

densed heterochromatic DNA in centromeric and peri- (Cohn et al. 2001), and sunn, skl, dmi1, and dmi3 onlinkage groups 4, 7, 2, and 8, respectively.centromeric islands, flanked by mostly euchromatic

arms. In the process of constructing the cytogenetic In addition to genes implicated in symbiosis, 100resistance gene analogs have been previously mappedmap for this species, 60 of the EST-containing BAC

clones genetically mapped in this study also have been to 67 separate loci (Zhu et al. 2002). The majority ofmarkers for toll/interleukin receptor (TIR) and non-mapped to euchromatic regions of the M. truncatula

Page 36: A Sequence-Based Genetic Map of Medicago truncatula and

1498 H.-K. Choi et al.

Figure 3.—Correlation ofcytogenetic and genetic mapsfor linkage groups 4 and 8 ofM. truncatula genotype A17. (aand b) FISH mapping of BACclones on chromosome 4. (c)Simultaneous hybridization withchromosome-specific probes(i.e., 11C13, 43B05, and 50-M17) distinguishes two pachy-tene chromosomes. (d and e)Mapping of BAC clones onchromosome 8. (f and g) Ideo-grams of pachytene chromo-some and genetic linkagegroups of M. truncatula. BACclones are positioned on theideogram according to theirrelative positions in relationto centromeres, which aremarked as “Cen” in the individ-ual panels. For b and e, the in-dividual chromosomes weredigitally separated with image-processing software.

TIR NBS-LRR resistance gene analogs are clustered, observed, with A20 homozygotes significantly overrepre-sented in the populations (Figure 2, b and c). On thewith major clusters identified on the short arm of link-

age group 3 and throughout linkage group 6. Interest- basis of a combination of comparative genetic mappingin M. sativa and analysis of an alternate mapping popula-ingly, in the absence of the resistance gene analog mark-

ers, linkage group 6 contains only 10 genetic markers tion of M. truncatula (Thoquet et al. 2002), we wereable to resolve the genetic relationships between theseand fails to coalesce as a distinct linkage group. Thus,

linkage group 6 is threefold underrepresented in the two linkage groups. FISH analysis with geneticallymapped BAC clones was used to verify the predictednumber of non-RGA genes compared to the seven other

linkage groups, while containing 33% of all mapped marker order and linkage group assignments, whilecolor mapping was used to determine that the recombi-RGA loci. Chromosome 6 is also unusual in the respect

that it is the shortest and most heterochromatic of all nation map was consistent with the interpretations fromthese analyses. The value of 32% distorted marker segre-M. truncatula chromosomes (Kulikova et al. 2001).

The genetic map of M. truncatula was difficult to inter- gation observed in this study is similar to the 25% dis-torted segregation reported by Thoquet et al. (2002).pret for linkage groups 4 and 8. In each of these cases

significant deviation from Mendelian segregation was Moreover, in both studies a cluster of markers with dis-

Page 37: A Sequence-Based Genetic Map of Medicago truncatula and

1499M. truncatula Genetic Map

Figure 4.—Comparativegenetic map of M. truncatulaand M. sativa. The relativeseparation of genetic mark-ers on each linkage groupis correlated with geneticdistance, although centi-morgan scales have beenomitted for simplicity. Ge-netic markers mapped be-tween the two genomes aredesignated by boldface type.

torted segregation was observed on chromosome 3, in- nome of M. truncatula. We anticipate that an EST-basedgenetic map will also have utility for the many map-basedcluding the common marker locus “GSb,” suggesting a

possible contribution from the common parental back- cloning projects currently underway in M. truncatula.Finally, a sequence-based genetic map of M. truncatulaground of genotype A17. By contrast, the distorted

marker segregation for linkage groups 4 and 8 observed should have utility for comparison of genome structurebetween legume species and thus for the characteriza-in this study was not evident in the Thoquet et al. (2002)

analysis, suggesting a possible incompatibility between tion of traits with potential application to agriculturein legumes. We have documented a high degree ofA17 and A20 alleles in these genome regions. In the case

of M. sativa, which is an outcrossing species, segregation conservation in gene content and order between thegenomes of diploid M. sativa (alfalfa) and M. truncatula,distortion is typified by an overabundance of the hetero-

zygous genotype (Kalo et al. 2000). This contrasts with suggesting that the current genetic map and ongoinggenome sequencing of M. truncatula will have significantthe overabundance of paternal (homozygous A20 or

A17) genotypes, described in this study. utility for defining genome organization in cultivatedalfalfa (Brouwer and Osborn 1999). Moreover, we an-The ultimate goal of constructing this genetic map

was to describe structural/genetic features of the ge- ticipate that many of the gene-based genetic markers

Page 38: A Sequence-Based Genetic Map of Medicago truncatula and

1500 H.-K. Choi et al.

Figure 4.—Continued.

of Medicago truncatula involved in Nod factor transduction, nodu-developed in this study will have applications for com-lation and mycorrhization. Mol. Plant-Microbe Interact. 15: 1108–parative mapping to other related legume species. 1118.

Ane, J.-M., G. B. Kiss, B. K. Riely, R. V. Penmetsa, G. E. D. OldroydThis research was funded by National Science Foundation Plantet al., 2004 Medicago truncatula DMI1 required for bacterial andGenome Award DBI-0196179 to D.R.C. and D.K. and by grants tofungal symbioses in legumes. Science 303: 1364–1367.G.B.K. from the European Union (QLG2-CT-2000-30676) and the

Arabidopsis Genome Initiative, 2000 Analysis of the genome se-Hungarian National Research and Development Program (OMquence of the flowering plant Arabidopsis thaliana. Nature 408:

4/023/2001, T038211, and OMFD-00229/2002). 796–815.Barker, D. G., S. Bianchi, F. London, Y. Dattee, G. Duc et al., 1990

Medicago truncatula, a model plant for studying the moleculargenetics of the Rhizobium-legume symbiosis. Plant Mol. Biol. 8:LITERATURE CITED 40–49.

Ben Amor, B., S. L. Shaw, G. E. D. Oldroyd, F. Maillet, R. V.Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman,Penmetsa et al., 2003 The NFP locus of Medicago truncatula1990 Basic local alignment search tool. J. Mol. Biol. 215: 403–controls an early step of Nod factor signal transduction upstream410.of a rapid calcium flux and root hair deformation. Plant J. 34:Ane, J-M., J. Levy, P. Thoquet, O. Kulikova, F. de Billy et al., 2002

Genetic and cytogenetic mapping of dmi1, dmi2 and dmi3 genes 495–506.

Page 39: A Sequence-Based Genetic Map of Medicago truncatula and

1501M. truncatula Genetic Map

Bonnin, I., T. Huguet, M. Gherardi, J. M. Prosperi and I. Olivieri, Construction of an improved linkage map of diploid alfalfa (Med-icago sativa). Theor. Appl. Genet. 100: 641–657.1996a High level of polymorphism and spatial structure in a

selfing plant species, Medicago truncatula, (Leguminosae), shown Kamate, K., I. D. Rodriguez-Llorente, M. Scholte, P. Durand, P.Ratet et al., 2000 Transformation of floral organs with GFP inusing RAPD markers. Am. J. Bot. 83: 843–855.

Bonnin, I., J. M. Prosperi and I. Olivieri, 1996b Genetic markers Medicago truncatula. Plant Cell Rep. 19: 647–653.Kiss, G. B., G. Csanadi, K. Kalman, P. Kalo and L. Okresz, 1993and quantitative genetic variation in Medicago truncatula (Legum-

inosae): a comparative analysis of population structure. Genetics Construction of a basic genetic map for alfalfa using RFLP, RAPD,isozyme and morphological markers. Mol. Gen. Genet. 238: 129–143: 1795–1805.

Brouwer, D. J., and T. C. Osborn, 1999 A molecular marker linkage 139.Kiss, G. B., A. Kereszt, P. Kiss and G. Endre, 1998 Colormapping:map of tetraploid alfalfa (Medicago sativa L.). Theor. Appl. Genet.

99: 1194–1200. a non-mathematical procedure for genetic mapping. Acta Biol.Hung. 49: 125–142.Cannon, S. B., H. Y. Zhu, A. Baumgarten, R. Spangler, G. May et

al., 2002 Diversity, distribution and ancient taxonomic relation- Konieczny, A., and F. Ausubel, 1993 A procedure for mappingArabidopsis mutations using co-dominant ecotype-specific PCR-ships within the TIR and non-TIR NBS-LRR resistance gene sub-

families. J. Mol. Evol. 54: 548–562. based markers. Plant J. 4: 403–410.Kulikova, O., G. Gualtieri, R. Geurts, D. Kim, D. Cook et al., 2001Catoira, R., C. Galera, F. de Billy, E. P. Journet, F. Maillet

et al., 2000 Identification of four genes of Medicago truncatula Integration of the FISH pachytene and genetic maps of Medicagotruncatula. Plant J. 27: 49–58.controlling steps in Nod factor transduction. Plant Cell 12: 1647–

1665. Lander, E. S., P. Green, J. Abrahamson, A. Barlow, M. J. Dalyet al., 1987 MAPMAKER: an interactive computer package forCatoira, R., A. C. J. Timmer, F. Maillet, C. Galear, R. V. Penmetsa

et al., 2001 The HCL gene of Medicago truncatula controls Rhizo- constructing primary genetic linkage maps of experimental andnatural populations. Genomics 1: 174–181.bium-induced root hair curling. Development 128: 1507–1518.

Cerbah, M., Z. Kevei, S. Siljak-Yakovlev, E. Kondorosi, A. Kondor- Lesins, K. A., and I. Lesins, 1979 Genus Medicago (Leguminoase): ATaxogenetic Study. Dr. W. Junk bv Publishers, The Hague.osi et al., 1999 FISH chromosome mapping allowing karyotype

analysis in Medicago truncatula lines jemalong J5 and R-108–1. Limpens, E., C. Franken, P. Smit, J. Willemse, T. Bisseling et al.,2003 LysM domain receptor kinases regulating rhizobial NodMol. Plant-Microbe Interact. 12: 947–950.

Cohn, J. R., T. Uhm, S. Ramu, Y. Nam, D. Kim et al., 2001 Differential factor-induced infection. Science 302: 630–633.Lincoln, S., M. Daly and E. Lander, 1992 Constructing geneticregulation of a family of apyrase genes from Medicago truncatula.

Plant Physiol. 125: 2104–2119. maps with MAPMAKER/EXP 3.0. Whitehead Institute TechnicalReport, Ed. 3. Whitehead Institute, Cambridge, MA.Cook, D. R., 1999 Medicago truncatula—a model in the making! Curr.

Opin. Plant Biol. 2: 301–304. Liu, J., L. A. Blaylock, G. Endre, J. Cho, C. D. Town et al., 2003Transcript profiling coupled with spatial expression analyses re-Cook, D., D. Dreyer, D. Bonnet, M. Howell, E. Nony et al., 1995

Transient induction of a peroxidase gene in Medicago truncatula veals genes involved in distinct developmental stages of an arbus-cular mycorrhizal symbiosis. Plant Cell 15: 2106–2123.precedes infection by Rhizobium meliloti. Plant Cell 7: 43–55.

Crespi, M. D., E. Jurkevitch, M. Poiret, Y. d’Aubenton-Carafa, Mathesius, U., S. Mulders, G. Mengsheng, M. Teplitski, G. Cae-tano-Anolles et al., 2003 Extensive and specific response of aG. Petrovics et al., 1994 Enod40, a gene expressed during

nodule organogenesis, codes for a non-translatable RNA involved eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad.Sci. USA 100: 1444–1449.in plant growth. EMBO J. 13: 5099–5112.

Davidson, B. R., and H. F. Davidson, 1993 Legumes: The Australian McConn, M. M., and P. A. Nakata, 2002 Calcium oxalate crystalmorphology mutants from Medicago truncatula. Planta 215: 380–Experience. Research Studies Press, Taunton, UK.

Dickstein, R., X. Hu, J. Yang, L. Ba, L. Coque et al., 2002 Differen- 386.Michaels, S. D., and R. M. Amasino, 1998 A robust method fortial expression of tandemly duplicated ENOD8 genes in Medicago

truncatula. Plant Sci. 163: 333–343. detecting single-nucleotide changes as polymorphic markers byPCR. Plant J. 14: 381–385.Ellis, D. R., A. F. Lopez-Millan and M. A. Grusak, 2003 Metal

physiology and accumulation in a Medicago truncatula mutant Nakata, P. A., and M. M. McConn, 2000 Isolation of Medicago trunca-tula mutants defective in calcium oxalate crystal formation. Plantexhibiting an elevated requirement for zinc. New Phytol. 158:

207–218. Physiol. 124: 1097–1104.Nam, Y. W., R. V. Penmetsa, G. Endre, P. Uribe, D. Kim et al.,Endre, G., A. Kereszt, Z. Kevei, S. Mihacea, P. Kalo et al., 2002

A receptor kinase gene regulating symbiotic nodule develop- 1999 Construction of a bacterial artificial chromosome libraryof Medicago truncatula and identification of clones containingment. Nature 417: 962–966.

Fedorova, M., J. van de Mortel, P. A. Matsumoto, J. Cho, C. D. ethylene-response gene. Theor. Appl. Genet. 98: 638–646.Neff, M. M., J. D. Neff, J. Chory and A. E. Pepper, 1998 dCAPS,Town et al., 2002 Genome-wide identification of nodule-specific

transcripts in the model legume Medicago truncatula. Plant Physiol. a simple technique for the genetic analysis of single nucleotidepolymorphisms: experimental applications in Arabidopsis thaliana130: 519–537.

Fransz, P., S. Armstrong, C. Alonso-Blanco, T. C. Fischer, R. A. genetics. Plant J. 14: 387–392.Penmetsa, R. V., and D. Cook, 1997 A legume ethylene-insensitiveTorrez-Ruiz et al., 1998 Cytogenetics for the model system

Arabidopsis thaliana. Plant J. 13: 867–876. mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.Gallusci, P., A. Dedieu, E. P. Journet, T. Huguet and D. G. Barker,

1991 Synchronous expression of leghaemoglobin genes in Med- Penmetsa, R. V., and D. R. Cook, 2000 Production and characteriza-tion of diverse developmental mutants in Medicago truncatula.icago truncatula during nitrogen-fixing root nodule development

and response to exogenously supplied nitrate. Plant Mol. Biol. Plant Physiol. 123: 1387–1397.Schnabel, E., O. Kulikova, R. V. Penmetsa, T. Bisseling, D. R. Cook17: 335–349.

Gualtieri, G., O. Kulikova, E. Limpens, D. J. Kim, D. R. Cook et et al., 2003 An integrated physical, genetic and cytogenetic maparound the sunn locus of Medicago truncatula. Genome 46: 665–al., 2002 Microsynteny between pea and Medicago truncatula in

the SYM2 region. Plant Mol. Biol. 50: 225–235. 672.Small, E., and M. Jomphe, 1988 A synopsis of the genus MedicagoHarrison, M. J., G. R. Dewbre and J. Liu, 2002 A phosphate trans-

porter from Medicago truncatula involved in the acquisition of (Leguminosae). Can. J. Bot. 67: 3260–3294.Thoquet, P., M. Gherardi, E. P. Journet, A. Kereszt, J. M. Ane et al.,phosphate released by arbuscular mycorrhizal fungi. Plant Cell

14: 2413–2429. 2002 The molecular genetic linkage map of the model legumeMedicago truncatula: an essential tool for comparative legumeHauser, M., F. Adhami, M. Dorner, E. Fuchs and J. Glossl, 1998

Generation of co-dominant PCR-based markers by duplex analysis genomics and the isolation of agronomically important genes.BMC Plant Biol. 2: 1 (http://www.biomedcentral.com/1471-on high resolution gels. Plant J. 16: 117–125.

Heslop-Harrison, J. S., G. E. Harrison and I. J. Leitch, 1992 Re- 2229/2/1).Trieu, A. T., and M. J. Harrison, 1996 Rapid transformation ofprobing of DNA: DNA in situ hybridization preparations. Trends

Genet. 8: 372–373. Medicago truncatula: regeneration via shoot organogenesis. PlantCell Rep. 16: 6–11.Kalo, P., G. Endre, L. Zimanyi, G. Csanadi and G. B. Kiss, 2000

Page 40: A Sequence-Based Genetic Map of Medicago truncatula and

1502 H.-K. Choi et al.

Trinh, T. H., P. Ratet, E. Kondorosi, P. Durand, K. Kamate et al., and genomic organization of the TIR and non-TIR NBS-LRR1998 Rapid and efficient transformation of diploid Medicago resistance gene family in Medicago truncatula. Mol. Plant-Microbetruncatula and Medicago sativa ssp. falcata in vitro lines improved Interact. 15: 529–539.in somatic embryogenesis. Plant Cell Rep. 17: 345–355. Zhu, H. Y., D. J. Kim, J. M. Baek, H. K. Choi, L. Ellis et al., 2003

Yang, W. C., P. Katinakis, P. Hendriks, A. Smolders, F. de Vries Syntenic relationships between Medicago truncatula and Arabi-et al., 1993 Characterization of GmENOD40, a gene showing dopsis thaliana reveal extensive divergence of genome organiza-novel patterns of cell-specific expression during soybean nodule tion. Plant Physiol. 131: 1018–1026.development. Plant J. 3: 573–585.

Zhu, H. Y., S. Cannon, N. D. Young and D. R. Cook, 2002 Phylogeny Communicating editor: A. H. Paterson