a real paradox

2
A Real Paradox Darren Kelley Abstract It is conjectured that the density of the positive Real numbers is nonuniform. The conjecture is motivated by a new paradox involving the incompatibility of three new theorems about the positive Real number line.. Consider the following three theorems about the positive Real numbers. (In what follows, for expressive simplicity, I refer to the positive Real numbers simply as “the Reals” or “Reals”. Ignoring, that is, the negative Real numbers with clearly no negative consequences). Theorem I: The set of Reals (0, 1] and the set of Reals [1, ∞) are onetoone. That is, for every Real number in the set (0,1] there is a Real number in the set [1, ∞) and for every Real number in the set [1, ∞) there is a Real number in the set (0, 1]. Proof: For every Real x in the set of Reals in (0, 1] there corresponds one Real in [1, ∞), namely, 1/x. For every Real x in set [1, ∞) there is one Real in (0, 1], namely, 1/x. Theorem II: The number of Reals in [0, 1] is the same as the number of Reals in [1,2]. That is, For every Real x in (0, 1] there is one Real in [1, 2] and for every Real x in [1,2] there is a one real in [0,1]. Proof: For every Real x in the set of Reals in (0, 1] there corresponds one Real in [1, 2], namely, 1 + x. For every Real x in the set of Reals [1,2] there is a Real y in the set of Reals in (0, 1], namely that y such that 2 x = y. Theorem III: The number of Reals in [1,2] is less than the number of Reals in [1, ∞) Proof: There is a number y in [1, ∞) that is not in [1, 2] namely, 3. Notice that theorems IIII are incompatible. In simple terms, theorem I says that the number of Reals in (0, 1] is the same as the number of Reals in [1, ∞). Theorem II says that the number of Reals in the (0, 1] is the same as the number of Reals in [1, 2]. And theorem III says that the number of Reals in [1, 2] is less than the number of Reals in [1, ∞). But the number of Reals in (0, 1] can’t be the same as the number of Reals in set [1,2] if the set of Reals in [1,2] is less than the number of Reals in [1, ∞). And the number of Reals in [1, ∞) can’t be greater than the number of Reals in [1,2] if the number of Reals in [1, ∞) is the same as the set of Reals in (0, 1]. That there is a paradox here is due in part to the simplicity of the alleged proofs of theorems IIII. In other words, more sophistication, less paradox. And paradox is the point. Taking seriously the reasoning that has led to the alleged paradox it remains to decide which of the theorems is false. Consider that I is the most controversial of the three theorems. That’s because II and III are both plausibly compatible and I is clearly incompatible with both.The reasoning is as follows.

Upload: darren

Post on 19-Dec-2015

4 views

Category:

Documents


1 download

DESCRIPTION

It is conjectured that the density of the positive Real numbers is non-uniform. The conjecture is motivated by a new paradox involving the incompatibility of three new theorems about the positive Real number line.

TRANSCRIPT

Page 1: A Real Paradox

A Real Paradox Darren Kelley 

  

Abstract  

It is conjectured that the density of the positive Real numbers is non­uniform. The conjecture is motivated by a new paradox involving the incompatibility of three new theorems about the positive Real number line.. 

  Consider the following three theorems about the positive Real numbers. (In what follows, for expressive simplicity, I refer to the positive Real numbers simply as “the Reals” or “Reals”. Ignoring, that is, the negative Real numbers with clearly no negative consequences). 

  Theorem I: The set of Reals (0, 1] and the set of Reals [1, ∞) are one­to­one. That is, for every Real number in the set (0,1] there is a Real number in the set [1, ∞) and for every Real number in the set [1, ∞) there is a Real number in the set (0, 1].   Proof: For every Real x in the set of Reals in (0, 1] there corresponds one Real in [1, ∞), namely, 1/x. For every Real x in set [1, ∞) there is one Real in (0, 1], namely, 1/x.  Theorem II: The number of Reals in [0, 1] is the same as the number of Reals in [1,2]. That is, For every Real x in (0, 1] there is one Real in [1, 2] and for every Real x in [1,2] there is a one real in [0,1].  Proof: For every Real x in the set of Reals in (0, 1] there corresponds one Real in [1, 2], namely, 1 + x. For every Real x in the set of Reals [1,2] there is a Real y in the set of Reals in (0, 1], namely that y such that 2 ­ x = y.  Theorem III: The number of Reals in [1,2] is less than the number of Reals in [1, ∞)  Proof: There is a number y in [1, ∞) that is not in [1, 2] namely, 3.  Notice that theorems I­III are incompatible. In simple terms, theorem I says that the number of Reals in (0, 1] is the same as the number of Reals in [1, ∞). Theorem II says that the number of Reals in the (0, 1] is the same as the number of Reals in [1, 2]. And theorem III says that the number of Reals in [1, 2] is less than the number of Reals in [1, ∞). But the number of Reals in (0, 1] can’t be the same as the number of Reals in set [1,2] if the set of Reals in [1,2] is less than the number of Reals in [1, ∞). And the number of Reals in [1, ∞) can’t be greater than the number of Reals in [1,2] if the number of Reals in [1, ∞) is the same as the set of Reals in (0, 1].   That there is a paradox here is due in part to the simplicity of the alleged proofs of theorems I­III. In other words, more sophistication, less paradox. And paradox is the point.  Taking seriously the reasoning that has led to the alleged paradox it remains to decide which of the theorems is false. Consider that I is the most controversial of the three theorems. That’s because II and III are both plausibly compatible and I is clearly incompatible with both.The reasoning is as follows. 

Page 2: A Real Paradox

 Uniform Density Conjecture (UDC): The density of the Real numbers is uniform. That is, for any two sets of Reals (a,b) and (c,d) if d ­ c = b ­ a then the number of Reals in (a,b) is the same as the number of Reals in (c,d). And for any two sets of Reals (a,b) and (c,d), if d ­ c > b ­ a then there are more Reals in (c,d) than in (a, b).  I take UDC to be uncontroversial.  UDC is clearly incompatible with theorem I. That’s because theorem I says the number of Reals in (0, 1] is the same as the number of Reals in [1, ∞). Therefore, by UDC, the density of Reals in (0, 1] is greater than the density of Reals in [1, ∞) (and so any arbitrarily chosen finite subset thereof).  UDC is clearly compatible with theorem III.  UDC is unclearly compatible with theorem II. If we consider the bounds of (0, 1] to be [0, 1] then it’s clear that UDC is compatible with theorem II. that’s because 1 ­ 0 = 1 and 2 ­ 1 = 1 and so, by UDC, they have the same number of numbers. Which is what theorem II says. However, following convention, the difference in the bounds of (0, 1] is 1 ­ ε where ε << 1 and ε > 0. Therefore, because 2 ­ 1 > 1 ­ ε, the density of the Reals in (0, 1] is greater than the density of the Reals in [1, 2], contrary to UDC.  All this goes toward reinforcing the alleged paradox. But none of it goes very far toward resolving it.  As it is my intent to merely motivate the paradox I’ll conclude this paper with a resolving conjecture.  I claim that theorem I is true. I claim that UDC is false. Therefore,, I conjecture the following:  Non­Uniform Density Conjecture (NDC): the density of the Real numbers is not uniform. Instead, the density of the real numbers decreases as a function of x such that the relative density of the real numbers in (0, ∞] is given by the expression 1/x.