a paradigm in nanocellulose materials

Upload: otavio-augusto-titton-dias

Post on 06-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    1/25

    A Paradigm in Nanocellulose Materials ‐ From nanofibers to nanostructured fibers  ‐

    Hiroyuki Yano 

    Research Institutes for Sustainable Humanosphere,

    Kyoto University 

    NSCF

    Nano-Structured Cellulose Fibers

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    2/25

    Close‐up viewNSCF

    Nano‐Structured Cellulose Fibers

    150μm

    Dissolving pulp ( 100)

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    3/25

    Dissolving pulp 2,000

    10μm

    Dissolving pulp 30,000

    500nm

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    4/25

    $0.6-0.8/kg

    $20-100/kg

    $0.1-0.2/kg

    The advantage of  pulp: NSCF 

    over  CNC , CNF and BC is 

    “cost” 

    A Paradigm in Nanocellulose Materials ‐ From nanofibers to nanostructured fibers  ‐

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    5/25

    Optically transparent nanocellulose

    A component less than one‐tenth the size of  the 

    optical wavelength can eliminate scattering

    Mechanical Reinforcement of  

    Transparent Plastic

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    6/25

    Cell Wall 

    Structure

    Cell Structure

    Nano fibers and Matrix

    Hierarchical Structure of  Wood

    10‐50μm

    10‐20nmMicrofibril

    bundles

    Cellulose Nanofibers

    Hemicellulose

    Lignin

    Nano‐Structured Cellulose Fibers

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    7/25

    Fibrillation by a Grinder 

    Never- dried pulp

    Cellulose nanofibers

    isolated from wood

    K. Abe, et al.,

     Biomacromolecules,

    2007

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    8/25

    1% Never-dried Pulp SlurryGrinder treatment

    Vacuuming filtration

    Acrylic Resin impregnationNanocomposites

    Fiber content::5-90 wt%

    UV cure

    Preparation of  Cellulose Nanofiber Composites

    Semi-crystalline extended chains

    Tensile strength:3GPa→ aramid fibers

    (Based on D.H. Page, F., El-Hosseiny J. Pulp Paper Sci. 1983)

    Young’s modulus:138-141GPa -200~+200  

    (T. Nishino et al. J. Polym Sci., Part B, 1995, Proc.2nd Intn'l Cellulose Conf,2007 )

    Thermal expansion coefficient 0.1 ppm/K→ quartz glass

    (T. Nishino, Personal communication, 2004)

    High specific surface area

    Cellulose Nanofibers:CNF 

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    9/25

    Wood Nanofiber  Bacterial Cellulose

    Density

    (g/cm3)

    Light

    Transmittance1

    (%)

    CTE2

    (10-6oC-1)

    E

    (GPa)

    Tensile

    Strength

    (MPa)

    Wood NanofiberComposites

    1.4 82.3 9.8 16.3 283

    Bacterial Cellulose

    Composites1.4 83.7 6.0 21.0 325

    1600nm 220 150S. Iwamoto, et al., Biomacromolecules (2007)

    Optically Transparent Cellulose Nanofiber 

    Reinforced Composite

    As strong as steel, as thermally stable as glass,

    and as bendable as plastics

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    10/25

    Passivation Film

    Organic Layers

    SiON Barrier Film

    Resin (Smoothing Layer)Wood Cellulose Nanocomposites

    Anode

    Cathode

    Device structure

    Luminescence of  an OLED 

    deposited on the wood nanofiber‐composite 

    Y. Okahisa, et  al., Comp. Sci. Technol . (2009)

    A demonstration of  

    production of  OLED by R2R process

    (GE, USA, Press Release, 13 March, 2008)

    A future FPD processing; Continuous “Roll to Roll”

    R2R process simple and inexpensive.

    R2R processing enables the

    continuous deposition of 

    functional materials such as

    semiconductor, transparentconductive films and gas barrier

    films on a roll of substrate.

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    11/25

    BCWood 

    nanofibers

    100%

    Wood 

    nanofibers

    Transparent 

    Crab

    Transparent materials developed in Kyoto Uni.

    Schematic presentation of  the exoskeleton structure of  

    crustacean shell.   (Ifuku, et al. Biomacro, 2009)

    Micro to Nano Structure of  Crab

    Chitin molecule

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    12/25

    Crab shell powder, Red king 

    Deproteinization by NaOH

    Demineralization (CaCO3) by HCl

    Pigment removal by ethanol

    I. Md. Shams and Yano, 2009

    SEM image of  chitin particle sheet surface

    1 mm x 1mm particle of  

    matrix removed crab shell 

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    13/25

    SEM image of  chitin particle sheet surface

    SEM image of  chitin particle sheet surface

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    14/25

    SEM image of  chitin particle sheet surface

    50mm

    1mm

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    15/25

    0

    20

    40

    60

    80

    100

    200 400 600 800

       L   i  g   h   t   T  r  a  n  s  m   i   t   t  a

      n  c  e ,

       %

    Wave length, nm

    Cellulose nanofibers composites

    Chitin powder composites

    Acrylic resin

    (a) Light transmittance of the chitin powder reinforced acrylic resin sheet

    (thickness 190 µm, Powder content: 22wt%) and cellulose nanofibers reinforced

    acrylic resin sheet (thickness 100 µm and Fiber content: 60wt%).

    Comparison of  Micro to Nano structures

    Crab Wood

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    16/25

    The transition from nanofibers

    to nanostructured fibers 

    • Encouraged by the transparent crab powder 

    sheet, we undertook the preparation of  

    optically transparent pulp-fiber composites.

    Slow

    Dewatering

    Speed

    Low

    ProductivityNanofibrillation

    of Pulp

    Difficulty in the production of  

    nanocellulose reinforced composites

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    17/25

    Optically transparent pulp sheet

    The pulp‐fiber sheet was acetylated, with care taken to

    maintain a never‐dried condition, and it was then dried

    and impregnated with acrylic resin.

    Drying

    CNF of  Never 

    Dried Pulp 

    Resin

    Impregnation

    Acetylation Acetyl 

    Group

    Acetylated Pulp Sheet

    Acetylated 

    dry pulpNever dried 

    Pulp Resin 

    impregnated

    acetylated

    dry pulp

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    18/25

    Acetylated 

    Pulp Sheet

    After resin impregnationBefore resin impregnation

    200um

    Effect of  surface fibrillation using beads mill

    200um

    Surface 

    fibrillation

    Pulp sheet

    Pulp, NBKP   Surface fibrillated pulp

    Surface fibrillated pulp sheet

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    19/25

    0

    10

    20

    30

    40

    50

    6070

    80

    90

    100

    300 500 700

         L     i    n    e    a    r     l     i    g     h    t    t    r    a    n    s    m     i    t    t    a    n    c    e

         %

    Wave length  nm

    Acrylic resin

    +Surface fibrillation

    Untreated Pulp

    Acetylation

    CNF + resin

    Changes in transparency of  acrylic resin impregnated paper

    After resin 

    impregnation

    Before resin 

    impregnation

    Thickness

    um

    Fiber 

    content

    %

    CTEppm/K

    Linear 

    Light 

    Transmit.

    %

    Total 

    Light 

    Transmit. 

    (%)

    Acetylated surface 

    fibrillated pulp60 18.0 11.9 70.0 88.1

    Acetylated pulp  100 26.0 8.30 54.1 87.8

    Untreated pulp   100 28.5 3.64 43.7 87.0

    Nanofiber1) 100   35‐40 12.1 82.0   90.0

    Resin1) ―   0 213.0 91.0   92.0

    CTE:20‐150

    1) Y. Okahisa, et al.,  Composite Science and Technology ,2009

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    20/25

    0.6-0.8US$/kg

    20-100US$/kg

    0.1-0.2US$/kg

    The advantage of  pulp: NSCF 

    over  CNC , CNF and BC is 

    “cost & performance” 

    Another example using NSCF

    Chemically modified surface fibrillated pulpor Chemically modified NSCF

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    21/25

    Development of high performance cellulose nanofibers reinforcedplastics for automotive parts

    Organizations: Kyoto University, Kyoto Municipal Institute, Oji Paper,

    Mitsubishi Chemical , DIC, Seiko PMCAdvisers: Toyota Autobody, Nissan, Suzuki, Denso, Nippon Paint , Panasonic, 

    Japan Steel Works

    NEDO Green Sustainable Chemical Process Programsfrom 2009 to 2013

    NEDO: New Energy and Industrial Technology

    Development Organization of Japan

    Project Title

    Sustainable ForestAutomotive Parts

    CO2 Fixation

    Twin screw extruder

    Chemically modified 

    dry pulp

    Chemically modified 

    CNF reinforced plastic

    Injection molding

    Samples

    PE, PP, PA pellets

    +Additives

    Nanofibrillation

    & Compounding

    Disintegration and well‐dispersion of  chemically modified 

    pulp in HDPE,PP and PA12 during melt compounding

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    22/25

    X‐ray tomography of  

    injection molded samples

    Modified Pulp   Modified CNF

    Unmodified Pulp   HDPE

    SEM Images

    10μm

    10μm

    Pulp (Surface fibrillated)

    Unmodified Pulp 

    after removal of  HDPE

    10μm

    Modified Pulp 

    after removal of  HDPE

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    23/25

    Stain (%)

         S    t    r    e    s    s     (    M    P    a     )

    HDPE + Modified Pulp

    E:3.3GPa, σ: 57MPa

    (Pulp or CNF 10%)

    Tensile properties

    HDPE + Unmodified Pulp

    E: 1.6GPa, σ: 38MPa

    Neat HDPE

    E: 0.8GPa, σ: 23MPa

    HDPE + Modified CNF

    E:3.5GPa, σ: 56MPa

       S   t  r  e  s  s   (   M   P  a   )

    Strain (%)

    Chemically modified CNF reinforced Bio‐HDPE

    Modified CNF/HDPE

    E: 2.4GPa, σ: 48MPa

    Neat Bio-HDPE

    E: 0.7GPa, σ: 21MPa

    Pulp 10%

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    24/25

       S   t  r  e  s  s   (   M   P  a   )

    Strain (%)

    Pulp 10%

    Chemically modified CNF reinforced PP

    Modified CNF/PPE: 1.7GPa, σ: 46MPa

    Neat PP

    E: 0.7GPa, σ: 26MPa

    0

    10

    20

    30

    40

    50

    60

    70

    0 5 10 15 20

       s    t   r   e   s   s    [    M    P   a    ]

    strain[%]

    0

    10

    20

    30

    40

    50

    60

    70

    0 5 10 15 20

       s    t   r   e   s   s    [    M    P   a    ]

    strain[%]

    0

    10

    20

    30

    40

    50

    60

    70

    0 5 10 15 20

       s    t   r   e   s   s    [    M    P   a    ]

    strain[%]

    Unmodified CNF/PA12E: 1.8GPa, σ: 42MPa

    Modified CNF/PA12

    E: 3.0GPa, σ: 63MPa

    Neat PA12

    E: 1.3GPa, σ: 35MPa

    Chemically modified CNF reinforced PA12

    Pulp 10%

  • 8/17/2019 A Paradigm in Nanocellulose Materials

    25/25

    49

    CTE (0‐100 )

    ppm/K

    PA12   92

    Modified CNF/PA12   24

    Aluminum alloy   23

    0

    100

    200

    300

    400

    500

    0 20 40 60 80 100

         (

         μ    m     )

    ( )

    PA12

    Modified CNF/PA12

    Polymer 

    Composites

    Chemically modified CNF reinforced PA12

    Temperature ( )

         D    e     f    o    r    m    a     t     i    o

        n     (      μ    m     )

    Thank  you very much for your kind attention!