a new vertical tail design procedure for general aviation and … · 2017-04-15 · research...

28
A New Vertical Tail Design Procedure for General Aviation and Turboprop Aircraft 11 th EWADE, Linkoping (Sweden), September 1718 2013 F. Nicolosi, P. Della Vecchia, D. Ciliberti University of Naples “Federico II” Dept. of Industrial Engineering Aerospace Division

Upload: others

Post on 30-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

A New Vertical Tail Design Procedure for  General Aviation 

and Turboprop Aircraft

11th EWADE, Linkoping (Sweden), September 17‐18 2013

F. Nicolosi, P. Della Vecchia, D. Ciliberti

University of Naples “Federico II”Dept. of Industrial Engineering

Aerospace Division

Dieter Scholz
EWADE 2013
http://ewade2013.AircraftDesign.org http://dx.doi.org/10.5281/zenodo.546414
Page 2: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Research motivationEffect of the horizontal stabilizer position

• Tail plane design needs an accurate determination of stability derivatives

• Semi‐empirical methods are based on obsolete geometries (NACA ‘30s to ‘50s)

• Discrepancies between methods USAF DATCOM and ESDU

• Develop a new reliable procedure for turboprop and commuter airplanes

ATR‐42

11th EWADE, Linkoping (Sweden), September 17‐18 2013 2

Page 3: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Research motivation (continued)

Geometry for the investigation on wing position in fuselage

Geometry for the investigation on tail‐body interaction

Actual geometriesATR‐42

USAF DATCOM and ESDU procedures for the evaluation of directional static stability derivatives are mainly based on these geometries! 

11th EWADE, Linkoping (Sweden), September 17‐18 2013 3

Page 4: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013

USAF DATCOM approach 

4

VT effective aspect ratio, sweep angle, Mach number

CYβ = − kv CL α v 1+dσdβ

ηvSv

S

Body effect

H‐tail effect

Sidewash (Wing effect)

TProp values (ATR‐72):Sv/S = 0.25,     A = 12

High wing = 1.04

Low wing = 1.44

Page 5: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Star‐CCM+CAD import Mesh generation

AnalysisPost‐process

11th EWADE, Linkoping (Sweden), September 17‐18 2013 5

Page 6: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Computing Grid

• University’s cluster grid• Up to 128 CPUs for a single run• Advice: 1 CPU every 250000 cells• CPU time (no mesh generation):

minutes for partial configurations hours for complete airplane

11th EWADE, Linkoping (Sweden), September 17‐18 2013 6

Page 7: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

NACA Test casesConvergence

11th EWADE, Linkoping (Sweden), September 17‐18 2013 7

Page 8: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Test cases – NACA 540

11th EWADE, Linkoping (Sweden), September 17‐18 2013 8

Page 9: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Test cases – NACA 730

11th EWADE, Linkoping (Sweden), September 17‐18 2013 9

Page 10: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Test cases – NACA 1049

11th EWADE, Linkoping (Sweden), September 17‐18 2013 10

Page 11: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Development of a new approach

11th EWADE, Linkoping (Sweden), September 17‐18 2013 11

Based on the aerodynamic interference effects highlighted by semi‐empirical methodologies, for a typical configuration, the same effects have been investigated through a parametric CFD analysis.

Analysis of:•Isolated vertical tail (effect of the VT aspect ratio and sweep angle)•VT‐body interference (effect of VT/body relative size)•Wing sidewash effects (difference between high and low wing position)•Horizontal tail effects (tailplane position, i.e. body‐mounted vs. T‐tail, and size)•Separate effects estimation for control derivative

Page 12: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013 12

Many configurations have been investigated with a modular model, to provide a new approach to preliminary tailplane design.

Page 13: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Vertical tail planform effects on lift curve slope

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Typical values

Av = 1.5

Λv = 30°

dCLα/dAv ≈ 1

Page 14: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Configurations involved in the fuselage-tail investigationThe effect of the fuselage is measured by the ratio between thevertical tail sideforce coefficients of the body-vertical configurationsand those of the same vertical tail planforms previously analysed.

divided by

bv

2r

xacmac

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Page 15: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Fuselage effect KF

11th EWADE, Linkoping (Sweden), September 17‐18 2013

USAF DATCOM

Typical values

Page 16: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

0

Configurations involved in the wing-body-tail investigation

Straight wings of different aspect ratio (6 to 16) in three fuselagepositions (high, mid and low) have been considered. Two vertical

tailplaneaspect ratio (1 and 2) are considered.

+1zwrf

−1divided by df

zw/rf > 0zw

rf

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Page 17: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Wing effect KW

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Primary effect (wing position)Influence on angle of sideslip and dynamic pressure at VT root

Secondary effect (wing AR)

Page 18: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Wing-body sidewash

A = 10Av = 1β = 5°Cross-wind direction →

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Page 19: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Horizontal tailplane effect

bv1

zh

bv10.5df

0.5cv

xcv

= +0.25xcv

= −0.25

1 straight horizontal tail6 spanwise positions3 chordwise positions3 vertical tail’s aspectratiosWing position (high/low) isnot important (verified)

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Configurations analysed

KH

Page 20: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Horizontal tailplane effect KH

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Page 21: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

T-tail configurationAv

1.01.52.0

CYv(BVH)0.02530.03940.0521

CYv(BV)0.01940.03220.0451

ratio1.301.221.15

11th EWADE, Linkoping (Sweden), September 17‐18 2013

T‐tail configuration

In this approach the increase of VT effectiveness for T‐tail configuration is much lower than USAF DATCOM prediction.

Page 22: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Directional control derivative

22

CYβ = − kv CL α v 1 +dσdβ

ηvSv

S

The aerodynamic interference effects due to fuselage and horizontal tail are considered to be the same for both derivatives (stability and control).

USAF DATCOM

Our approach:CYβv = f(KF,KW,KH)CYδr = f(Kδr)

divided by

δr = 10°

δr = 10°

Page 23: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Rudder effectInvestigation on rudder deflection’s effects

β = 0°δr = 10°

Page 24: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Vertical Tail Stability and ControlEvaluation of the vertical tail contribution to aircraft directionalstability and control. Developed with more than 200 CFDsimulations. Valid in subsonic incompressible flow at low angles ofincidence and sideslip.

where

CYβv

β

CYδr

δr

directional stability derivative,sideslip angle,directional control derivative,rudder’s deflection angle.

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Page 25: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

Directional stability contribution

The interference effects previously evaluated are now combined.

whereKF

KW

KH = 1 + KHs (KHp − 1)KHpKHs

CLαv = f (Av,Λv,M)

fuselage effect,wing effect,horizontal tailplane effect,horizontal tailplane position effect,horizontal tailplane size effect,Helmbold-Diederich formula.

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Directional stability

Page 26: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013

The new approach for directional control derivative

26

3D rudder effectiveness(estimated on the isolated vertical tail)

Body effect is the reduced to the half of that one previously investigated in sideslip

Page 27: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

11th EWADE, Linkoping (Sweden), September 17‐18 2013

Example of application

27

∆ from CFD

DIAS 5.0%USAF 34.0%ESDU 8.8%

CLα v 2.160rad− 1

KF 1.260KW 0.953KHp 1.139KHs 1.022KH 1.142KFKWKH 1.371CYβv DIAS 0.358rad− 1

CYβv USAF 0.249rad− 1

CYβv ESDU 0.410rad− 1

CYβv CFD 0.377rad− 1

Tecnam P2012

New meth

New meth

Page 28: A New Vertical Tail Design Procedure for General Aviation and … · 2017-04-15 · Research motivation (continued) Geometry for the investigation on wing position in fuselage Geometry

ConclusionA new procedure to evaluate the aerodynamic interference ofairplane’s components on the vertical tailplane has been proposed.It has been developed by solving Navier-Stokes equations in a fullyturbulent subsonic flow regime on more than 200 regionalturboprop aircraft configurations, with the aim to bring CFD intoaircraft preliminary design.

Features of the new procedure:•Based on actual turboprop aircraftgeometries•Low data scatter among configurations•Simplicity of the approach

Drawbacks:•Extendable to commuters or jetairplanes?•No engine, dihedral, wing sweep,flaps or propeller effects considered•To do: wind tunnel tests

11th EWADE, Linkoping (Sweden), September 17‐18 2013