a model for alloying in ferromagnetic metals (2)

12
CALPHADi”oZ. 2, No. 3, pp. 227-238. D Pergamon Press Limited, 1978. Printed in Great Britain. A MODEL FOR ALtOylNG EFFECTS tN P~RR~NAGN~TlC METALS Mats Hillert and Magnus Jar1 Division of Physical Metallurgy Royal institute of Technology S-100 44 STOCKHOLM 70 Sweden Abstract A mathematical representation of the magnetic specific heat, recently suggested by Inden, was applied to iron in an evaluation of the difference in Gibbs energy between the fee and bee states. The resulting equations were then used for a treatment of alloying effects in ferromag- netic metals due TV the change of the Curie temperature. The result was approximated in order to conform to the subregular solution model. A strong asymmetric term was obtained. Introduction It was pointed out by Zener (1) long ago that the effect of an alloying element on the magnetic state of a ferromagnetic base metal should result in a strong thermodynamic effect, This effect has recently attracted considerable attention (2-4) but the results t&ke complicated analytical forms. An attempt will now be made to develop a treatment in a simpler form. In par- ticular, an attempt will be made to put the result into the regular or subregular type of re- presentation. The work will be based upon a type of description of the thermodynamics of a fer- romagnetic metal,recentfy developed by lnden (3) and it wiI1 be applied to iron and iron base at ioys. The regular and subregular solutian models are useful tools for approximate descriptions of the thermodynamic properties of binary alloys. They are particularly valuable in work con- cerned with the coupling between thermodynamics and phase equilibria and they have found exten- sive use in that field. Description of Gibbs energy for iron Provided that the temperature is much higher than the Debye temperature, it is possible to use a polynomial for the description of the difference in Gibbs energy between two possible state5 of a pure element, AG = A + BT 4 CTlnJ + DT2 flf The ferromagnetic metals constitute an important exception and it has been customary to present the result of evaluations of Gibbs energy for iron in Tables (5-11). Kaufman and Nesor (12) who used an expression like eq. 1 had to give different parameter values above and below the Curie temperature. lnden (3) has recently shown that the following types of expressions can be used for a rather accurate description of the magnetic contribution to the specific heat of a ferromagnetic metal A _1 cA ym! = KzRln -!.%? l-2 for T < 1 CrnB 5 A = K;Rln y for T > 1 7 -1 The quantity T is defined as T/TC where TC is the Curie temperature. Ki and Kt are two constants

Upload: manishtub

Post on 17-Aug-2015

223 views

Category:

Documents


1 download

DESCRIPTION

ferromagnetic

TRANSCRIPT

CALPHADioZ.2,No.3,pp.227-238. DPergamon Press Limited, 1978. Printed in Great Britain. AMODEL FORALtOylNGEFFECTStNP~RR~NAGN~TlCMETALS MatsHillertandMagnusJar1 DivisionofPhysicalMetallurgy RoyalinstituteofTechnology S-10044STOCKHOLM 70 Sweden Abstract Amathematicalrepresentationofthemagneticspecificheat,recentlysuggestedbyInden, wasappliedtoironinanevaluationofthedifferenceinGibbsenergybetweenthefeeandbee states.Theresultingequationswerethenusedforatreatmentofalloyingeffectsinferromag- neticmetalsdueTVthechangeoftheCurietemperature.Theresultwasapproximatedinorder toconformtothesubregularsolutionmodel.Astrongasymmetrictermwasobtained. Introduction ItwaspointedoutbyZener(1)longagothattheeffectofanalloyingelementonthe magneticstateofaferromagneticbasemetalshouldresultinastrongthermodynamiceffect, Thiseffecthasrecentlyattractedconsiderableattention(2-4)buttheresultst&kecomplicated analyticalforms.Anattemptwillnowbemadetodevelopatreatmentinasimplerform.Inpar- ticular,anattemptwillbemadetoputtheresultintotheregularorsubregulartypeofre- presentation.Theworkwillbebaseduponatypeofdescriptionofthethermodynamicsofafer- romagneticmetal,recentfydevelopedbylnden(3)anditwiI1beappliedtoironandironbase atioys. Theregularandsubregularsolutianmodelsareusefultoolsforapproximatedescriptions ofthethermodynamicpropertiesofbinaryalloys.Theyareparticularlyvaluableinworkcon- cernedwiththecouplingbetweenthermodynamicsandphaseequilibriaandtheyhavefoundexten- siveuseinthatfield. DescriptionofGibbsenergyforiron ProvidedthatthetemperatureismuchhigherthantheDebyetemperature,iti spossibleto useapolynomialforthedescriptionofthedifferenceinGibbsenergybetweentwopossible state5ofapureelement, AG=A+BT4CTlnJ+DT2 flf Theferromagneticmetalsconstituteanimportantexceptionandithasbeencustomarytopresent theresultofevaluationsofGibbsenergyforironinTables(5-11).KaufmanandNesor(12)who usedanexpressionlikeeq.1hadtogivedifferentparametervaluesaboveandbelowtheCurie temperature. lnden(3)hasrecentlyshownthatthefollowingtypesofexpressionscanbeusedfora ratheraccuratedescriptionofthemagneticcontributiontothespecificheatofaferromagnetic metalA _1 cA ym! =KzRln-!.%? l -2 forT1 7-1 ThequantityTisdefinedasT/TCwhereTCistheCurietemperature. KiandKtaretwoconstants 228M. Hillert and M. Jar1 fortheelementAinitsferromagnetic(9)andparamagnetic(8)state. Byintegrationofthespecificheatlndenderivedexpressionsforthemagneticcontribu- tiontotheGibbsenergy.Thefinalexpressionsareverycomplicatedandinpartbasedupona powerseriesexpansion.inordertoarriveatasimplerexpressionitispossibletoexpandthe expressionsgivenbyeq.2and3inapowerseriesandtotruncatetheseriesbeforeintegra- tion.Theusefulnessofsuchaprocedurewillbeexploredinthepresentreport.Thefollowing approximationsofeqs.2and3willbeused. 2\A =2KaR(~3+,g/3+~15/5) m8 CA =2K;R(T-5+~-5/3+~-25/5) forT1 (4) (5) Theyapproximateeqs.2and3verywellexceptforatemperaturerangeveryclosetoT.Eqs.2 and3gotoinfinityatTwhichisinagreementwit 4and5approachfinitevglues,46/15RKaand $manytheoriesoforderingpheno &na.Eqs. tivealternativefromthispointofviea, 46/15RK fi. respectively,andmaythusbeanattrac- also.TheerghtatT,canbeadjustedbykeeping moretermsbutsomeoftheadvantagewitheqs.4and lndenevaluatedthenumericalvaluesofKa andK i? wi11beTestifmanytel;msareretained. KFe=0.714.Accordingtohisprocedureeqs.4affd5yifildthefollowingresult. forbeeironfindingKFe=0.554and T cCM m8 B;(=)-G;(B)=6$dT+7$dT=gR(K;+0.6K;). TC $(=) -H~~TC)=7mB TC cAdT=~~CK~ H,m(T,) -H;(D)=ILcrmdT=GRTCK; 0A (6) (7) (8) LetfbethefractionofthetotalmagneticenthalpywhichisabsorbedabovetheCurietempera- ture.Eqs.7and8thenyield, (9) Whenanalyzingthespecificheatdataforbeeiron,indenfoundf=O.4.Forfeemetalshefound f=O.28.Hesuggestedthatthefvaluedependsuponthestructureandproposedthat0.4could beusedforallbeemetalsand0.28forallfeemetals. Thetotalmagneticentropyisoftenexpressedbythefollowingexpressionwhere8,isthe meanatomicmomentexpressedinBohrmagnetons(9), q-4-St(O)=Rln(BA+1)(0) Combinationwitheq.6yields K;+0,6KB - 675 A5ii8 ln(OBA + If Bycombiningthiswitheq.9andusingthevaluef=O.4weobtainforbeemetals, Kfi = n(OBA+1) A 518. =0.64t71n(BA+1) 1125 (11 (12) K;=o.g80~(~AForbeeironthevalue f=O.28wouldyield Ki=0.426Bn(BA K;=.o46gn(BA +1)(3) of0BA=2.22yieldsKE=1.073andKi=O.7504.Forfeemetalsthevalue +1)(14) +1)(15) WhenevaluatingthemagneticcontributiontoGibbsenorgyweshalldefinethisquantityas zeroatTd.FortemperaturesabovetheCurietemperaturethefollowingexpressionisobtained IF A =*K;RTC[/10r4+[35T+/YOT241(17) BycontinuingtheintegrationbelowTConeabtainsthefolIowingexpressionfortheferromagne- ticto)state. om GA 8 =-KART&79/140-58~/125J-K;BTC[.4/6~~D/l~~~r6/600+71./120-51~~/675] (19) ThedifferenceinGibbsenergybatweehfoeandbeeironwiltnowbedescribedbyaubtr~ting tkemagneticcontributionforbeeIron,accordingtoerg*7or3,fromeq.,whfchcxmtains fouradjustabfeparameters.TheycanbedeterminedfromexperimentaT~nfor~tj~ontheeq~ilf- briumbetweenthetwophases.FromQrrandChipman(31)wecanchoosethe~~~~~~ngvaguerfor theequiJibriumtemperatures,eorrectsdtothefPTS68t~m~~rat~rescale,85and667K.From BraunandKoohthaatt(131wecanchoosesinenthalpyoftransformationof9iDJlmolat1185Kand -850J/ma\at166TK,Insertedinourequationsthesedatayieldthefollowingparametervalues, A=-5188.3,Bs45.79,C*-6.3andD=D,DD24,expressedinJ/maandK.AbovetheCurietemperature wethusobtain Belowt heCurietemperatureweobtain OGY Fe -G$*3883.4+36.07-6,3TnT+D.0D24T2 +$309[T4f6T~+TD/35~~+T16/600T~6)J&no (21 fn ho&rkeseexprassionsavalueofTC=lOQKmustbeused, Thefunctiongivenbyeqs.2Dand23wasevasratedn~~~~~~~~andinFigs,tand2itis comparedwiththeevaluationspresent&byOrrandChIpmanf]andbyKaufmanandBesot(2). Abovethetrans~~~rn~t~onpointatil85Kthenewevaluatianagreeswet1w3thGrrandChipman andbelowthetransformationitagreeswellwithKaufmanandNesor.Thisispartcuiarysatis- factorybecausetheybasedtheirevaluationonthepreviousevaluationbyKaufman,Clougherty andWeiss(14)whousedarealisticastIrnateoftheDebyetemperatureforfeeiron.Eqs.20and 21thusseemtogiveanadequaterepresentationoftheGibbs;energyforiron,Wwever,they shauldnotbeusc?dmuchbelowtheDebyotemperature. Previoustreatmentsofthemagneticaloyingeffect Longagoile-nerftfpointedoutthatanimportanteffectofalloyingadditionstoiranis causedbythechangeofthemagnetit:state,Hesuggestedthatthiseffectcouidbedescribed approximatelybyaparatfefdisptacementalongthetemperatureaxisofthemagneticpartof theGibbsenergyforIron,adisplacementcorrespondingtothechangeoftheCurietemperature. ThissuggestionWMfollowedbyHilert,WadaandWada(HWW)whoderivedthefollowingex- pressionforlowalloycontent,x,(151, Gze= xQS;edTC/dx (221 230 M. Hillert and M. Jar1 --Orr andChipmon -.-KoutmanawlNow Fig.1DifferenceinGibbsenergy betweenFCCandBCCironinthe temperaturerange1000-1800K accordingtodifferentworks. 4 --0~andChipman -.-Kc&nonandNuor 3 2 1 0 500lOOa Fig.2DifferenceinGibbsenergy betweenFCCandBCCironinthe temperaturerange300-1lODK accordingtodifferentworks. A MODEL FOR ALLOYING EFFECTS IN FERROMAGNETIC METALS231 Grnis a& OSrn themagneticcontributiontotheGibbsenergyofaniron-basealloyinthebeestate isthemagneticentropyinpurebeeiron. Z&erssuggestionwassomewhatarbitraryandcannotbestrictlyjustifiedonthermodyna- micgrounds.Aformallymoresatisfactorytreatmentcouldbebasedonanymathematiclmodelof themagneticpropertiesofiron.SuchtreatmentswererecentlydiscussedbyMiodownik(4).HOW- ever,apartfrcnntheworkofHWW notreatmenthasyetbeenputinanalyticalform. ThechangeinthemagneticcontributiontotheGibbsenergyduetotheadditionofan alloyingelementcanbewritteninthefollowinggeneralform AG;=G;-xAoG;-xBG;(23) Thesuperscriptmishereusedtodenotemagneticcontributionswhereasthesubscriptmdenotes molarintegralquantities.lnden(16)hassuggestedthatoneshouldusethesametypeofde- acriptionforthemagneticcontributioninanalloy,Gm,asinapureelementobyinsertingthe meanvalueoftheatomicmomentsforthemixtureofelementsinthealloyas tivewillbeexaminedinthepresentpaper. 8,.Analterna- Itisbaseduponaseparationoftheeffectsfrom differentelements.Forabinaryalloyweshallwrite AG; = xA(G; - "c;c,+ xg(G; - G;) (24) Thisequationcanbeusedindifferentways.FollowingZenersoriginalsuggestiononeshould neglectthedirecteffectofthealloyingelementanddescribethemagneticcontributionfrom thebasemetalbydisplacingtheGibbsenergyfunctionforthepurebasemetalalongthetem- peratureaxisbythesameaa-ountAT astheCurietemperaturehasbeenchanged. AG; = xAtoG;(T-AT)-G;(T)1(25) HWapproximatedthisexpressionbythefirstterminaseriesexpansionandassumedthatthe Curietemperaturevarieslinearlywiththealloyingcontent.Thismethodactuallyyieldsthe followingexpressionwhichhassometimesbeenused(17) AGE=-ATxAdoG;/dxB=xAxBoS;(T)dTCA/dxB(26) Themagneticalloyingeffectthustakestheformoftheregularsolutionmodelalthoughthe temperaturedependenceisquiteunique. Nishizawaetal.(18)haveemphasizedthatitmaybeessentialtoretainanotherterm. Thisisparticularlyevidentifonewantstocalculateamiscibilitygap.Theyderivedanequa- tionforthespinodalinthefollowingwaybyputtingthesecondderivativeoftheGibbsenergy equaltozero.Fromeq.25oneobtainsthefollowingexpressionforthecasewheretheCurie temperaturevarieslinearlywiththealloyingcontent, d2AGm m dG;(T-AT),,,d2'Gm(T-AT) -=2* A dx; (ddT)2 dTdXg+BdT2dxB Thefollowingequationisthusobtainedforthespinodal. d2GmdS;(T-AT) -= dx2, -2L+RT/xAxB-2'S;(T-AT)$$ - xA (daT)2=G B dTdx B (27) (28) whereLisaregularsolgtionparameterwhic,hmdescribesthenonmagneticdeviationfromideal solution.ThequantitydS/dTisequaltocITanditisthusevidentthatthelasttermin eq.28hasaverystronge e feetintheneighorhoodoftheCurielinewherethespecificheat6 goestolargevalues.Infact,Nishizawaetal.wereabletopredictthatamiscibilitygap, whichisprimarilyduetoachemcialeffectexpressablebyaregularsolutionparameterL,may developahornalongtheCurielineifintersectedbysuchaline. Newapproachtothemaqneticalloyingeffect Asalreadyemphasized,Zenerssuggestionwassomewhatarbitraryandanattrativealterna- tivewouldbetoinserteqs.17and19ineq.24whichcouldbedonebyusingtheindividual 232M. Hillert and M. Jar1 valuesofBforeachelementintheevaluationoftheKvaluesfromeqs.12and13butusing theCurietemperatureforthealloyineqs.17and19andassumingthatfineq.9isacon- stant.Admittedly,thetheoreticalbasisforsuchaprocedureco$dbeqtieestionedbutatleast itdoesnotviolatetherulesofthermodynamics.ThequantitiesGAandGinthealloywould dspendypontheconcentrationduetothekoncentrafigndripendenceoff3a!!dTC.21n2partlfular, dG,/dxBwillagaincontainatermwithcIsequalto Asaconsequence,thismodelmayalsopre8. sinceaGA/aT fr 1:*aGA/aT. tctthedeveiomentofahornalongaCurieline whichintersectsamiscibilitygap.Infact,Indensoriginalmodelwhichgivesinfinitespe- cificheatvaluesatTwouldpredictthatatleastaverythinmiscibilitygapshouldalways developalongthewho1Curieline.ti Inordertoapplythenewtreatmenttoaspecificcase,itisnecessarytoknowtheindi- vidualvaluesof@A and8,whereasmagneticmeasurementsonlyyieldtheaverageBforthealloy B =XABA+XBB8 Whenotherkindsofinfor~tionislackinganarbitraryassumptionmustbemade.Accordingto Bates(19)itisoftenreason?bietoputG,=Ofornonmagneticalloyingelementsinironandto treatGAasaconstant.ThesewerealsoZenersassumptions.Theywerenowusedforacompari- sonbetweentheHWversionofZenersmodelandtheneirmodelatlowalloycontents.Asa basisforthecomparisonthemagneticGibbsenergywasdefinedaszeroatTm.Theresultsare presentedinFig.3.Theyarequitesimilarbutthenewmodelpredictsaslightlysmalleref- fect. Miodownik(4)discussedtheshort-comingsoftheZenertreatmentandpointedoutthatit mightbeimportanttoincludetheeffectofchangesinthesaturationmagnetisation.Forthe alloysFe-It% CrandFe-lo%Cohemadeaquantitativecomparisonwithvaluesobtainedfromhis owntreatment.InordertocomparethetreatmentdevelopedinthepresentreportwithMiodow- nikstreatmentthenewtreatmentwasappliedtothesametwoalloys.Thecomparisonismade inFigs.4and5.FortheFe-11%Cralloythenewtreatmentwasappliedintwodifferentways. InModel1iswasassumedthattheGvalueoftheFeatomsisindependentofthecomposition andthattheBvaluefortheCratomsisalwayszero.Thisyieldsafairrepresentationofthe satusationmagnetisationoftheFe-Crsy5tem.Amoreaccuratedescriptionisobtainedwith -0.8xwhichmakesthebvalueforFeatomsdecreasefrom2.2forpureFeto1.4ata !!$t!EhdiifltioninCr.ThisvaluewasusedinMode12.Bothmodelswereusedwithavalue ofdT/dx=-700K/moiwhichisaveryroughapproximationanddoesnottakeinto.accountthe initr.EI?-1icreaseofTwhenCrisaddedtoFe.Thecurvegiven,fortheHWW treatmentinFig.4 wasalsocalculatedw$ththisvalue.FortheFe-lo%CoalloyModel1maynotbeveryrealistic sincetheGvaluefortheCoatomsisnotnegligible.Itwasfoundthatthesaturationmagne- tisationcurvefortheFe-CosystemcouldberepresentedratheraccuratelywithB=OB+1.9X, andaconstantvalueofB=1.7.ThecurvedenotedbyModel3inFig.5wasobtar *i8dwfeh thesevalues,withaCurl &temperatureof1200KforpurebeeCoandwithdTIdx=1050K/m01 forFerichalloys.Thelattervaluewasalsousedinthecalculationofth 5FcuvesfromHw treatmentandfromModel1.Ailthecurvesareverysimiiaranditmaythusbeconcludedthat allthemodelsareratherequivalent. Figs.4and5indicatethatthechangeinthesaturationmagnetisationhasnotadrastic effectbut inthecaseofFe-lo%Cotheeffectisappreciableatlowtemperatures. Sub-regularsolutionrepresentation ThenewmodelpredictsaverycomplicatedconcentrationdependenceoftheGibbsenergy throughtheconcentrationdependenceofGA,S,andTItissometimesusefultohaveapower seriesexpansionandformanyapplicationsthesubreformalismissufficient.It describestheexcessGibbsenergywithatermxx AB (Lattemptwillnowbemadeto approximatethenewmodelinaccordancewiththisforegionsaboveandbelowthe CurielinewillbetreatedseparatelybutanattemptwillbemadetodecreaseasmuchasPOS- siblethecreationofartificialdiscontinuitiesontheCurielinewhere$thetworegionsmeet. TheapproximationwillbedevelopedfortheArichsideofanA-Bsystem. ThevariableTCcanbeseparatedfromf3 lg.Thefollowingtypeofrelationcanbein e orS,inviewoftheformofeqs.12,13,17and reduced (30) wheregG(T)isobtainedbyinsertingeq. fromeqs.$2,13and19. 12ineq.17.Asimilarfunctiongo(T,)isobtained ThetreatmentwillbelimitedtocaseswheretheCurietemperatureandtheatomicmoments EE x A MDELFOR ALLOYING EFFECTS IN F~~O~G~T~CMETALS 233 -Thismodel --Subr r gut af apprax --~il~rt,~da,Wada -101 05001000 15002000 Temperature( K f Fig.3Comparisonbetweenthemagneticalloyingeffectattowalloy contentsaccordingtoHillert,WadaandWadaandthiswork. T~m~mture4 K 1 -lrnmW Temperature( K) Fig.4Comparisonofpredictionsofthemag- neticalloyingeffectinanFe-11%Cr Fig.5Comparisonofpredictionsofthemagnetic alloyingeffectinanFe-lo%Coalloy alloyaccordingtovariousmodels. accordingtovariousmodels. 234 M. Hillert and M.Jar1 varylinearlywithcomposition, TC=TCA (l+kxB)(31) GA=OGA GB=OGB where OB and factorii?eq. ln(BA+l) +ax B (32) +bx B (33) Garethevaluesatx50.Forpure6wethushavethevalueGR+b.Thesecond 30*givesthefollowinglowerseriesexpansion, axB .2x2 =In(ORA+axB+l)zln(OGA+l)+-- B OBA+l2(oGA+l)2 (34) andasimilarapproximationisobtainedforln(B,+l). byinsertingeqs.30and34ineq.24oneoltaine a2x2 AG;=xAln(BA+l)(g(TC)-g(TCA))+xAg(TC) B 2(Of3,+1)2 > +xBg(fC)~n(*~~+l) bXB -x~g(TCB)ln(~~+b+l)+xag(TC)r Be+ herpowersareexcludedsincetheydonotenterintothesubregularsolution orgshouldbeinsertedasgineq.35dependinguponwhetherTfallsaboveor belowtheCurietemperatureofeachterm(T m-Gm)andshouldthusgotozero ,TorT).Thefirsttwotermsineq.35come fromxA(Gfl 5st&8aliobBapproachespureA.Thispropertyisre- tained.1el&tthreetermscomefromx(G-mG) approachespureB.Thispropertyisnotpet!!ine8 andshouldthusgotozeroasthealloy becausetheseriesexpansionismadeinthe vicinityofpureAinsteadofB.Thisisnotaseriousdrawbacksinceeq.35isintendedtobe usedinthevicinityofpureA,only.Ontheotherhand,thepropertymayeasilyberestored bymultiplyingthelastthreetermsbyxA.Thisprocedurewillbeusedinthefoliowing,mainly becauseitwillhelpmakingtheexpressionsconformtothesubregularsolutionformalism. WhenintroducingtheconcentrationdependenceofTCiseqs.17aig19,allthehigher powersinTCwillfirstbeneglectedandonlytermsinTC,TCandTCwillremain. cm8= A -KBRT5,10T4 AC (36) GF-K;R[TC/2-2T/51A-KoR[T4/6T3+T/2-2T/3] cc (37) WhentheKvaluesarederivedforthisapproximationonefindsbythemethodusedbefore, K;= In(OBA+l) {+?j($l) =-#n(bA+l)=0.71431n(BA+1) Ko=ZKG=1 A 2A* 07141n(B+l) A (38) (39) ForbeeironthevalueofOG=2.22yieldsKo=l.2529andKG=G.8353. Theexpressionsgivenbfeqs. 36and39p reservetheAimportantpropertiesthatGmo andGmB, aswellastheirderivatives,havethesamevalueontheCurielinewherethetworegl\onsmeet, i.e.atT=T.WhenapproximatingthevariousTCtermsineqs.36and37bytruncatedpower seriesexpafisionsinxitwouidbedesirablenottodestroytheseproperties.Ifpossible,a methodofapproximatioRshouldthusbeusedwhichisexactatT=T ThetruncatedpowerseriesexpansionstakethefollowingforsdependinguponwhatpowersC onelikestoretain, A MODEL FOR ALLOYIEJGEFFECTS IN F~~O~G~T~~METALS235 (T,/T,,~~=(l+kx)=1 +5kxb5B*10(kxg?+LB(kxL@(40a) (TC/TC~)4=(l+kxg15=I+fjkxg+MRkxg(4fJb) (T,IT,,)-~= (l+kxg)-3=I-3kxg+6(kx,12fLa(kxB)* (TC/TC,.jW3=f l+kxg)-3=1-3kxN*MkxN (TCJTC&-~=(l+kx,)-3=f+Na TC/TCB =r+kx=1+0 cf- f3 (40dl (40e) f40fI (4Og) 1,M,Nand0arecorrectionparameterswhichcouldmaketherelationsexactiftheywere allowedtobefuntionsofthecomposition,x.Thoseexactfunctionscaneasilybecalculated fromtherelations.However,sincetheparam!tersarenotallowedtobefunctionsofx 8 inthe subregularsolutionformalism,onecouldinsteadgivethemconstantvalues,e.g.thevluezero. Ontheotherhand,anysuchvaluewouldintroduceanerrorontheCurielineexceptforone point.ItmaybeabetteralternativetolettheparametersvaryalongtheCurielineaccording totheirexactfunctionsbuttoaccomplishthisbytreatingthemasfunctionsofTinsteadof xB-Thiscanbedonebyinsertingtheapproximatevalue, kxg=i-1wheret=TIT CA f4Tf intheexactfuncrions.ThisrelationisexactatT=T terswi11thusgettheircorrectvaluesontheCurie1 IE inviewofeq.3&andr;bltheparame- e.ThepropertyGA=Gwillthusbe preserved.However,theirderivativeswithrespecttotemperaturewi11notbe&alsincean artificialtemperaturedependencehasbeenintroduced.Unfortunately,thereseemstobeno methodbywhichbathpropertiescanbepreserved.Thefollowingexpressionswereobtainedwith thismethod, Itisinterestingtonotethatallthesecorrectionparameterstakethevaluezeroat?=l,i.e. atT=T. T64fivetermsineq.35willnowbeevaluated.Thevaluesathightemperaturewiltbede- notedbythesuperscriptBbecausetheywiltdependuponthepropertiesoftheBstate.For thefirsttermweobtainfromeq.36byapplyingtheapproximationgivenbyeq.40a, AG;=x~o~~~(T~~-T~~~~~T4=-~~xgkRTGAOL~Ikl10+C3~kxgli10+4 $431 Thesuperscriptoindicate3thattheKvalueshoutdbecalculatedfromeq,38withthe3value characteristicofpureA,8,.Thevalueofthefirsttermineq.35atlowtemperatureiseva- luatedfromeqs.37and40d, 236M.Hillert and M. Jar1 AGa = 1 x KBR(T AA CA-TC)/2+xAK$T4/T;A-T4/T3+c3(TCATC)116 =-xAxBkRTCAIoK;/2+oK~[3-3_r4+(6cLa)kxB?4]/6~(44) Thesetwoexpressionshaveasfiriousdrawback.Eq.43isintendedf oruseathightemperatures andthecorrectionparameterLthengoestoveryhighvaluesaccordingtoeq.42a.Eq.44is intendedforuseatlowtemperaturesandthecorrectionparameterI.thengoestoveryhigh valuesaccordingtoeq.42d.However,thecorrectionswereintroducedsimplyinordertoavoid adiscontinuityattheCurietemperature.Itisthuspossibletotransferthecorrectionfrom oneoftheequationstotheotherwithachangeofsign,Suppose,forinstance,thattheCurie temperatureisloweredbythealloyingaddition,i.e.kisnegative.Itisthenconvenienrto includetheLtermfromeq.44ineq.43 AC!= -xAxBkRT~AtoK~~5+(10+L~)kxB]/,o~-4oK~LakxB~4/6}(451 ThetwoLtermscannowbeincludedinthecalculationabovetheCurietemperatureTCofthe alloyusingtheLvaluesgivenbyeqs.42aandd.However,asthetemperatureisincreasedto theCurietemperatureofpureA,TboththeLparametersgotozeroandthecorrectionterms canthusbeomittedaboveTthecreationofadiscontinuity. useofeq.45canthusbet&it Theinstructionfpr;he andLaaretakenfromeqs.42aanddforTT.ThesecorrectionswillthusbeincludedonlybetweenT tionmustCilsobemadeinthisregionbecausethealloyisinaBs F andTA&hercorrec- atebu FA;he ofpureAisa.Thefrstpart mBm13 feq.35shouldthencontainGmB(T)-Gnrr(T referencestate )OneshouldthusaddtheAfol~~ingAter )whereaseq.43 G(T :,~:~~a,~d,Br~dGen~~~;ak&i~~o*acco~t, LA toeq.45atthe AG* 1 =.x(Gm8- AA OGy)=xARTCA~oK~t5-4~-l/~4]/10+K;[3-4r+r4],6}(46) Formally,thiscorrectionaffectsthestandardstateforpureAratherthantheregularorsub- regular.solutionparameters. Ontheotherhand,allthecorrectiontermsshouldbeincludedineq.44iftheCurietem- paeratureisincreasedbythealloyingaddition,i.e.kispositive. AG;=-xAxBkRT~A{oK~[5-L~kxB/~4~/~0+oK~[3-3~4+(6~La)k~B~4]/6~-Ai+&(47) Inthiscase,thecorrectionshouldbeusedbelowtheCurietemperatureofthealloy,TC,and ~~LB~xp@=GforT