a mesh-free numerical method for three-dimensional nonlinear schrödinger equation department of...

61
A Mesh-free Numerical Method for three- dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University of London Thomas C.L. Yue [email protected] Feb 09, 2011 1

Upload: estrella-breakfield

Post on 15-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

A Mesh-free Numerical Method for three-dimensionalNonlinear Schrödinger Equation

Department of Computer Science and Information SystemsBirkbeck, University of London

Thomas C.L. [email protected]

Feb 09, 2011

1

Page 2: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Overview

• Physical motivation of the problem– Dimensionless Gross-Pitaevskii equation (GPE)

• Introduction to Radial basis functions (RBF)– Global supported strictly positive definite radial basis functions– Compactly supported radial basis funtions– Kansa’s method (asymmetric collocation)

• Meshfree solution of cubic Nonlinear Schrodinger Equation– Numerical experiments and validation

2

Page 3: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Physical Motivation

3

Page 4: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Physical Motivation

History of Bose Einstein Condensation (BEC) [1,2]

• First predicted by Bose & Einstein (1924)• Experimentally observed in University of Colorado JILA lab (1995)

What is BEC? [1,2]

• A phase of matter where all particles occupy the same quantum state• Occurs when diulated bosons (integer spin particles) gas are cooled to

extremely low temperature (10-9K)• Individual particle wave functions behave as a single wave function

4

Page 5: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Physical Motivation

4. T=0 Giant Matter Wave3. T=Tcrit Bose Einstein Condensate

2. Low temperature λdB α T -0.51. High temperature particle behaviour dominated

Fig1.A visual description of how a gas of bosonic-atoms behave at various temperatures (T). [1] 5

Page 6: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

ETH (02’,Rb, 300,000)

Experimental Results of BEC

JILA (95’,Rb,5,000)

Page 7: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

• Hartree–Fock approximation [1,2]– The many-body wavefunction is written as productsof individual wave functions of

each bosons [1,2]

• The Hamiltonian

• The conserved quantities

Gross–Pitaevskii equation

Page 8: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Gross–Pitaevskii equation

• At temperature T<<Tcirt the dynamics of BEC is modeled the Gross–Pitaevskii equation [1,2]

• Dimensionless variables introduced by Bao et al. (2003) [3]

8

Page 9: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Gross–Pitaevskii equation

• Rearranging the equation and defining the following constants

• The dimensionless Gross–Pitaevskii equation

Note: This is mathematical equivalent to the cubic Nonlinear Schrödinger Equation (NLS)

9

Page 10: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Existing numerical methods for Nonlinear Schrödinger Equation

Existing numerical methods for NLS

Spectral Methods– Pseudo-spectral method (Muruganandam et al)– Time splitting Fourier spectral approximation (Bao et al.) – Split-step Fourier spectral method (Weideman)

Mesh-based Methods– Galerkin spectral (Dion et al.)– Finite Element (Carl Joachim, Berdal Haga)– Split-step finite difference method (Wang)

10

Page 11: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Existing numerical methods for Nonlinear Schrödinger Equation

Existing numerical methods for NLS

Spectral Methods– Pseudo-spectral method (Muruganandam et al)– Time splitting Fourier spectral approximation (Bao et al.) – Split-step Fourier spectral method (Weideman)

Mesh-based Methods– Galerkin spectral (Dion et al.)– Finite Element (Carl Joachim, Berdal Haga)– Split-step finite difference method (Wang)

11

Require mesh generation and

re-meshing

Page 12: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Radial Basis Functions

12

Page 13: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Radial basis function

• What is a radial basis function (RBF)? [4,5]

13

Page 14: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

• Given a set of data {x1...xN} and the corresponding known values {f(x1)..f(xN)}. Find the function f(x) that describes the data set.

• Is the system guaranteed to be solvable?• Are the solutions unique?

RBF scattered data approximation

14

Page 15: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

RBF scattered data approximation

Fig 2. Interpolation of f(x,y) with Gaussian RBF with c=1/3 and N=25. (left) shows the random generated data points, (mid) shows the centred at the collocation points, (right) shows the interpolated surface.

15

Page 16: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Background of radial basis functions

• The system is solvable and unique provided the coefficient matrix is positive definite. [4,5,11]

16

Page 17: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Background of radial basis functions

Globally supported strictly positive definite radial basis functions (GSRBF)

• Leads to dense coefficient matrix• In many cases the coefficient matrix is ill-conditioned • For matrix inversion Schaback (2007) suggested

– Singular Value Decomposition – Regularization techniques

17

Page 18: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Background of radial basis functions

Compactly supported radial basis functions (CSRBF)

• Wu and Wendland introduced the compactly supported RBF (CSRBF) [4,5]• Leads to sparse coefficient matrix• Reduce ill-conditioning of the resultant coefficient matrix• The usage of CSRBF will be explored in 3D NLS numerical experiment

18

Page 19: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Error Behaviour of RBF techniques

• Trade off principle Schaback (1995) [5]

Theorem: It is impossible to construct radial basis functions which guarantees good stability and small errors at the same time.

• Driscoll and Fornberg (2002) observed the "Flat Limit” [6]

c->∞ leads to highly ill-conditioned RBF interpolation matrix

c->0 implies highly localized RBFs such that it fails to approximate data between collocation points

19

Page 20: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Error Behaviour of RBF techniques

• Wright, Fornberg, Larsson (2004) [7]– With increasing shape parameter, interpolation error decreases sharply until the

minimum numerical error is reached. – For any increasing shape parameter, interpolation error rapidly increases.

The rapid decrease of interpolation error

reaches a minimum.

20

Page 21: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

• Kansa (1990) proposed a direct approach to approximate the solution of PDE by

• where Ф represents any RBF and p(x) is basis polynomial of up to order m.• Consider a linear PDE boundary value problem

• where the linear operator L operates on the interior points Ω/∂Ω, the operator B specifies the boundary conditions for collocations on the

boundaries ∂Ω.

Solving PDE with radial basis functions

21

Page 22: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Solving PDE with radial basis functions

• Applying the RBF approximation the domain with Ni interior points in Ω/∂Ω and Nb boundary points on ∂Ω yields N equations

• To remove the extra m degrees of freedom of the polynomial p(x)

22

Page 23: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Solving PDE with radial basis functions

• Rewriting in matrix form

• Note: The resultant PDE matrix is asymmetric. Hence Kansa method is also known as asymmetric collocation method.

23

Page 24: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Solving time-dependent PDE with θ-method and RBF

• Some common methods for time-dependent PDE– θ-method– Runge-Kutta – Laplace Transform

• θ-method– Based on the discretization of time-domain of the PDE. – The forward and backward time-step is weighted by (0≤θ≤1)

• Consider the following time-dependent linear PDE problem

24

Page 25: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Solving time-dependent PDE with θ-method and RBF

• constructing a time-domain mesh for M units, such that each time increment is denoted by tn=ndt, n=1..M, dt=T/M.

• Hence the approximated PDE problem becomes

• Approximate spatial variables by radial basis functions (ie. Kansa method)

25

Page 26: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Meshfree Numerical Method for Nonlinear Schrödinger Equation

26

Page 27: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Mesh-free Numerical Method for Nonlinear Schrödinger Equation

• Recall: The equation for modelling dynamics of Bose-Einstein condensate (time-dependent Gross–Pitaevskii equation)

• The Gross–Pitaevskii equation is mathematical equivalent to the cubic Nonlinear Schrödinger equation.

• The parameter q controls the interaction between particles– q>0 defocusing interaction– q<0 focusing interaction

27

Page 28: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Mesh-free Numerical Method for Nonlinear Schrödinger Equation

• The full 3D cubic Nonlinear Schrodinger equation (NLS) with initial and boundary conditions

28

Page 29: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Mesh-free Numerical Method for Nonlinear Schrödinger Equation

• Key-steps for deriving the mesh-free method for NLS

1. separate the original NLS into real r(x,t) and imaginary parts s(x,t)2. apply θ-method in time-domain 3. linearize PDE using the approach in Dereli (2009)4. apply Kansa asymmetric collocation to spatial variables

• Advantages of the proposed mathematical method

1. entirely meshfree2. solves NLS in various dimensions d ≤33. flexible for selecting radial basis functions4. easy to implement (~200 lines of matlab code)

29

Page 30: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

• Separating the original NLS with respect to real r(x,t) and imaginary parts s(x,t) yields a system of PDEs.

• Applying θ-method in time-domain

30

Page 31: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

• Using the approach by Dereli et al (2009) [8] the variables (r*,s*) are introduced to approximate the solutions sufficient close to (rn+1,sn+1)

31

Page 32: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

• Defining an auxiliary variable

• Rewrite the real and imaginary parts of NLS using the definition of (r*,s*) and α:

(Real)

(Imaginary)

32

Page 33: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

• Apply the RBF approximation to the real part r(x,t) and imaginary part s(x,t) of the wavefunction Ψ (x,t) and its spatial derivatives

Derivation of the proposed method

33

Page 34: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

34

Page 35: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

35

Page 36: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Derivation of the proposed method

• Final matrix form results a system of 2Nx2N equations

• Solved via Singular Value Decomposition at each time-step to find RBF coefficients ζn+1

• Specific cases of θ-method– θ=0 explicit method– θ=0.5 semi-implicit method– θ=1 implicit method

36

Page 37: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Implementation flow-chart

startSet up physical

geometries and potential function

Compute initial conditions

Assemble matrices for computation

Conduct matrix inversion

(compute new coefficients)

while t<T

start

Output numerical solution

if(t==T)

Kernel of the method

Update coefficients

Visualize results

37

Page 38: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Numerical Experiments

38

Page 39: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Radial basis functions in this project

Globally supported strictly positive definite radial basis function (GSRBF)

Compactly supported radial basis function (CSRBF) for 3D problem

39

Page 40: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

1D NLS numerical example

• We consider a 1D test case in Deconinck et al. (2001) to model the stability of Bose Einstein Condensates and Wang (2005). [11]

40

Page 41: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

1D NLS numerical example

• Comparison of absolute error between split-step finite difference method (SSFD) in Weideman (1986) and split-step Fourier spectral (SSFS) in Wang (2005). [11]

Table 1. Absolute error comparison of RBF-θ and earlier methods. The solution is computed using RBF= Gaussian, θ=0.5, M=200, N=128, c=2.5.

Table 2. Maximum relative error and maximum RMS error of real and imaginary parts of the wavefunction at T=1 generated by different globally supported strictly positive definite RBFs with M=500, N=128.

41

Page 42: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 6. Real and imaginary parts of the numerical solution and the corresponding relative error at T=1 computed by RBF=Gaussian, M=500, N=128, c=2.5, θ=0.5. 42

Page 43: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 7. Particle density (top) and relative error (bottom) of numerical solution at T=1 with M=500, N=128, c=2.5, θ=0.5, RBF=Gaussian.

43

Page 44: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

2D NLS numerical experiment

• Consider a 2D defocusing interaction where q=1, k=1

44

Page 45: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

2D NLS numerical results

Table 6. Maximum relative error and RMS error of particle density at T=1 generated by different GSRBFs with M=2000, N=100.

Table 5. Maximum relative error, RMS error for different GSRBFs with M=2000, N=100, T=1.

45

Page 46: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 10. Real and imaginary parts of numerical solutions and the corresponding relative error at time T=1 computed by M=2000, N=100, c=0.7, θ=1, RBF=Gaussian

46

Page 47: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 11. Particle density (top) and relative error (bottom) of numerical solution at T=1 computed by M=2000, N=100, c=0.7, θ=1, RBF=Gaussian 47

Page 48: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

3D NLS numerical experiment

• Consider a 3D focusing example where q=-1, k=2

48

Page 49: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

3D NLS numerical results

Numerical results for all θ-methods and GSRBF combinations

Table 7. Maximum relative error and RMS error of particle density at T=1 generated by various GSRBFs.

49

Page 50: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 12. Real and imaginary parts of numerical solutions and the corresponding relative error at time T=1 computed by M=800, N=216, c=2.0, θ=1,RBF=IMQ. 50

Page 51: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

3D NLS numerical results

Numerical results for all θ-methods and GSRBF combinations

Table 7. Maximum relative error and RMS error of particle density at T=1 generated by various GSRBFs.

51

Page 52: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

3D NLS numerical results

Numerical results for all θ-methods and GSRBF combinations

Table 7. Maximum relative error and RMS error of particle density at T=1 generated by various GSRBFs, M=800, N=216.

Can we speed up the simulation???

52

Page 53: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Effects of shape parameter

• Accuracy: error behaviour is consistent with observation Wright, Fornberg, Larsson (2004)

• Computational time: 96% of the time is consumed by SVD

Fig 13. Computational time for various shape parameters

53

Page 54: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Compactly supported radial basis functions (CSRBF)

• Combined implicit method (θ=1) with CSRBF to overcome computation-time barrier

• Matrix inversion is done via LU factorization• Reduced total simulation time by 85% compared to globally supported

strictly positive radial basis functions

Table 8. Illustration of maximum absolute error, maximum relative error and computation time for implicit RBF-θ method using various compactly supported radial basis functions.

54

Page 55: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Fig 15. Real and imaginary parts of numerical solutions and the corresponding relative error at time T=1 computed by M=800, N=216, c=6.0, θ= 1, RBF=W13(Wu1,3) . 55

Page 56: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Table 9. Maximum absolute and relative error for various terminal time (T) generated using different RBFs with M=800, N=216, θ=1.

Page 57: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Summary of Results

• Globally supported strictly positive definite RBFs (GSRBF)• Relative error of O(10-4) -O(10-3), RMS error O(10-5)-O(10-3) • Leads to dense matrices• Require sophisticated matrix inversion method (SVD) [10]• 96% of the time per iteration is consumed by matrix inversion

• Compactly supported RBFs (CSRBF)• Offer same level of accuracy as GSRBF • Leads to sparse matrices• Can be solved by conventional methods such as LU factorization• Reduce the overall simulation time by 85%

57

Page 58: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Future Work

• Shape parameter selection strategy

• More sophisticated time integration scheme– For time dependent external potentials (Nistazakis et al)

• On computational enhancements– Utilize more efficient data structures for large scale simulations– Explore parallelism using GPUs or High Performance Computing

58

Page 59: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Conclusion

• Showed the physical motivation behind the BEC problem

• Introduced the basics of RBFs– Classification– Asymmetric collocation for PDE

• Proposed a new mesh-free method (RBF-θ) for cubic Nonlinear Schrödinger equation– θ-method in time – RBF approximation for spatial variables

• Validated the RBF-θ method via numerical experiments– Relative error: O(10-4) -O(10-3)– RMS error: O(10-5)-O(10-3)

59

Page 60: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

Thank you very much

60

Page 61: A Mesh-free Numerical Method for three-dimensional Nonlinear Schrödinger Equation Department of Computer Science and Information Systems Birkbeck, University

References

1. Stamper-Kurn D.M. Ketterle W., Durfee D.S. Making, probing and understanding Bose-Einstein condensates. Proceedings of International School of Physics "Enrico Fermi", pages 67-176, 1999

2. Clark C.W. Burnett K., Edwards M. The theory of Bose-Einstein condensation of dilute gas. Physics Today, 52:37-42,1999

3. Weizhu Bao, Dieter Jaksch, Peter A. Markowich, Numerical Solution of the Gross-Pitaevskii Equation for Bose-Einstein Condensation, J. Comput. Phys., Vol. 187, No. 1, pp. 318 - 342, 2003.

4. Fasshauer G.E. Meshfree Approximation Methods with MATLAB. World Scientific Co. Pte. Ltd., Singapore, 20075. Hon Y. C. Chen C. S. and Schaback R. Scientific Computing with Radial Basis Functions. Draft version 0.0,

Cambridge, 2003.6. T.A. Driscoll and B. Fornberg. Interpolation in the limit of increasingly at radial basis functions. Computer and

Mathematics Applications, 43:413-422, 2002.7. G. Wright B. Fornberg and E. Larsson. Some observations regarding interpolates in the limit of at radial basis

functions. Computer and Mathematics Applications, 47:37-55, 2004.8. Dereli Y., Dag I., Irk D. Soliton solutions for NLS equation using radial basis function. Chaos, Solitons and Fractals,

42:1227-1233, 20099. Golbabai A. Javidi M. Numerical studies on nonlinear Schrödinger equations by spectral collocation method with

preconditioning. Journal of Mathematical Analysis and Applications, 333:1119-1127, 2007.10. G.H. Goloub and C.F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, 1989.11. Wang H. Numerical studies on the split-step finite difference method for nonlinear Schrödinger equation.

Applied Mathematics and Computation, 175:17-35, 2005.

61