a low-cost path to solvent blend prediction, hsp analyy ...a low-cost path to solvent blend...

42
A Low-Cost Path to Solvent Blend Prediction, HSP Analysis, and Cleaning Verification Part 1 Darren L. Williams, Ph.D. A it tP f S H t St t Ui it Assistant Professor, Sam Houston State University [email protected] • (936) 294-1529

Upload: others

Post on 05-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • A Low-Cost Path to Solvent Blend Prediction, HSP Analysis, and Cleaning Verification – Part 1y , g

    Darren L. Williams, Ph.D.A i t t P f S H t St t U i itAssistant Professor, Sam Houston State University

    [email protected] • (936) 294-1529

  • Overview of Part 1Existing equipment is FREE if it is not being

    One can add the benefits of Hansen used for other processes• Carver Press

    • formerly used for making KBr pellets

    One can add the benefits of Hansen Solubility Parameter analysis and several experimental methods useful for process solvents to their operation for a

    • Replaced by ATR-FTIR• Analytical balance• Recirculating Temp. Bath (optional)

    minimal cost.

    New experimental methods:• Surface Tension (ST)• Interfacial Tension (IT)• Hydrostatic Density ()• Molar Volume (Vm)• Contact Angle (CA)Cost < $1,000

  • Surface and interfacial tension (ST) is a growing field.

    1990s

    2000s

    2630

    3655

    # Listings in Chem Abstracts containing “surface interfacial tension” (through 2007)

    • We were funded to look at ST of solvent blends

    1970s

    1980s

    1990s

    966

    1266

    2630

    Huh, C. and Mason S. G. A rigorous theory of solvent blends.

    • Input into a synthesis computer model.

    1940s

    1950s

    1960s

    153

    300

    708 ring tensiometry, Colloid and Polymer Sci. 263, 566-580 (1975).

    1920s

    1930s

    1940s

    105

    138

    153

    Harkins W. D. and Jordan H. F. J. Amer. Chem. Soc. 52, 1751 (1930).

    DuNoüy J Gen Physiol 1 521 (1919) DuNoüy, J. Gen. Physiol. 1, 521 (1919).

  • Many Ways to Study STJ. F. Padday – theory and shapes of menisci.• Ring/rod/sphere/plate in free surface• Captive/emerging bubble• Hanging drop

    23

    • Sessile drop • Contact angle

    • Capillary rise

    2

    1• The 23-interface is ST when phase 3 is air.

    3

    211

    23

  • The Du Nouy Tensiometer and Density Measurement

    ST th d i t d itiST methods require accurate densities.The ideal apparatus should• Control temperature

    M th d it f lti l h• Measure the density of multiple phases• Measure ST and interfacial tension (IT)The standard Du Nouy ring tensiometer

    only measures ST and ITonly measures ST and IT.

  • The Du Nouy Ring Tensiometer

    Stainless steel wire

    Platinum-Iridium ring

    Analog

    Fine

    readout

    Fine adjustment

    Coarse adjustment

  • Why design a new instrument?

    Students gain skill in instrument designCommercially-available equipment exists Students gain skill in instrument design.Existing equipment is FREE• Carver Press• Analytical balance

    Commercially-available equipment exists

    • Du Nouy ring tensiometer from CSC Scientific $4,000* (*www.vwr.com)

    • Analytical balance• Recirculating Temp. BathSmall purchases needed• Pt:Ir ring $397*

    o inexpensive but has limited capabilities

    • DCA 300 from ThermoCahn >>$4k( h ) • Pt:Ir ring $397

    • Density sinker $363*• Tempering beaker $94

    (www finmech com)

    (www.thermo.com)

    o very capable and expensive

    (www.finmech.com)

  • The Density / ST Instrument

    1.1234 gPt:IrPt:Ir ringring

    Tempering Tempering beakerbeaker

    Optical encoder 250 LPIOptical encoder 250 LPI(optional)(optional)

    $$(US Digital $430)(US Digital $430)

    Press platenPress platen

  • Hydrostatic Density Measurement 2 47.348504.1085594.056.464 TTHB

    • Air (phase 3)

    3

    3

    6

    /00003.000118.0

    )16.273(10

    cmg

    T

    • Air (phase 3)• B (Torr), H (%RH), T (°C)• Average value over

    20 – 30°C 0 – 100% RH and 740 – 780 Torr

    3 g

    20 30 C, 0 100% RH, and 740 780 Torr• Pyrex density standard (phase 1)

    31

    Vmdry

    • Liquid (phase 2)3

    11

    V

    wetwetdry mmm

    312

    dry

    wet

    dry

    y

    mm*Bowman, H. A. and Schoonover, R. M. Journal of Research of the National Bureau of Standards, 71c(3), (1967).

  • Density and ST Procedure

    Bring system to thermal equilibriumBring system to thermal equilibrium.

    Measure density of liquid using a pyrex sinker.

    Remove sinker and attach ring.

    Tare the balance.

    Raise the platform to submerge the ring.

    B i i h dBegin capturing the mass data.

    Lower the platform until the meniscus breaks.

    Stop capturing the mass data.Stop capturing the mass data.

    Transfer data to Excel® for analysis.

  • Force Curve0.6 Maximum pull on the ring

    Meniscus break

    s (g

    )M

    as

    00 180Time (s)

  • ST DeterminationVariables /665.980 2scmmF pull• Max force: F (dynes)• Max volume lifted: V (cm3)• Harkins and Jordan tabulated

    h

    323

    ffF

    mV

    RR

    pull

    Harkins and Jordan tabulatedcorrection factor: f23 (unitless)– Must look this value up in their table.– Radius of ring: R (cm)

    /665.986,where

    4

    23

    232

    23

    232323

    scmC

    ffR a

    RVR

    Radius of ring: R (cm)– Radius of ring wire: a (cm)

    • Huh and Masoncorrection factor: C23 (unitless) '

    '3

    23

    23

    23

    CVV

    CRR

    correction factor: C23 (unitless)• Corrected surface tension: ’ (dyne/cm)

    ''4'

    23

    FV

    Rf

    CVV

    '4

    ' fR

    F

  • Results Compared to NIST80

    t

    y = 0.940x + 0.255R² = 0.999

    nstru

    men

    t

    5°C

    yne/

    cm) water

    usin

    g th

    is i

    74°C

    E

    XP

    (dy

    ntal

    dat

    a u

    tolueneExp

    erim

    en

    3°C

    2020 80 NIST (dyne/cm)

    E

    60°C

  • Hansen Solubility Parameters (HSP)

    • Molar volume: V (cm3 mol-1)

    H

    • Molar volume: Vm (cm mol )• Dispersion parameter: D (MPa1/2)• Polar parameter: P (MPa1/2)• Hydrogen bonding parameter: H (MPa1/2)

    D• Hydrogen bonding parameter: H (MPa1/2)

    HSP tables are useful for: • Ranking solvents and solvent blends with respect to the solubility of particular

    P

    • Ranking solvents and solvent blends with respect to the solubility of particular solutes.

    • Predicting other properties of solvents and solvent blends i.e. surface tension.

    2223/1 632.001709.0 HPDVmHSP

  • Surface Tension Calculated via HSPs

    Species V D P H HSP EXPSpecies V D P H HSP EXPwater 18 15.6 16 42.3 68.8 67.8dimethyl sulfoxide 71 3 18 4 16 4 10 2 40 7 38 7dimethyl sulfoxide 71.3 18.4 16.4 10.2 40.7 38.7N,N-dimethyl formamide 77.0 17.4 13.7 11.3 36.5 29.4toluene 106 8 18 1 4 2 26 6 26 7toluene 106.8 18 1.4 2 26.6 26.72-butanone 90.1 16 9 5.1 24.8 23.7ethyl acetate 98 5 15 8 5 3 7 2 23 7 22 8ethyl acetate 98.5 15.8 5.3 7.2 23.7 22.8

    • The HSP model predicts the surface tension very well.

  • Experimental ST versus HSP ST80

    y = 0.990x ‐ 1.652

    m‐1 y

    R² = 0.977

    dyne

     cm

    XP / d

    EXP

    20

    EX

    Linear (EXP)

    20

    20 80HSP  / dyne cm‐1

  • Spontaneous Mixing• Gibbs Energy governs spontaneity (const. P)

    – Entropy is typically positive– Enthalpy is what typically prevents spontaneous mixing

    mixmixmix STHG py yp y p p g

    • Hildebrand and Scott Coined the term Solubility Parameter– Cohesive energy density term (Joules / mL)– Cohesive energy density term (Joules / mL)– Estimate of the enthalpy of mixing

    mol

    vap

    VH

    – If solubility parameters are too far apart, then the enthalpy will be too large for spontaneous mixing.

    2 22121 Tmix VH

  • Hansen Solubility Parameters

    • Hansen extended the Hildebrand parameter to account for H-bonding and polarity• Hansen extended the Hildebrand parameter to account for H-bonding and polarity.• Proven to be useful in the paint and coatings industry for selecting suitable solvents

    for polymer binders.• Solvents and solutes that have similar HSPs interact strongly.Solvents and solutes that have similar HSPs interact strongly.• “Like seeks like”• Knowing the HSPs for a solute and its “interaction radius” will allow a prediction of

    suitable blend recipes that are likely to swell or dissolve the solute.p y

    Find the HSPs for over 1200 compounds and solvents in:• Steven Abbott and Charles M. Hansen, Hansen Solubility Parameters in Practice, y

    (HSPiP) 3rd Edition, with Hiroshi Yamamoto and Richard S Valpey III, available at:• http://www.hansen-solubility.com/ (ISBN-13 978-0-9551220-2-6)

    • Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook 2nd Ed Boca Raton, FL; CRC Press LLC, 2007.

  • Your Title Goes Here

    Energy density and “mega Pascals”?Energy density and mega Pascals ?• Units are MPa1/2 which is equivalent to (kJ/L)1/2

    • Some tables list HSPs in (cal/mL)1/2

    Three terms are tabulated for many solvents: 2/12/1 /04552

    325.101325.101

    mLcalMPa

    LkJ

    LatmJ

    kPaatmMPa

    Three terms are tabulated for many solvents:• D: Dispersion forces (polarizablility )• P: polar forces (net and local dipole moments)• H: hydrogen bonding effects (protic solvents)

    /0455.2 mLcalMPa

    • H: hydrogen-bonding effects (protic solvents)• Solvents can be plotted in a 3-dimensional Cartesian space using these three terms.

    HH

    D

    P

    D

  • Solvent Hansen Solubility ParametersSolvent Hansen Solubility Parameters

    Your Title Goes Here

    D: dispersion D: dispersion forcesforcesforces forces

    P: polar forcesP: polar forcesH h dH h dH: hydrogenH: hydrogen--

    bonding bonding ffforcesforces

  • Solvent Hansen Solubility ParametersSolvent Hansen Solubility Parameters

    Your Title Goes Here

    P: polar forcesP: polar forcesD di i fD di i fD: dispersion forces D: dispersion forces H: hydrogenH: hydrogen--bonding forcesbonding forces

  • Solubility Sphere Determination Equations• Distance between solute and solvent

    – The dispersion term is weighted by a factor of 2.

    2224 solutesolvsolutesolvsolutesolva HHPPDDR

    • Relative Energy Difference (RED) number

    solvents goodfor 1RRED a

    • Excel Solver used to modify D, P, H, and R0 while maximizing the FIT .

    solventsbadfor 10R

    matchnot does predictionif

    definitionalexperimentmatchessolubilitypredicted if 1/1

    0nn RR ae

    FIT

    pi

  • Solubility Analysis “Made Simple”

    • Relative solubility is enough to find the HSPs and the solubility sphere• Relative solubility is enough to find the HSPs and the solubility sphere.Procedure• Weigh about 0.5 g of solute into a vial.• Add solvent drop wise recording the mass added• Add solvent drop-wise recording the mass added. • Stop when the solute completely dissolves, or when vial is full.• Weigh solution and calculate the mass % of solute.

  • Polymer Swelling Analysis “Made Simple”

    • Relative swell in a given amount of time is enough to determine the HSPs• Relative swell in a given amount of time is enough to determine the HSPs.Procedure• Create similar shaped samples (pellets are preferred).

    o Cured in “soda straws”o Cured in soda strawso Melted and cooled in a form (DSC pan)

    • Place pellets in a 4-mL vial and add solvents. • Take the initial photograph (fixed distance and magnification)• Take the initial photograph (fixed distance and magnification).• Repeat photography at regular intervals (1 hr for some, 1 day for others).

  • Chemical Hygiene and Polymer Interactions “Made Simple”• Solvent-surface interactions answer the following questions

    – Will this solvent soak into this glove, my skin, etc.?– Will this solvent wet this surface, swell this polymer?– Are these two surfaces similar, clean, etc?

    • Very simple procedure:• Very simple procedure:– Prepare surface– Place 20 L drop of each solvent on surface

    Score the interaction– Score the interaction (1 = spontaneously spreads, 2 = some spreading , 3 = no spreading)

    – Solve for interaction sphere

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0D P H R0Glass 18.0 8.0 19.0 10.0

    Source Solvent D P H Score1 Ace 15 5 10 4 7 0 11 Ace 15.5 10.4 7.0 12 ACN 15.3 18.0 6.1 33 APh 19.6 8.6 3.7 34 DMF 17 4 13 7 11 3 34 DMF 17.4 13.7 11.3 35 DMSO 18.4 16.4 10.2 36 EA 15.8 5.3 7.2 27 EtOH 18 8 8 8 19 4 17 EtOH 18.8 8.8 19.4 18 H2O 15.6 16 42.3 39 HEX 14.9 0 0 110 IPA 15.8 6.1 16.4 111 MEK 16 9 5.1 112 MeOH 15.1 12.3 22.3 113 NMP 18.0 12.3 7.2 314 PC 20.0 18.0 4.1 315 TOL 18 1.4 2 2

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0D P H R0Glass 18.0 8.0 19.0 10.0

    Source Solvent D P H Score Ra1 Ace 15 5 10 4 7 0 1 13 221 Ace 15.5 10.4 7.0 1 13.222 ACN 15.3 18.0 6.1 3 17.193 APh 19.6 8.6 3.7 3 15.644 DMF 17 4 13 7 11 3 3 9 664 DMF 17.4 13.7 11.3 3 9.665 DMSO 18.4 16.4 10.2 3 12.196 EA 15.8 5.3 7.2 2 12.88

    EtOH 18 8 8 8 19 4 17 EtOH 18.8 8.8 19.4 1 1.838 H2O 15.6 16 42.3 3 25.109 HEX 14.9 0 0 1 21.53

    2224 solutesolvsolutesolvsolutesolva HHPPDDR

    10 IPA 15.8 6.1 16.4 1 5.4511 MEK 16 9 5.1 1 14.5012 MeOH 15.1 12.3 22.3 1 7.9413 NMP 18.0 12.3 7.2 3 12.5614 PC 20.0 18.0 4.1 3 18.3915 TOL 18 1.4 2 2 18.24

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0 NOD P H R0 NOGlass 18.0 8.0 19.0 10.0 15

    Source Solvent D P H Score Ra RED1 Ace 15 5 10 4 7 0 1 13 22 1 3221 Ace 15.5 10.4 7.0 1 13.22 1.3222 ACN 15.3 18.0 6.1 3 17.19 1.7193 APh 19.6 8.6 3.7 3 15.64 1.5644 DMF 17 4 13 7 11 3 3 9 66 0 9664 DMF 17.4 13.7 11.3 3 9.66 0.9665 DMSO 18.4 16.4 10.2 3 12.19 1.2196 EA 15.8 5.3 7.2 2 12.88 1.288

    EtOH 18 8 8 8 19 4 1 7 EtOH 18.8 8.8 19.4 1 1.83 0.1838 H2O 15.6 16 42.3 3 25.10 2.5109 HEX 14.9 0 0 1 21.53 2.153

    solvents badfor 1solventsgoodfor 1

    0RRRED a

    10 IPA 15.8 6.1 16.4 1 5.45 0.54511 MEK 16 9 5.1 1 14.50 1.45012 MeOH 15.1 12.3 22.3 1 7.94 0.79413 NMP 18.0 12.3 7.2 3 12.56 1.25614 PC 20.0 18.0 4.1 3 18.39 1.83915 TOL 18 1.4 2 2 18.24 1.824

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0 NOD P H R0 NOGlass 18.0 8.0 19.0 10.0 15

    Source Solvent D P H Score Ra RED Ro-Ra1 Ace 15 5 10 4 7 0 1 13 22 1 322 3 221 Ace 15.5 10.4 7.0 1 13.22 1.322 3.222 ACN 15.3 18.0 6.1 3 17.19 1.719 7.193 APh 19.6 8.6 3.7 3 15.64 1.564 5.644 DMF 17 4 13 7 11 3 3 9 66 0 966 0 344 DMF 17.4 13.7 11.3 3 9.66 0.966 -0.345 DMSO 18.4 16.4 10.2 3 12.19 1.219 2.196 EA 15.8 5.3 7.2 2 12.88 1.288 2.88

    EtOH 18 8 8 8 19 4 17 EtOH 18.8 8.8 19.4 1 1.83 0.183 -8.178 H2O 15.6 16 42.3 3 25.10 2.510 15.109 HEX 14.9 0 0 1 21.53 2.153 11.53

    R0 – Ra is neededfor the fit function10 IPA 15.8 6.1 16.4 1 5.45 0.545 -4.55

    11 MEK 16 9 5.1 1 14.50 1.450 4.5012 MeOH 15.1 12.3 22.3 1 7.94 0.794 -2.06

    for the fit function.

    13 NMP 18.0 12.3 7.2 3 12.56 1.256 2.5614 PC 20.0 18.0 4.1 3 18.39 1.839 8.3915 TOL 18 1.4 2 2 18.24 1.824 8.24

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0 NO Good = 1Glass 18.0 8.0 19.0 10.0 15 Bad = 0

    Source Solvent D P H Score R RED R -R FlagSource Solvent D P H Score Ra RED Ro Ra Flag1 Ace 15.5 10.4 7.0 1 13.22 1.32 3.22 12 ACN 15.3 18.0 6.1 3 17.19 1.72 7.19 03 APh 19.6 8.6 3.7 3 15.64 1.56 5.64 0Fl th l t3 15.64 1.56 5.64 04 DMF 17.4 13.7 11.3 3 9.66 0.97 -0.34 05 DMSO 18.4 16.4 10.2 3 12.19 1.22 2.19 06 EA 15.8 5.3 7.2 2 12.88 1.29 2.88 1

    Flag the solvents as Bad Solvent!BAD, BAD,

    BAD!!!6 88 9 887 EtOH 18.8 8.8 19.4 1 1.83 0.18 -8.17 18 H2O 15.6 16 42.3 3 25.10 2.51 15.10 09 HEX 14.9 0 0 1 21.53 2.15 11.53 1

    “Good” or “Bad”. BAD!!!

    10 IPA 15.8 6.1 16.4 1 5.45 0.55 -4.55 111 MEK 16 9 5.1 1 14.50 1.45 4.50 112 MeOH 15.1 12.3 22.3 1 7.94 0.79 -2.06 113 NMP 18.0 12.3 7.2 3 12.56 1.26 2.56 014 PC 20.0 18.0 4.1 3 18.39 1.84 8.39 015 TOL 18 1.4 2 2 18.24 1.82 8.24 1

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0 NO Good = 1Glass 18.0 8.0 19.0 10.0 15 Bad = 0Solvent D P H Score R RED R -R Flag Pred.Solvent D P H Score Ra RED Ro Ra Flag Pred.Ace 15.5 10.4 7.0 0.0 13.22 1.32 3.22 1 0ACN 15.3 18.0 6.1 14.9 17.19 1.72 7.19 0 0APh 19.6 8.6 3.7 39.8 15.64 1.56 5.64 0 039.8 15.64 1.56 5.64 0 0DMF 17.4 13.7 11.3 30.2 9.66 0.97 -0.34 0 1DMSO 18.4 16.4 10.2 28.8 12.19 1.22 2.19 0 0EA 15.8 5.3 7.2 9.8 12.88 1.29 2.88 1 0

    If RED < 1, EtOH 18.8 8.8 19.4 0.0 1.83 0.18 -8.17 1 1H2O 15.6 16 42.3 45.2 25.10 2.51 15.10 0 0HEX 14.9 0 0 0.0 21.53 2.15 11.53 1 0

    then Prediction = 1, else Prediction = 0.

    IPA 15.8 6.1 16.4 0.0 5.45 0.55 -4.55 1 1MEK 16 9 5.1 0.0 14.50 1.45 4.50 1 0MeOH 15.1 12.3 22.3 0.0 7.94 0.79 -2.06 1 1

    Pred. = If(RED

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

    D P H R0 NO Good = 1 FIT

    Glass 18.0 8.0 19.0 10.0 15 Bad = 0 0Solvent D P H Score Ra RED Ro-Ra Flag Pred. AiAce 15.5 10.4 7.0 0.0 13.22 1.32 3.22 1 0 0.04ACN 15.3 18.0 6.1 14.9 17.19 1.72 7.19 0 0 1APh 19.6 8.6 3.7 39.8 15.64 1.56 5.64 0 0 1DMF 17.4 13.7 11.3 30.2 9.66 0.97 -0.34 0 1 0.7083DMSO 18.4 16.4 10.2 28.8 12.19 1.22 2.19 0 0 1EA 15 8 5 3 7 2 9 8 12 88 1 29 2 88 1 0 0 0561iA 1then

    Match,Pred.If

    EA 15.8 5.3 7.2 9.8 12.88 1.29 2.88 1 0 0.0561EtOH 18.8 8.8 19.4 0.0 1.83 0.18 -8.17 1 1 1H2O 15.6 16 42.3 45.2 25.10 2.51 15.10 0 0 1HEX 14 9 0 0 0 0 21 53 2 15 11 53 1 0 1E 05n

    RRi

    i

    eA

    Aa

    /1

    0 else

    ,1then

    HEX 14.9 0 0 0.0 21.53 2.15 11.53 1 0 1E-05IPA 15.8 6.1 16.4 0.0 5.45 0.55 -4.55 1 1 1MEK 16 9 5.1 0.0 14.50 1.45 4.50 1 0 0.0111MeOH 15.1 12.3 22.3 0.0 7.94 0.79 -2.06 1 1 1

    nn

    iiAFIT

    /1

    0.0 7.94 0.79 2.06 1 1 1

    NMP 18.0 12.3 7.2 25.6 12.56 1.26 2.56 0 0 1PC 20.0 18.0 4.1 46.4 18.39 1.84 8.39 0 0 1TOL 18 1.4 2 7.4 18.24 1.82 8.24 1 0 0.0003

    =if(Flag=Pred,1,exp(-abs(R0-Ra)))

  • Glass Interaction Sphere DeterminationGlass Interaction Sphere Determination

  • Glass Interaction Sphere ResultsGlass Interaction Sphere Results

    The HThe H--Bonding Axis Bonding Axis

    Glass Glass The Center of the The Center of the

    Interaction SphereInteraction Sphere DispersionDispersion

    AxisAxis

    Polar Axis Polar Axis (2*D)(2*D)

  • Often, many “Perfect Fits” are available• The ambiguity of the results is reduced as the number of solvents increases.• Minimum sphere is “better defined” than the maximum sphere.

    Maximum 3NA Solubility SphereMaximum 3NA Solubility Sphere Minimum 3NA Solubility SphereMinimum 3NA Solubility SphereMaximum 3NA Solubility SphereMaximum 3NA Solubility SphereD = 16.2D = 16.2P = 14.7P = 14.7H 14 2H 14 2

    Minimum 3NA Solubility SphereMinimum 3NA Solubility SphereD = 17.2D = 17.2P = 12.8P = 12.8H 7 7H 7 7H = 14.2H = 14.2

    RR00 = 8.9= 8.9H = 7.7H = 7.7RR00 = 5.3= 5.3

  • Solvent Blending• HSP are volume-fraction-weighted for blends

    DDDD iiBlend ...2211 iD

    VV

    itotal

    ii for HSPan and where

    • Non-solvents can be mixed in a manner to bring the HSPs for the blend within the interaction sphere. – A suitable binary blend should have a line that passes through the sphereA suitable binary blend should have a line that passes through the sphere.– A 3-component blend should have a triangle that passes through the sphere.

  • Toluene (TOL) and 2Toluene (TOL) and 2 propanol (IPA) are NOT good choicespropanol (IPA) are NOT good choices

    3NA Binary Blend Predictions3NA Binary Blend Predictions

    Toluene (TOL) and 2Toluene (TOL) and 2--propanol (IPA) are NOT good choices.propanol (IPA) are NOT good choices.One part TOL to 2 parts IPA should make a blend slightly better One part TOL to 2 parts IPA should make a blend slightly better

    than IPA itself.than IPA itself.

    EthylacetateEthylacetate (EA) and (EA) and acetonitrileacetonitrile (ACN) are (ACN) are VERY good choices.VERY good choices.

    A 1:1 blend of EAA 1:1 blend of EAA 1:1 blend of EA A 1:1 blend of EA and ACN should and ACN should dissolve 3NA well.dissolve 3NA well.

  • Approximately 1 part EA : 1 part IPA : 2 parts ACN wouldApproximately 1 part EA : 1 part IPA : 2 parts ACN would

    3NA 33NA 3--Component Blend PredictionsComponent Blend Predictions

    Approximately 1 part EA : 1 part IPA : 2 parts ACN would Approximately 1 part EA : 1 part IPA : 2 parts ACN would make a good 3make a good 3--component blend for 3NA.component blend for 3NA.

  • Approximately 1APh : 2 EA : 1 IPA : 3 ACN would makeApproximately 1APh : 2 EA : 1 IPA : 3 ACN would make

    3NA 43NA 4--Component Blend PredictionsComponent Blend Predictions

    Approximately 1APh : 2 EA : 1 IPA : 3 ACN would make Approximately 1APh : 2 EA : 1 IPA : 3 ACN would make a good 4a good 4--component blend for 3NA.component blend for 3NA.

  • Optimum Blend Components via the Excel Solver Tool

  • Optimum Blend Components via the Excel Solver Tool

    • If a component is not needed, Solver will eliminate it.• This does not address miscibility. That must be tested in the lab.

  • Summary of Part 1HSPs are tabulated in the literature

    One can add the benefits of Hansen• Hansen, C. M. Hansen Solubility

    Parameters: A User’s Handbook 2nd EdBoca Raton, FL; CRC Press LLC, 2007. $150 (www amazon com)

    One can add the benefits of Hansen Solubility Parameter analysis to their operation for a minimal cost.

    $150 (www.amazon.com)Minimal costs associated with:• Pt:Ir ring $397 (www.vwr.com) • Density sinker $363 (www vwr com)

    In many cases, existing equipment can be modified to measure molar volume, density and surface tension • Density sinker $363 (www.vwr.com)

    • Tempering beaker $94 (www.finmech.com)

    • DinoLite Digital microscope $185

    density, and surface tension.

    Part 2 will further developcleaning verification topics DinoLite Digital microscope $185

    (www.microscope.com) HSP analysis• HSPiP Software and e-Book $840

    cleaning verification topics,solvent blending, and HSP predictions of newsolvent candidates S So t a e a d e oo $8 0(www.hansen-solubility.com) solvent candidates.