a basis-deficiency-allowing primal phase-i algorithm using ... · implementation largely...

12
ELSEVIER An IntemationalJoumal Available online at www.sciencedirect.com computers & -~,=-=, ~__~o,-=~. mathematics with applications Computers and Mathematics with Applications 51 (2006) 903-914 www.elsevier, com/locat e/camwa A Basis-Deficiency-Allowing Primal Phase-I Algorithm using the Most-Obtuse-Angle Column Rule WEI LI School of Science Hangzhou Dianzi University Hangzhou 310018, P.R. China weilihz@126, com P. GUERRERO-GARCfA* AND /~k. SANTOS-PALOMO Department of Applied Mathematics University of M£1aga 29071 M£1aga, Spain <pablito><sant os>~ctima, uma. es http ://www. satd. uma. es/matap/personal/pablito/ (Received March 2005; accepted November 2005) Abstract--The dual Phase-I algorithm using the most-obtuse-angle row pivot rule is very efficient for providing a dual feasible basis, in either the classical or the basis-deficiency-allowing context. In this paper, we establish a basis-deficiency-allowing Phase-I algorithm using the so-called most-obtuse- angle column pivot rule to produce a primal (deficient or full) basis. Our computational experiments with the smallest test problems from the standard NETLIB set show that a dense projected-gradient implementation largely outperforms that of the variation of the primal simplex method from the commercial code MATLAB LINPROG vl.17, and that a sparse projected-gradient implementation of a normalized revised version of the proposed algorithm runs 34°~ faster than the sparse implementation of the primal simplex method included in the commercial code TOMLAB LPSOLVE V3.0. (~) 2006 El- sevier Ltd. All rights reserved. Keywords--Simplex method, Deficient basis, Pivoting rule, Most-obtuse-angle rule. 1. INTRODUCTION The pivoting rule used is crucial to the simplex method. As a result, in the past a variety of pivot rules have been proposed. It is noticeable that among them the most-obtuse-angle row pivot rule is very efficient for achieving dual feasibility in the classical simplex context [1,2]. The first author of this work was supported by NSFC Grant 10371017 and NSF Grant of Hangzhou Dianzi University KYS091504025. Review of an early draft by the first author dated in October, 2002. *Author to whom all correspondence should be addressed. The authors thank P.-Q. Pan for many helpful comments and suggestions that greatly improve the quality of the paper. 0898-1221/06/$ - see front matter (~) 2006 Elsevier Ltd. All rights reserved. Typeset by .A.A/b~-q~,X doi: 10.1016/j.camwa.2005.11.033

Upload: phungnguyet

Post on 04-Apr-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

ELSEVIER

An Intemational Joumal Available online at www.sciencedirect.com computers &

-~,=-=, ~__~o,-=~. mathemat ics with applications

Computers and Mathematics with Applications 51 (2006) 903-914 www.elsevier, com/locat e/camwa

A Basis-Deficiency-Allowing Primal Phase-I Algori thm

using the Most-Obtuse-Angle Column Rule

W E I L I School of Science

Hangzhou Dianzi Univers i ty Hangzhou 310018, P.R. Ch ina

weilihz@126, com

P. GUERRERO-GARCfA* AND /~k. SANTOS-PALOMO Department of Applied Mathematics

University of M£1aga 29071 M£1aga, Spain

<pablito><sant os>~ctima, uma. es

http ://www. satd. uma. es/matap/personal/pablito/

(Received March 2005; accepted November 2005)

A b s t r a c t - - T h e dual Phase-I algorithm using the most-obtuse-angle row pivot rule is very efficient for providing a dual feasible basis, in either the classical or the basis-deficiency-allowing context. In this paper, we establish a basis-deficiency-allowing Phase-I algorithm using the so-called most-obtuse- angle column pivot rule to produce a primal (deficient or full) basis. Our computational experiments with the smallest test problems from the standard NETLIB set show that a dense projected-gradient implementation largely outperforms that of the variation of the primal simplex method from the commercial code MATLAB LINPROG vl.17, and that a sparse projected-gradient implementation of a normalized revised version of the proposed algorithm runs 34°~ faster than the sparse implementation of the primal simplex method included in the commercial code TOMLAB LPSOLVE V3.0. (~) 2006 El- sevier Ltd. All rights reserved.

K e y w o r d s - - S i m p l e x method, Deficient basis, Pivoting rule, Most-obtuse-angle rule.

1. I N T R O D U C T I O N

T h e p i v o t i n g ru le used is c ruc ia l to t h e s i m p l e x m e t h o d . As a r e su l t , in t h e p a s t a v a r i e t y of p i v o t

ru les have b e e n p r o p o s e d . I t is n o t i c e a b l e t h a t a m o n g t h e m t h e m o s t - o b t u s e - a n g l e row p i v o t ru le

is v e r y eff icient for a c h i e v i n g d u a l f eas ib i l i ty in t h e c lass ica l s i m p l e x c o n t e x t [1,2].

The first author of this work was supported by NSFC Grant 10371017 and NSF Grant of Hangzhou Dianzi University KYS091504025. Review of an early draft by the first author dated in October, 2002. *Author to whom all correspondence should be addressed. The authors thank P.-Q. Pan for many helpful comments and suggestions that greatly improve the quality of the paper.

0898-1221/06/$ - see front matter (~) 2006 Elsevier Ltd. All rights reserved. Typeset by .A.A/b~-q~,X doi: 10.1016/j.camwa.2005.11.033

904 WE1 L] et al.

On the other hand, Pan generalized the concept of basis to include the deficient case, and established primal and dual pivot algorithms based on it [3-5]. Since the basis concept is cru- cial for pivot algorithms, this generalization provides us with a further improvement possibility. Computational results do show that the proposed basis-deficiency-allowing algorithms perform very favorably.

Therefore, it is very attractive to combine the most-obtuse-angle rule and the basis-deficiency- allowing algorithms. Along this line, Pan, Li and Wang recently developed a new dual Phase-I algorithm using the most-obtuse-angle row rule in the basis-deficiency-allowing context [6], and demonstrated its promise of success. On the other hand, similar effort has been made with primal cases by Santos-Palomo and Guerrero-Garcfa [7,8].

To make further progress, this paper develops a (primal) Phase-I algorithm using the most- obtuse-angle column pivot rule in the basis-deficiency-allowing context. For completeness, in the next section, we briefly present the basis-deficiency-allowing pivot algorithms [3,4]. Then in Sec- tion 3, we describe the most-obtuse-angle column rule, and establish the basis-deficiency-allowing Phase-I procedure which uses it. In Section 4, we make some comments on the new algorithm. Finally, in Section 5, we report our computational results obtained with a set of standard test problems from NETLIB. These results show that a dense projected-gradient implementation largely outperforms that of the variation of the primal simplex method from the commercial code MATLAB LINPROG V1.17 [9], and that a sparse projected-gradient implementation of a normal- ized revised version of the proposed algorithm runs 34% faster than the sparse implementation of the primal simplex method included in the commercial code TOMLAB LPSOLVE V3.0 [10].

For unillustrated terminologies and symbols, we refer the reader to [3,4].

2. P R E L I M I N A R I E S

Consider the following linear program in standard form,

min c T x

s.t. A x = b (1)

x>_O,

where A C R mxn with rn < n, and b C R m, x , e E R n, 1 N rank(A) < m. It is assumed that the cost vector c, the right-hand side b, and the columns and rows of A are nonzero, and that

A x = b

is consistent. Conventionally, a basis is defined as a square nonsingular submatrix from the coefficient ma-

trix A. The basis-deficiency-allowing variation of the simplex method generalized the basis as follows [4].

DEFINITION 1. (See [4].) A basis is a submatrix consisting of any linearly independent subset o f columns of A, whose range space includes b.

According to Definition 1, the bases may be classified into two categories.

DEFINITION 2. (See [4].) I f the number of basic columns equals the number of rows of the coefficient matrix, it is a normal basis; else, it is a deficient basis. Clearly, traditional simplex

variants use normal bases only.

Let B be a basis with m l columns and let N be the corresponding nonbasis, consisting of the remaining n - m l columns. Define the ordered basic and nonbasic index sets respectively by

J B = { J l , ' " , J m l }

Basis-Deficiency-Allowing Primal Phase-I Algorithm 905

and

J s = { k l . . . . ,

where j~, i = 1, . . . ,m l , is the index of the i th column of B, and

k j , j = 1 , . . . , n - m l ,

the index of the j t h column of N. The subscript of a basic index j i is called a row index, and that of a nonbasic index kj is called a column index. Components of x and c, and columns of A, corresponding to a basis and a nonbasis are subscripted with B and N, respectively. Hereafter, for simplicity of exposition, components of vectors and columns of matrices will always be arranged, and partitioned conformably, as the JB, J g changes. Thus, we have

A = [B, N] = [ a j , , . . . , a j,,,, ; a t , , , . . . , ak . . . . . ],

C T = [CB, C~N] = [ C j , , . . . , Vim, ; C t " l , . . . , Ct" . . . . . . 11,

XT T T = [ X B , X N ] = [ X j , , . . . , X j , o , ; X k , , . . . , X k . . . . . . 1] .

It is pedagogically convenient to use the tableau form for linear programming. Assume that the tableau form of (1) is

[B N b]. (2)

Assuming m l < 'm, after a series of appropriate Gauss or orthogonal transformations (we use orthogonal transformations here), we obtain

[B N b ] ~ [ B N b ] : = 292 0 ' (3)

where/71 E R m1×'~1 is an upper triangular matrix with nonzero diagonal entries. The reduced cost

= - -RTD -%B

and associated primal basic solution then is

XN = 0, XB = B l l b l , (4)

with corresponding objective value, f = C T B l l b l .

These entities are assumed to be updated after each iteration of the algorithm. Expression (3) is termed a canonical tableau. Since it is different from a corresponding basis

B by only a nonsingular matrix factor , /? will be called basis as well. By using the notation above, we have the following.

THEOREM 1. (See [4].) I f xB >-- 0 and ~N >-- O, then • is an optimal solution to the linear program (1).

3. T H E M O S T - O B T U S E - A N G L E

C O L U M N R U L E

The primal simplex procedure with a deficient basis needs a primal feasible basis to get itself started. Once an initial basis is available, which is neither primally nor dually feasible, a Phase-I procedure is then needed to achieve primal (or dual) feasibility. Recently, a dual Phase-I algorithm

906 WEI LI et al.

using the most-obtuse-angle rule with a deficient basis was described to achieve dual feasibility by Pan, Li and Wang [6]. In this section, we propose a primal version of the algorithm.

Define the row index sets I and H by

z = {i I < o, i - - 1 , . . . , m l } ,

H = { j l S k j < 0 , j = l , . . . , n - m l } ,

respectively. Suppose now that tableau (3) is primatly infeasible, i.e., the set I is nonempty. If it is dually feasible, i.e., the set H is empty, then the basis-deficiency-allowing dual simplex algorithm is immediately applicable; otherwise, H ¢ ¢ and Phase-I steps should be taken to achieve primal feasibility.

Now, assume 5: B ~ 0 and 5N ~ 0, i.e., I ~ ¢ and H ¢ ¢. Select the pivot row index p such that

p = Argmin {2j, I i E I}. (5)

Denote by ~ ~ _

the matrix resulting from the [/~, N, b] by bringing the pth column of /~ to the end of N, with JB and JN adjusted conformably. If p < ml , then/71 E R mlx(ml-1) is upper Hessenberg with nonzero subdiagonal entries in its p through (ml - 1) th columns. A sequence of Givens rotations

Gj E R mlxml, j = p , . . . , r n l - 1,

can be determined such that Qln-/?I E R ml×(ml-1) is upper triangular, where Q1T = Gml-1 • .. Gp. Consequently, we have

['71 ':0 where [m--ml C R (m-ml )x (m--ml) iS the identity matrix.

Denote with

d := (s)

Clearly, d is a search direction in Zy-space [4]. However, we shall not compute d by (8), because an orthogonal transformation technique proposed by Pan [4] can be used to compute d at a lower cost as follows.

If we now redefine

[B,N,b] := diag (QT,I~_m,) [/),/V,b]

then from [4] we know that we can easily compute el, the same direction of d, by the following formula,

ct = -S ign (b,~l)NTeml. (9)

When the set

is empty, the dual program is unbounded above, and hence program (1) has no feasible solution; otherwise, a column index q is chosen by the following.

Basis-Deficiency-Allowing Primal Phase-I Algorithm 907

RULE 1. MOST-OBTUSE-ANGLE COLUMN SELECT RULE.

q= Argmin {dj [ j E J } . (11)

Then, we bring the qth column of N to the end of B, with JB and Jg adjusted conformably. Thus, after the m through (ml + 1) th components of the column are zeroed using an appropriate sequence of Givens rotations G~-, j -- m - 1 , . . . , ml , the iteration is completed. This is referred to as a full iteration, since the number of basic columns remains unchanged. The next can be either a full or a rank-increasing iteration (the number of basic columns grows by one), depending on whether bin1+1 is equal to zero or not. Clearly, a rank-increasing one will not include the steps prior to the computation of d by (9).

The overall process is summarized as follows.

ALGORITHM 1. Given an initial canonical tableau (3) and associated sets JB and JN, xB = [~1bl, x.g : 0:

1 ° Stop if ~B --> 0; 2 ° Determine row index p by (5); 3 ° Bring the pth colunm of B to the end of N, and adjust JB and Jg conformably; 4 ° If p < ml , annihilate nonzero subdiagonal entries in the p through (ml - 1) th columns of

B by premultiplying [B, N, b] by appropriate Givens rotations; 5 ° Compute d by (9); 6 ° Stop if the set defined by (10) is empty; 7 ° Determine column index q by (11); 8 ° Bring the qth column of N to the end of B, and adjust JB and JN conformably; 9 ° If m l < m, annihilate the m through (ml + 1) th components of m l TM column of B by

premultiplying [B, N, b] by appropriate Givens rotations; 10 ° Go t o l ° i f m l = m o r b m l + l = 0 ; 11 ° Set m l := m l + 1; 12 ° Goto 5 °.

It is noted that there is no assumption on set J at all in the above algorithm, making a key difference from the original dual algorithm with deficient basis [4, Section 4] in which H = ¢ is assumed. Once primal feasibility is achieved by Algorithm 1, the main procedure described in [4, Section 3] can then be used to complete the whole computation.

THEOREM 2. Assuming termination of Algorithm 1, it must take place at either

(1) Step 1 °, with primal basic feasible solution reached; or (2) Step 6 °, detecting the infeasibility of program (1).

PrtOOF. The correctness of the first statement is obvious and hence is omitted. Let us discuss the second one. From the canonical tableau of (1), we have

xp + ~ djxj = bp, (12) jEJN

where bp < 0 and min{dj I J = 1 , . . . , n - ml} >_ 0.

Thus, (12) has no nonnegative solution. This completes the proof.

4. C O M M E N T S O N

T H E P I V O T I N G R U L E

Let us take a look at the finiteness of the algorithm. Since there are only finitely many bases, the algorithm does not terminate if and only if cycling occurs. Furthermore, since the number

908 WEI LI et al.

of columns of a basis never decreases in the process, a cycle never involves any rank-increasing iteration. In other words, cycling can only occur in full iterations. This algorithm belong to the class of 'infinite' algorithms, since the possibility of cycling cannot be ruled out theoretically at present; in fact, a cycling example has been recently given by Cuerrero-Garcfa and Santos- Palomo [11] in the classical context. From a practical point of view, finiteness is not a serious problem: first, it is well known that computational performance of existing 'finite' simplex vari- ants is unsatisfactory whereas successful simplex variants are actually 'infinite', such as Dantzig's conventional simplex method. Second, as degeneracy occurs in practice very frequently, finiteness proofs under nondegeneracy assumption is only of conceptual or pedagogical interest. It might not be wise to confine ourselves to develop finite algorithms.

Algorithm 1 has some attractive features. First of all, due to the use of Rule 1, a ratio-test-free pivot rule, it needs fewer computation time per iteration than conventional algorithms. Second, it can get started from any initial basis and hence, there will be no need to introduce artificial variables. It is clear that the problem size and hence the computational effort would increase significantly if the process of finding an initial feasible solution was treated in the usual manner by introducing artificial variables. In addition, the column selection rule in Algorithm 1 chooses a pivot candidate possessing the maximum absolute value, hence this will improve numerical behaviour. Indeed, it is more than that, the most obtuse angle rule is favourable from the following geometrical point of view. The direction d is computed in terms of an ascent direction with respect to the dual objective. Clearly, the gradient of the left-hand side of the constraint zk~, > 0 makes the most obtuse angle with d among all nonnegative constrains

zk~ > 0 , i - - - 1 , . . . , n - m l .

It is clear that, if the direction d is closer to the ascent direction b, the gradient of the dual objective, then the gradient of the left-hand side of the constraint

zk,t >_ 0

also makes the most obtuse angle with b. Under the spirit of Pan's geometrical characterization of an optimal basis (or nonbasis) [12], therefore, we know that Zkq is eligible to be used as an optimal nonbasic variable for the dual problem. Thus, xkq is an optimal basic variable with respect to the primal problem according to the complementary slackness conditions.

All these remarks makes Algorithm 1 a promising Phase-1 for the primal basis-deficiency al- lowing (BDA) simplex algorithm.

The algorithm is closely related with that called "dual-then-primal" in [13, Section 3, p. 8], which consists in first using a dual BDA algorithm [4, Section 4] but with its min-ratio test replaced by a most-obtuse-angle rule, i.e., normalizing the ratio-test-free rule obtained when

min~ 5~ ~ J [ - d j J is replaced by m i n { d j } , wheredj " a T d P k s <0 ,

to obtain the most-obtuse-angle rule in which

[ ~ l is replaced by , ks < 0,

and then using a primal BDA algorithm [4, Section 3] but with a normalized criterion to determine the entering variable. Note that within this framework, the crash heuristic [3, Section 4] employed to obtain the initial basis and the Phase-I given here form an unique dual phase: the dual BDA algorithm adds constraints for which

a~ d P < 0

Basis-Deficiency-Allowing Primal Phase-I Algorithm 909

one after another in accordance with the normalized ratio-test-free rule described above until a

first basis is available, a suitable deletion is performed to obtain a new search direction d P and

then a sequence of constraint additions takes place but now in accordance with the unnormalized

ratio-test-free rule. Furthermore, the column rule used to select the entering variable in the

primal BDA algorithm is not usually normalized. When the normalized rules are used everywhere,

the algorithm obtained is essentially the sagitta method given by Santos-Palomo in [7] with its

restarting procedure done before entering its primal-feasibility search loop (see [14], where other

possibilities are explored); as we shall illustrate in the next section, the differences in performance obtained with the unnormalized and normalized sparse versions are appreciable.

5. C O M P U T A T I O N A L R E S U L T S

We h a v e c a r r i e d o u t a d e n s e i m p l e m e n t a t i o n u s i n g p r o j e c t e d g r a d i e n t t e c h n i q u e s b a s e d o n a n

o r t h o g o n a l f a c t o r i z a t i o n of AB, in p a r t i c u l a r , t h a t o b t a i n e d w i t h t h e c lass ica l G r a m - S c h m i d t

m e t h o d w i t h r e o r t h o g o n a l i z a t i o n [15, Sec t ion 2.4]. A s y s t e m a t i c u p d a t e a n d d o w n d a t e of t h e

f ac to r Q c lI~ m x m l w i t h o r t h o n o r m a l c o l u m n s a n d t h e t r i a n g u l a r f a c t o r B1 E R m l x m l is c a r r i ed

o u t in t h i s r ev i sed i m p l e m e n t a t i o n , see de t a i l s in [16].

We h a v e c o n d u c t e d some d e n s e c o m p u t a t i o n a l e x p e r i m e n t s u s i n g MATLAB V5.3 ( w i t h a n I n t e l

P e n t i u m 4, 3.0 Ghz , 512 M b R A M ) to c o m p a r e t h e u n n o r m a l i z e d r ev i s ed v e r s i o n of t h e P h a s e - I

g iven a b o v e a g a i n s t t h e MATLAB LINPROG V 1 . 1 7 [9] d e n s e i m p l e m e n t a t i o n of a v a r i a t i o n of

t h e u sua l p r i m a l s i m p l e x m e t h o d . O u r c o m p u t a t i o n a l e x p e r i m e n t h a s b e e n p e r f o r m e d b y u s i n g

a s u b s e t of t h e s t a n d a r d NETLIB b e n c h m a r k [17]; al l p r o b l e m s w i t h less t h a n 3500 n o n z e r o s

in w h i c h n e i t h e r B O U N D S n o r R A N G E S sec t ions o c c u r h a s b e e n se lec ted . T h e de t a i l s of a

qu i t e s imi l a r spa r se c o m p u t a t i o n a l e x p e r i e n c e c a n b e f o u n d in [8, Sec t i on 5] a n d [18], w h e r e t h e

o r d e r i n g a n d sca l ing t e c h n i q u e s app l i ed to t h e t e s t p r o b l e m s in T a b l e 1 a re d e s c r i b e d . T h e d e n s i t y

# 1

2

3

4

8

6

9

7

10

12

14

15

17

22

19

20

16

23

29 31

30

26

28

Table 1. Linear programming test problems in standard form from NETLIB.

Name Optimal Value

AFIRO --.46475314286e + 3

SC50B --.70000000000e + 2

SC50A --.64575077059e + 2

SC105 -.52202061212e + 2

STOCFOR1 --.41131976219e + 5

ADLITTLE .22549496316e + 6 BLEND --.30812149846e + 2

SCACa7 --.23313898243e + 7

Sc205 -.52202061212e + 2

SHARE2B --.41573224074e + 3

LOTFI --.25264706062e + 2

SHAREIB --.76589318579e + 5

SCORPION .18781248227e + 4

BRANDY .15185098965e + 4 SCAGR25 --.14753433061e + 8 SCTAPI .14122500000e + 4

DUISRAEL .89664482186e+6

ISRAEL --.89664482186e + 6

BANDM --.15862801845e + 3

SCFXMI .18416759028e + 5

E226 -.18751929066e + 2

SCSDI .86666666743e + i AGG --.35991767287e + 8

n m nnz(A) nnz(c) nnz(b) nnz dns

51 27 102 5 7 114 22

78 50 148 1 5 154 11

78 50 160 1 10 171 12

163 105 340 1 20 361 7

165 117 501 27 8 536 13

138 56 424 82 37 543 19 114 74 522 30 8 560 23

185 129 465 133 53 651 8

317 205 665 1 38 704 4

162 96 777 36 24 837 10

366 153 1136 8 49 1193 31

253 117 1179 31 103 1313 13

466 388 1534 282 76 1892 4

303 220 2202 2 54 2258 32 671 471 1725 475 179 2379 3

660 300 1872 360 154 2386 6

316 142 2411 171 89 2671 28

316 174 2443 89 171 2703 22

472 305 2494 165 118 2777 17 600 330 2732 23 116 2871 10

472 223 2768 189 99 3056 17 760 77 2388 760 1 3149 49

615 488 2862 131 432 3425 4

910 WEI L[ et al.

#

1

2

3

4

6

7

8

9

10

12

14

15

16

17

19~

20

22b

23a

26

28ed

29ab

30a

31a

Table 2. 10657 dense iterations in 66.1 minutes with MATLAB LINPROG vl.17: (a) the problem is badly conditioned (the solution may not be reliable); (b) maximum number of iterations exceeded; (c) divide by zero; (d) the constraints are overly stringent (no feasible starting point found).

Optimal Value Its

-4.647531428571369e 4- 2 34

-6.999999999998724e 4- 1 48

--6.457507705855319e 4- 1 49

-5.220206121152414e 4- 1 155

2.254949631623806e + 5 109

-2.331389824033978e + 6 291

-4.113197621943637e + 4 138

-3.081214984555769e 4- 1 102

-5.220205511471001e + 1 383

CntSc MinRed MinVar DuaGap

14 - l e - 14 - l e - 13 - 6 e - 12

17 0e 4- 00 3e+01 - l e - 11

16 0e 4- 00 - l e - 14 - l e - 11

331 - 4 e - 17 - l e - 13 - 2 e - 10

45 - 6 e - 14 4 e - 15 3 e - 11

967 2e - 03 le 4- 01 - 3 e - 04

425 4e 4- 00 - 6 e - 15 0e 4- 00

86 - l e - 15 - 2 e - 16 - 3 e - 10 4374

-4.157322407413797e + 2 192 203

-2.526463392655504e 4- 1 586 2072

--7.658931857917045e + 4 244

8.966448218630457e + 5 351

1.878124822738103e 4- 3 396

1.069507249599776e 4- 7 1185

1.412249999999994e + 3 849

O.O00000000000000e + 0 1101

-8.724890524549816e 4- 5 494

8.666666674333362e 4- 0 113

-9.714485304728061e 4- 7 0

1.079112845981221e + 7 1526

-1.874248957270827e4-1 1044

3.059466008444887e + 9 1267

361

- -5e- 17

- - l e - 13

l e - 19

- -3e- 12

--le + 05

- 9 e - 14

--4e- 11

--6e -- 06

- 8 e - 11

--4e -- ii

- 7 e -- 05

7e - 04 8e - 01 - 2 e -- 08

327 le 4- 00 --4e - 16 2e - 09

14380 0e + 00 --2e - 14 7e - 12

81699 --3e - 01 - 9 e - 13 --2e + 07

38545 --3e - 12 - 5 e - 14 6e - 12

36550 0e + 00 0e + 00 0e + 00

1786 --5e + 01 le -- 03 -- le + 03

341 --le - 15 - 6 e -- 16 - - 7 e - 15

1145 0e + 00 0e + 00 0e 4- 00

62109 0e 4- 00 0e 4- 00 0e 4- 00

30575 - 5 e - 15 --5e - 14 - 9 e - 03

120208 --3e + 09

(in p e r c e n t a g e ) of t h e Cho lesky fac tor of ATA for t h e o r d e r i n g chosen (no t re levant for dense

t ab les ) has b e e n i nc luded as t he r i g h t - m o s t co l u mn of t h e tab le . No a d d i t i o n a l p r ep ro ces s i n g

t e c h n i q u e s have b e e n used.

T h e i n f o r m a t i o n t h a t has b e e n inc luded in each row of t h e Tables 2 -6 ( f rom left to r ight) is:

t he n u m b e r in Table 1 of t h e t e s t p rob l em, t h e o p t i m a l value, t h e n u m b e r of i t e r a t i ons p e r f o r m e d ,

t he e l apsed t i m e (in h u n d r e d t h s of a second) , t he m i n i m u m r e d u c e d cost , t h e m i n i m u m value of

t h e c o m p u t e d so lu t ion , and t h e dua l i t y gap.

T h e m a i n o u t c o m e o b t a i n e d in t h e dense case is t h a t 6638 (in 2.8 m i n u t e s , see Table 3) i t e r a t i ons

were p e r f o r m e d by t h e u n n o r m a l i z e d vers ion , versus 10657 (in 66.1 m i n u t e s , see Table 2) n eed ed

by LINPROG. F u r t h e r m o r e , LINPROG was unab le to solve several p r o b l e m s in less t h a n 5m

i t e ra t ions , and some of t h e m faced w i t h numer ica l p r o b l e m s . Hence , t h e u n n o r m a l i z e d vers ion

largely o u t p e r f o r m s LINPROG.

A su i t ab le spa r se o r t h o g o n a l a p p r o a c h is to a d a p t t h e m e t h o d o l o g y of Bj5rck [19] a n d Ore-

b o r n [20] to be able t o app ly the spa r se NNLS a l g o r i t h m (via c o r r e c t e d s e m i n o r m a l equa t i ons

(CSNE) w i t h t he Cho le sky fac tor RB of ATBAB) w i t h a " s h o r t - a n d - f a t " m a t r i x A. T h e y p r o p o s e d

an ac t ive se t a l g o r i t h m for t h e spa r se leas t squares p r o b l e m

min imize 1/2 • x r C x + dmx, x E ~n, s u b j e c t to l < x < u,

w i t h C > 0. I t t u r n s ou t t h a t our P h a s e - I is also r e l a t ed w i t h t h e p r o b l e m in wh ich

C = A T A A d = - A T b A , V i = l . . . . , n , l ~ = 0 A u i = + o o ,

b u t C > 0, hence to m a i n t a i n a spa r se Q R fac to r i za t ion o f AB we have h a d to a d a p t [21] t h e

p r o p o s e d t e c h n i q u e as in [22], b u t w i t h o u t fo rming C. T h e c o l u m n o r d e r i n g of A d i c t a t e s t h a t

#

1

2

3

4

6

7

8

9

10

12

14

15

16

17

19

20

22

23

26

28

29

30

31

B a s i s - D e f i c i e n c y - A l l o w i n g P r i m a l P h a s e - I A l g o r i t h m

T a b l e 3. 6638 d e n s e i t e r a t i o n s in 2.8 m i n u t e s ( u n n o r m a l i z e d ru le) .

O p t i m a l v a l u e I t s

- 4 , 6 4 7 5 3 1 4 2 8 5 7 1 4 3 e 4- 2 23

- 7 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e + 1 60

- 6 . 4 5 7 5 0 7 7 0 5 8 5 6 4 5 e 4- 1 60

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 e 4- 1 132

2 . 2 5 4 9 4 9 6 3 1 6 2 3 8 0 e 4- 5 138

- 2 . 3 3 1 3 8 9 8 2 4 3 3 0 9 8 e 4- 6 188

- 4 , 1 1 3 1 9 7 6 2 1 9 4 3 6 4 e 4- 4 140

- 3 . 0 8 1 2 1 4 9 8 4 5 8 2 8 2 e 4- 1 119

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 e 4- 1 263

- 4 . 1 5 7 3 2 2 4 0 7 4 1 4 1 8 e 4- 2 172

- 2 . 5 2 6 4 7 0 6 0 6 1 8 8 0 0 e 4- 1 316

- 7 . 6 5 8 9 3 1 8 5 7 9 1 8 5 6 e 4- 4 305

8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 6 e 4- 5 265

1 . 8 7 8 1 2 4 8 2 2 7 3 8 1 1 e 4 - 3 376

- 1 . 4 7 5 3 4 3 3 0 6 0 7 6 8 5 e 4- 7 665

1 . 4 1 2 2 5 0 0 0 0 0 0 0 0 0 e 4- 3 369

1 . 5 1 8 5 0 9 8 9 6 4 8 8 1 3 e 4 - 3 310

- 8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 6 e 4- 5 386

8 . 6 6 6 6 6 6 6 7 4 3 3 3 3 7 e 4- 0 143

- 3 . 5 9 9 1 7 6 7 2 8 6 5 7 6 5 e 4- 7 556

- 1 . 5 8 6 2 8 0 1 8 4 5 0 1 2 1 e 4- 2 570

- 1 . 8 7 5 1 9 2 9 0 6 6 3 7 0 5 e 4- 1 601

1 . 8 4 1 6 7 5 9 0 2 8 3 4 8 9 e 4- 4 481

911

C n t S c MinR,ed M i n V a r D u a G a p

2 - 7 e - 32 - 9 e - 16 - 2 e - 13

9 0e 4- 00 3e 4- 01 l e - 13

8 0e 4- 00 0e 4- 00 7e - 14

39 - l e - 34 - l e - 15 2e - 13

34 - l e - 13 2 e - 15 2e - 10

141 2e - 03 l e 4- 01 9e - 10

36 4e + 00 - l e - 14 9 e - 11

31 0e 4- 00 - l e - 15 - l e - 14

247 - 3 e - 33 2e - 17 - 6 e - 13

86 - 4 e - 16 0e 4- 00 2e - 12

292 - l e - 18 - 8 e - 14 5 e - 13

220 7e -- 04 8e -- Ol --4e -- I0

169 l e 4 - 0 0 --2e -- 17 le -- 09

1017 Oe 4- O0 --2e -- 15 7e -- 13

5063 5e -- 02 --9e -- 12 - - l e -- 08

995 --6e -- 14 --Te -- 16 l e - - 12

- - l e - - 13 9e- - 13 375 - l e - 16

402 - 6 e - 14 le - 03 5e - i 0

i00 - 9 e - 16 - 6 e - 16 - l e - 14

3241 - 2 e - 15 - 2 e - 11 8e - 06

1678 Oe 4- O0 - 3 e - 15 - 6 e - 13

1041 Oe 4- O0 - 5 e - 16 - 2 e - 14

1628 - 2 e - 15 - 9 e - 14 2e - 11

#

1

2

3

4

6

7

8

9

I0

12

14

15

16

17

19

20

22

23

26

28

29

30

31

T a b l e 4. 9586 s p a r s e i t e r a t i o n s

O p t i m a l va lue I t s

- 4 . 6 4 7 5 3 1 4 2 8 5 7 1 4 2 8 e + 2 23

--7.000000000000000e 4- 1 54

- 6 . 4 5 7 5 0 7 7 0 5 8 5 6 4 5 2 e 4- 1 59

--5.220206121170725e 4- i 122

2 . 2 5 4 9 4 9 6 3 1 6 2 3 8 0 4 e 4- 5 151

- 2 . 3 3 1 3 8 9 8 2 4 3 3 0 9 8 4 e 4- 6 196

--4.113197621943641e + 4 154

- - 3 . 0 8 1 2 1 4 9 8 4 5 8 2 8 2 3 e 4- 1 150

--5.220206121170725e 4- 1 258

- 4 . 1 5 7 3 2 2 4 0 7 4 1 4 1 8 7 e 4- 2 169

- 2 . 5 2 6 4 7 0 6 0 6 1 8 7 9 9 8 e 4- 1 345

- - 7 . 6 5 8 9 3 1 8 5 7 9 1 8 5 8 0 e 4- 4 407

8.966448218630460e 4- 5 579

1 . 8 7 8 1 2 4 8 2 2 7 3 8 1 0 6 e 4- 3 414

- - 1 . 4 7 5 3 4 3 3 0 6 0 7 6 8 5 3 e 4 - 7 952

1 . 4 1 2 2 5 0 0 0 0 0 0 0 0 0 0 e 4- 3 549

in 10.0 m i n u t e s w i t h TOMLAB LPSOLVE V3.0.

C n t S c M i n R e d M i n V a r D u a G a p

72 - 5 e - 32 l e 4- 01 - 6 e - 14

30

31

156

88

311

186

1 . 5 1 8 5 0 9 8 9 6 4 8 8 1 2 8 e + 3 588 1958

- - 8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 5 5 e + 5 585

8 . 6 6 6 6 6 6 6 7 4 3 3 3 3 6 5 e + 0 583

- 3 . 5 9 9 1 7 6 7 2 8 6 5 7 6 4 4 e + 7 523

- - i ,586280184501208e+2 1191

- - 1 . 8 7 5 1 9 2 9 0 6 6 3 7 0 5 5 e + 1 864

1 . 8 4 1 6 7 5 9 0 2 8 3 4 8 9 5 e + 4 670 5938

Oe + O0

- 6 e -- 02

- l e - 02

- 2 e - 13

2e -- 03

4e + O0

3e + 01

3e + O0

2e + O0

5e - 13

l e + O 1

2 e - 15

- 4 e - 14

Oe + O0

- -9e -- 14

--5e -- 10

l e -- 09

--5e -- i i

1400 --6e -- 14 le -- 03 le -- 09

803 - -2e- - 08 l e - - 18 Oe+O0

9591 --8e + O0 - -9e - - 11 - - l e - - 08

8436 Oe + O0 - - l e - - 14 - - l e -- 12

3058 --2e -- 31 --3e -- 15 le -- 13

--2e -- 15 --4e -- 14 3e -- I I

98 Oe + O0 2e- - 16 - -5e-- 14

938 - - l e - - 02 l e - - 16 - -2e-- 13

175 --8e -- 02 2e -- 16 --2e -- 12

778 - - l e -- 18 --3e -- 14 le -- 14

492 7e -- 04 8e -- 01 le -- 07

1056 l e + O0 4e -- 16 2e -- 09

5066 Oe + O0 --3e -- 16 2e -- 12

15216 5e -- 02 --3e -- 13 --6e -- 09

4195 - - l e + 01 --8e -- 16 2e -- 12

- -2e-- 16 - -3e - - 14 8e - - 12

912

# 1

2

3

4

6

7

8

9

lO

12

14

15

16

17

19

2O

22

23

26

28

29

30

31

#

1

2

3

4

6

7

8

9

10

12

14

15

16

17

19

20

22

23

26

28

29

30

31

T a b l e 5. 7087 s p a r s e

O p t i m a l v a l u e

- 4 . 6 4 7 5 3 1 4 2 8 5 7 1 4 2 8 e + 2

- 7 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e 4 - 1

- 6 . 4 5 7 5 0 7 7 0 5 8 5 6 4 5 0 e 4- 1

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 5 e + 1

2 . 2 5 4 9 4 9 6 3 1 6 2 3 8 0 4 e 4- 5

- 2 . 3 3 1 3 8 9 8 2 4 3 3 0 9 8 4 e 4- 6

- 4 . 1 1 3 1 9 7 6 2 1 9 4 3 6 4 1 e + 4

- 3 . 0 8 1 2 1 4 9 8 4 5 8 2 8 2 4 e 4- 1

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 5 e 4- 1

- 4 . 1 5 7 3 2 2 4 0 7 4 1 4 1 9 3 e + 2

- 2 . 5 2 6 4 7 0 6 0 6 1 8 7 9 9 9 e 4- 1

- 7 . 6 5 8 9 3 1 8 5 7 9 1 8 5 8 0 e + 4

8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 6 2 e 4- 5

1 . 8 7 8 1 2 4 8 2 2 7 3 8 1 0 6 e + 3

- 1 . 4 7 5 3 4 3 3 0 6 0 7 6 8 5 3 e + 7

1 . 4 1 2 2 5 0 0 0 0 0 0 0 0 0 0 e + 3

1 . 5 1 8 5 0 9 8 9 6 4 8 8 1 2 8 e + 3

- - 8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 5 6 e + 5

8 . 6 6 6 6 6 6 6 7 4 3 3 3 3 6 5 e 4- 0

- 3 . 5 9 9 1 7 6 7 2 8 6 5 7 6 4 4 e 4- 7

- 1 . 5 8 6 2 8 0 1 8 4 5 0 1 2 0 8 e 4- 2

- - 1 . 8 7 5 1 9 2 9 0 6 6 3 7 0 5 5 e 4- 1

1 . 8 4 1 6 7 5 9 0 2 8 3 4 8 9 4 e + 4

WEI LI et al.

i t e r a t i o n s in 9.1 m i n u t e s ( u n n o r m a l i z e d ru le ) .

I t s

23

6O

60

128

139

237

142

114

265

200

326

368

28O

401

748

379

373

381

165

591

598

601

508

C n t S c M i n R e d M i n V a r D u a G a p

13 - l e - 31 5 e - 30 - 6 e - 14

27 0e 4- 00 3e + 01 3e - 14

22 0e + 00 - 2 e - 29 l e - 14

i 0 0 Oe 4- O0 Oe + O0 Oe 4- O0

122 - -2e -- 13 l e -- 27 9e -- 11

328 2e -- 03 l e 4- 01 Oe 4- O0

178 4e + O0 --2e -- 17 Oe 4- O0

130 Oe 4- O0 --2e -- 30 4e -- 14

405 - - l e -- 31 - - l e -- 27 l e - - 14

181 - - 2 e - - 15 - - 3 e - - 28 3 e - - 13

3047 --3e -- 17 - - l e -- 14 --7e -- 15

573 7e -- 04 8e -- Ol 2e -- i 0

839 l e 4- O0 - -2e -- 17 --5e -- 10

1066 Oe 4- O0 --2e -- 28 7e -- 13

3939 5e -- 02 - - l e -- 26 9e -- 09

1113 - - 4 e - - 14 - - S e - - 17 - - 2 e - - 13

2925 - -5e -- 16 --2e -- 27 Oe + O0

1259 - - l e - - 14 l e - - 03 - - l e - - i 0

13774 - - l e -- 15 --5e -- 17 2e -- 15

1364 --2e -- 15 - - l e -- 13 --7e -- 08

11769 Oe-}-O0 --3e -- 29 2e -- 13

5156 --2e -- 28 --3e -- 28 4e -- 15

6175 - -8e -- 31 --3e -- 15 --4e -- 12

T a b l e 6. 6963 s p a r s e

O p t i m a l v a l u e

- 4 . 6 4 7 5 3 1 4 2 8 5 7 1 4 2 8 e + 2

- 7 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e 4- 1

- 6 . 4 5 7 5 0 7 7 0 5 8 5 6 4 5 0 e 4- 1

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 5 e 4- 1

2 . 2 5 4 9 4 9 6 3 1 6 2 3 8 0 3 e 4- 5

- 2 . 3 3 1 3 8 9 8 2 4 3 3 0 9 8 4 e 4- 6

- 4 . 1 1 3 1 9 7 6 2 1 9 4 3 6 4 1 e 4- 4

- 3 . 0 8 1 2 1 4 9 8 4 5 8 2 8 2 4 e + 1

- 5 . 2 2 0 2 0 6 1 2 1 1 7 0 7 2 5 e 4- 1

- 4 . 1 5 7 3 2 2 4 0 7 4 1 4 2 0 0 e + 2

- 2 . 5 2 6 4 7 0 6 0 6 1 8 8 0 0 1 e 4- 1

- 7 . 6 5 8 9 3 1 8 5 7 9 1 8 5 8 0 e 4- 4

8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 6 3 e 4- 5

1 . 8 7 8 1 2 4 8 2 2 7 3 8 1 0 7 e 4- 3

- 1 . 4 7 5 3 4 3 3 0 6 0 7 6 8 5 2 e 4- 7

1 . 4 1 2 2 5 0 0 0 0 0 0 0 0 0 0 e 4- 3

1 . 5 1 8 5 0 9 8 9 6 4 8 8 1 2 8 e 4- 3

- 8 . 9 6 6 4 4 8 2 1 8 6 3 0 4 5 7 e + 5

8 . 6 6 6 6 6 6 6 7 4 3 3 3 3 6 5 e 4- 0

- 3 . 5 9 9 1 7 6 7 2 8 6 5 7 6 4 4 e 4- 7

- 1 . 5 8 6 2 8 0 1 8 4 5 0 1 2 0 7 e 4- 2

- 1 . 8 7 5 1 9 2 9 0 6 6 3 7 0 5 5 e 4- 1

1 . 8 4 1 6 7 5 9 0 2 8 3 4 8 9 4 e 4- 4

i t e r a t i o n s in 6.6 m i n u t e s ( n o r m a l i z e d ru le) .

I t s

24

63

6O

130

143

22O

141

119

287

218

278

305

304

393

745

382

389

434

118

582

556

546

526

C n t S c M i n R e d M i n V a r D u a G a p

6 - l e - 31 2 e - 30 - 6 e - 14

30 0e -+- 00 3e -+- 01 3e - 14

22 0e W 00 - 2 e - 29 l e - 14

98 0e -t- 00 0e 4- 00 0e -{- 00

133 - l e - 13 - l e - 28 0e -{- 00

295 2e - 03 l e + 01 0e 4- 00

163 4e 4- 00 - 2 e - 17 0e 4- 00

125 - 4 e - 16 - 3 e - 31 2e - 14

503 - 2 e - 32 - 3 e - 27 l e - 14

208 - 7 e - 16 0e -{- 00 l e - 12

1720 - 3 e - 17 - 9 e - 16 l e - 14

425 7e -- 04 8e -- Ol 2e -- i 0

980 l e 4- O0 --8e -- 17 --Te -- I0

1103 Oe 4- O0 --6e -- 28 5e -- 13

4078 5e -- 02 --2e -- 26 7e -- 09

1289 --4e -- 14 --2e -- 16 Oe 4- O0

3152 - -2e -- 16 --4e -- 27 5e -- 13

1594 --7e -- 15 l e -- 03 --2e -- i 0

2131 - - 4 e - - 10 - - 3 e - - 18 - - 4 e - - 15

1345 --7e -- 15 - 3 e -- 20 --7e -- 08

10675 Oe + O0 Oe + O0 3e -- 14

4173 --2e -- 30 --4e -- 28 4e -- 15

5056 --2e -- 15 --2e -- 15 Oe 4- O0

Basis-Deficiency-Allowing Primal Phase-I Algorithm 913

of AB, although this fact does not prevent us to maintain the order of arrival in the basic index set.

We have also conducted some sparse computational experiments using MATLAB V5.3 (with an Intel Pentium 4, 2.8 Ghz, 512 Mb RAM) to compare both the unnormalized and the normalized revised versions of the Phase-I's given above against the TOMLAB LPSOLVE V3.0 [10] sparse implementation of the usual primal simplex method.

The main outcome obtained in the sparse case is that 7087 (in 9.1 minutes, see Table 5) and 6963 (in 6.6 minutes, see Table 6) iterations were performed by the unnormalized and normalized versions respectively, versus 9586 (in 10.0 minutes, see Table 4) needed by LPSOLVE. A nontrivial implementation [16] of the primal rain-ratio test for the Phase-II allowed us to improve the run time of the unnormalized version until 8.9 minutes (7161 iterations), but it is worth noting the following.

(1) Excluding SCACR25 (~19) from the test set, only the normalized version outperforms LPSOLVE, turning out to run 21% faster.

(2) Excluding SCSD1 (#26) from the test set, both the unnormalized and the normalized version outperforms LPSOLVE considerably, turning out to run 31% and 37% faster, re- spectively.

(3) With the full test set, both the unnormalized and the normalized version outperforms LPSOLVE, turning out to run 11% and 34% faster, respectively.

These preliminary experiments lead us to conclude that a clear advantage was obtained in number of iterations, quality of solutions and execution time in both the dense and sparse case when suitable pivot strategies are used and with no special anticycling tools.

R E F E R E N C E S

1. P.-Q. Pan, New non-monotone procedures for achieving dual feasibility, Journal of Nanjing University Math- ematical Biquarterly 12 (2), 155-162, (November 1995).

2. P.-Q. Pan, The most-obtuse-angle row pivot rule for achieving dual feasibility: A computational study, Europ. J. Operl. Res. 101 (1), 167-176, (August 1997).

3. P.-Q. Pan, A dual projective simplex method for linear programming, Computers Math. Applic. 35 (6), 119-135, (March 1998).

4. P.-Q. Pan, A basis-deficiency-allowing variation of the simplex method for linear programming, Computers Math. Applie. 36 (3), 33-53, (August 1998).

5. P.-Q. Pan and Y.-P. Pan, A Phase-1 approach for the generalized simplex algorithm, Computers Math. Applic. 42 (10/11), 1455-1464, (November 2001).

6. P.-Q. Pan, W. Li and Y. Wang, A Phase-I algorithm using the most-obtuse-angle rule for the basis-deficiency- allowing dual simplex method (in Chinese), OR Transactions 8 (3), 88-96, (2004).

7. /~. Santos-Palomo, The sagitta method for solving linear programs, Europ. J. Operl. Res. 157 (3), 527-539, (September 2004).

8. P. Cuerrero-Garcla, Range-Space Methods for Sparse Linear Programs, (in Spanish), Ph.D. Thesis, Depart- ment of Applied Mathematics, University of M~laga, Spain, (July 2002).

9. T. Coleman and M.A. Branch and A. Grace, Optimization Toolbox v2.1 for use with MATLAB, user's guide, Technical Report, The Math Works Inc., (1999).

10. K. HolmstrSm, The TOMLAB optimization environment v3.0 user's guide, Technical Report, M£1ardalen University, Sweden, (April 2001).

11. P. Guerrero-Carcfa and A. Santos-Palomo, Phase-I cycling under the most-obtuse-angle pivot rule, Europ. J. Operl. Res. 167 (1), 20-27, (November 2005).

12. P.-Q. Pan, Practical finite pivoting rules for the simplex method, OR Spektrum 12, 219-225, (1990). 13. P. Cuerrero-Garcla and A. Santos-Palomo, A non-simplex active-set framework for basis-deficiency-allowing

simplex variations, In Proceedings of the ~0 th Biennial Conference on Numerical Analysis, (Edited by D. Griffiths and C.A. Watson), p. 19, Dundee, Scotland, (June 2003).

14. /~. Santos-Palomo and P. Guerrero-Garcfa, Sagitta method with guaranteed convergence, Technical Report, Department of Applied Mathematics, University of M~laga, (February 2005).

15. /~. BjSrck, Numerical Methods for Least Squares Problems, SIAM Pubs., Philadelphia, PA, (1996). 16. A. Santos-Palomo and P. Guerrero-Carcfa, Computational experiences with dense and sparse implementa-

tions of the sagitta method, Technical Report, Department of Applied Mathematics, University of M£laga, (February 2005).

17. D.M. Gay, Electronic mail distribution of linear programming test problems, Committee on Algorithms (COAL) Newsletter 13, 10-12, (1985).

914 WEI LI et al.

18. P. Guerrero-Carcla and -~. Santos-Palomo, A comparison of three sparse linear program solvers, Technical Report, Department of Applied Mathematics, University of M£1aga, (October 2003).

19. ~. BjSrck, A direct method for sparse least squares problems with lower and upper bounds, Numer. Math. 54, 19-32, (1988).

20. U. Oreborn, A Direct Method for Sparse Nonnegative Least Squares Problems, Licentiat thesis, Department of Mathematics, LinkSping University, Sweden, (1986).

21..~. Santos-Palomo and P. Guerrero-Garcfa, Solving a sequence of sparse least squares problems, Technical Report, Department of Applied Mathematics, University of M£1aga, (September 2001).

22. T.F. Coleman and L.A. Hulbert, A direct active set algorithm for large sparse quadratic programs with simple lower bounds, Math. Progr. 45, 373-406, (1989).