a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate n or p containing...

20
Supporting results Figure S1. The effects of solvents and Cu salt catalysts on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO 4 , 0.08 mmol phen, 0.8 mmol K 2 CO 3 , 200 mg 4Å, 2 mL solvent, 0.5 MPa O 2 , 140 °C, 12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol Cu salts, 0.08 mmol phen, 0.8 mmol K 2 CO 3 , 200 mg 4Å, 2 mL DMSO, 0.5 MPa O 2 , 140 °C, 12 h. Figure S2. The effects of base and amount of CuSO 4 on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO 4 , 0.08 mmol phen, 0.8 mmol base, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O 2 , 140 °C, 12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.04-0.12 mmol CuSO 4 , 0.08 mmol phen, 0.8 mmol K 2 CO 3 , 200 mg 4Å, 2 mL DMSO, 0.5 MPa O 2 , 140 °C, 12 h. 33 2 5 11 17 0 20 40 60 80 100 K2CO3 KOH K3PO4 Cs2CO3 NaHCO3 Yield (%) Base Yield (%) 11 33 43 43 0 20 40 60 80 100 20% 30% 40% 60% Yield (%) Amounts of CuSO 4 Yield (%) a b 33 0 2 6 5 0 20 40 60 80 100 DMSO Tol DMA DMF NMP Yield (%) Solvents Yield (%) 33 27 1 4 9 0 20 40 60 80 100 CuSO4 Cu(Ac)2 CuI CuCl2 CuCl Yield (%) Cu salts Yield (%) a b Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Upload: others

Post on 29-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Supporting results

Figure S1. The effects of solvents and Cu salt catalysts on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO4, 0.08 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL solvent, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol Cu salts, 0.08 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

Figure S2. The effects of base and amount of CuSO4 on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.06 mmol CuSO4, 0.08 mmol phen, 0.8 mmol base, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.04-0.12 mmol CuSO4, 0.08 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

33

2 5 11

17

0

20

40

60

80

100

K2CO3 KOH K3PO4 Cs2CO3 NaHCO3

Yiel

d (%

)

Base

Yield (%)

11

33 43 43

0

20

40

60

80

100

20% 30% 40% 60%

Yiel

d (%

)

Amounts of CuSO4

Yield (%)

a b

33

0 2 6 5

0

20

40

60

80

100

DMSO Tol DMA DMF NMP

Yiel

d (%

)

Solvents

Yield (%)

33 27

1 4 9

0

20

40

60

80

100

CuSO4 Cu(Ac)2 CuI CuCl2 CuCl

Yiel

d (%

)Cu salts

Yield (%)

a b

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2020

Page 2: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

0

59

93

43

0

20

40

60

80

100

0 10% 20% 40%

Yiel

d (%

)

Amounts of phen

Yield (%)

10

39

55

93 94

0

20

40

60

80

100

60% 100% 200% 400% 600%

Yiel

d (%

)

Amounts of K2CO3

Yield (%)

a b

Figure S3. The effects of amounts of phen and K2CO3 on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO4, 0-0.08 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO4, 0.04 mmol phen, 0.12-1.2 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

Figure S4. The Effect of reaction time and pressure of O2 on the C(aryl)−C bond thioetherification reaction. Reaction condition a: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO4, 0.04 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 2-12 h. Reaction condition b: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO4, 0.04 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0-2 MPa O2, 140 °C, 12 h.

The reactions were carried out in a stainless-steel reactor with 10 mL Teflon tube. 5 atm O2 is required to guarantee enough solute O2 in DMSO, which is necessary to achieve satisfactory catalytic performances.

0

40

93 85

90

0

20

40

60

80

100

0 0.1 0.5 1 2

Yiel

d (%

)

Pressure of O2 (MPa)

Yield (%)

44

68

87 91 93

0

20

40

60

80

100

2h 4h 6h 8h 12h

Yiel

d (%

)

Reaction time

Yield (%)

a b

Page 3: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S5. The Effect of different ligands on the C(aryl)−C bond thioetherification reaction. Reaction condition: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane, 0.08 mmol CuSO4, 0.04 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

We also tested different organic ligands for the C(aryl)−C bond thioetherification reaction. Derivatives of phen ligands with electron-donating group Methyl L2 significantly decreased the yield of thioether products. Bidentate ligand L4 led to a moderate yield of 52%. Both monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction.

NN

NN

NNCl

Cl

NN N

P

L1: 93% L2: 25% L3: 90%

L4: 52% L5: <1% L6: 0%

SOH

NO2 NO2

1a 2a 3a

PhSSPhDifferent ligands

Page 4: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S6. Substrate scope investigation using diphenyldisulfane derivatives and diphenyldiselane. Reaction condition: 0.2 mmol substrate 1a, 0.4 mmol diphenyldisulfane or diphenyldiselane, 0.08 mmol CuSO4, 0.04 mmol phen, 0.8 mmol K2CO3, 200 mg 4Å molecular sieve, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h, *24 h.

Dichalcogenides Products Yield

76%*

65%

90%*

11%*

0%*

Se

NO2

3m

SS

NO2

S

NO2 NO2O2N

SS

O

O

SeSe

S

NO2 O

2b

2c

2d

3n

3o

2eS

S

SS

2f

S

NO2

3p

S

NO2

3q

XOH

R

NO2

RSSR orRSeSeR NO2

1a 2 3

X = S, Se

Page 5: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S7. The effects of amounts of Cu salts and Ag salts on the C(aryl)−C bond hydrogenation reactions. Reaction condition a: 0.2 mmol substrate 1a, 0-0.16 mmol CuCl, 0.08 mmol AgNO3, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h. Reaction condition b: 0.2 mmol substrate 1a, 0.12 mmol CuCl, 0-0.16 mmol AgNO3, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h.

Figure S8. The effects of solvents and Cu salts on the C(aryl)−C bond hydrogenation reactions. Reaction condition a: 0.2 mmol substrate 1a, 0.12 mmol CuCl, 0.08 mmol AgNO3, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL solvent, 0.5 MPa O2, 140 °C, 8 h. Reaction condition b: 0.2 mmol substrate 1a, 0.12 mmol Cu salts, 0.08 mmol AgNO3, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h. CuAc2: anhydrous copper acetate.

13

50

75 83 83

0

20

40

60

80

100

0 mol% 15 mol% 30 mol% 60 mol% 80 mol%

Con

. or Y

ield

(%)

Amounts of Cu salts

Yield (%)

17

54

83

63

0

20

40

60

80

100

0 mol% 20 mol% 40 mol% 80 mol%

Con

. or Y

ield

(%)

Amounts of Ag salts

Yield (%)

a b

83

66

52

29

0

20

40

60

80

100

Con

. or Y

ield

(%)

Solvents

Yield (%) 83

66

52

80 86

32

0

20

40

60

80

100

CuCl CuI Cu2O CuCl2 CuAc2 CuO

Con

. or Y

ield

(%)

Cu salts

Yield (%)a b

Page 6: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S9. The effects of Ag salts and bases on the C(aryl)−C bond hydrogenation reactions. Reaction condition a: 0.2 mmol substrate 1a, 0.12 mmol CuAc2, 0.08 mmol Ag salts, 0.8 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h. Reaction condition b: 0.2 mmol substrate 1a, 0.12 mmol CuAc2, 0.08 mmol AgNO3, 0.8 mmol base, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h.

86 78

63 51

0

20

40

60

80

100

AgNO3 Ag2O Ag2CO3 AgAc

Con

. or Y

ield

(%)

Ag salts

Yield (%)

86

59

38 45

0

20

40

60

80

100

NaOH KOH K2CO3 NaHCO3

Con

. or Y

ield

(%)

Base

Yield (%)a b

Page 7: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S10. The effects of amounts of NaOH and phen on the C(aryl)−C bond hydrogenation reactions. Reaction condition a: 0.2 mmol substrate 1a, 0.12 mmol CuAc2, 0.08 mmol AgNO3, 0.2-1.6 mmol NaOH, 0.08 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h. Reaction condition b: 0.2 mmol substrate 1a, 0.12 mmol CuAc2, 0.08 mmol AgNO3, 1.2 mmol NaOH, 0.04-0.32 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 8 h.

Figure S11. The effect of reaction time on the C(aryl)−C bond hydrogenation reactions. Reaction condition a: 0.2 mmol substrate 1a, 0.12 mmol CuAc2, 0.08 mmol AgNO3, 1.2 mmol NaOH, 0.16 mmol phen, 2 mL DMSO, 0.5 MPa O2, 140 °C, 2-12 h.

47

64

86 90 90

0

20

40

60

80

100

100% 200% 400% 600% 800%

Con

. or Y

ield

(%)

Amounts of NaOH

Yield (%)

73

90 94 89

82

0

20

40

60

80

100

20% 40% 80% 120% 160%

Con

. or Y

ield

(%)

Amounts of phen

Yield (%)a b

55 65

85 94 95

0

20

40

60

80

100

2h 4h 6h 8h 12h

Con

. or Y

ield

(%)

Reaction time

Yield (%)

Page 8: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S12. The effects of Ag slats and Cu salts on the C(aryl)−C bond carbonization reactions. Reaction condition a: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag salts, 0.125 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMF, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol Cu salts, 0.25 mmol Ag2O, 0.125 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMF, 0.5 MPa O2, 140 °C, 12 h.

Figure S13. The effects of solvents and amounts of Ag2O on the C(aryl)−C bond carbonization reactions. Reaction condition a: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0.125 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL solvent, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0-0.35 mmol Ag2O, 0.125 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

20

3 8

39 38

0

20

40

60

80

100

AgAc AgCl AgNO3 Ag2O Ag2CO3

Yiel

d (%

)

Ag salts

Yield (%)

6

21 28

20

39

0

20

40

60

80

100

CuCl2 CuSO4 CuAc2 CuI CuCl

Yiel

d (%

)

Cu salts

Yield (%)

a b

5

73

46

1

39

0

20

40

60

80

100

Yiel

d (%

)

Solvents

Yield (%)

15

51

70 73 74

0

20

40

60

80

100

0% 50% 100% 125% 175%

Yiel

d (%

)

Amounts of Ag salts

Yield (%)

a b

Page 9: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S14. The effects of amounts of CuCl and Cs2CO3 on the C(aryl)−C bond carbonization reactions. Reaction condition a: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0-0.25 mmol CuCl, 0.25 mmol Ag2O, 0.125 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0.125 mmol phen, 0.1-0.3 mmol Cs2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

Figure S15. The effects of amounts of 4 Å and phen on the C(aryl)−C bond carbonization reactions. Reaction condition a: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0.125 mmol phen, 0.2 mmol Cs2CO3, 0-200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0-0.2 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h.

5

57

73

44

0

20

40

60

80

100

0% 50% 75% 125%

Yiel

d (%

)

Amounts of Cu salts

Yield (%)

38

73 67

0

20

40

60

80

100

50% 100% 150%

Yiel

d (%

)

Amounts of Cs2CO3

Yield (%)

a b

51

71 73 73

0

20

40

60

80

100

0 mg 50 mg 100 mg 200 mg

Yiel

d (%

)

Amounts of 4Å

15

50

78 73

63

0

20

40

60

80

100

0% 25% 50% 62.5% 100%

Yiel

d (%

)

Amounts of phen

a b

Page 10: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S16. The effects of bases and reaction time on the C(aryl)−C bond carbonization reactions. Reaction condition a: 0.2 mmol 1a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0.1 mmol phen, 0.2 mmol base, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 12 h. Reaction condition b: 0.2 mmol a, 0.5 mmol benzothiazole, 0.15 mmol CuCl, 0.25 mmol Ag2O, 0.1 mmol phen, 0.2 mmol Cs2CO3, 200 mg 4Å, 2 mL DMSO, 0.5 MPa O2, 140 °C, 2-12 h.

Figure S17. Kinetic study of the transformation of probable intermediates. We tested probable intermediates including aldehyde and acid derivatives of (1-(2-nitrophenyl)ethanol under the optimized conditions (as illustrated in Fig. 3b). The temporal evolution of corresponding products was monitored by GC. In comparison to the transformation of alcohol to thioether, aldehyde to thioether, and aldehyde to acid, the transformation rate of acid to thioether is obviously higher. Hence, the conversion of aldehyde to acid represents the rate-determining step in the reaction, rather than the decarboxylation step.

78

51 61

54

28

0

20

40

60

80

100

Cs2CO3 Na2CO3 K2CO3 K3PO4 KOH

Yiel

d (%

)

Base

25

48

68 78

72

0

20

40

60

80

100

2h 4h 8h 12h 18h

Yiel

d (%

)

Reaction time

2 4 6 80

20

40

60

80

100

Yiel

d (%

)

Reaction time (h)

Aldehyde to acid Aldehyde to thioether Alcohol to thioether Acid to thioether

Page 11: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Figure S18. Plausible reaction pathway for the oxidative C(aryl)−C(OH) bonds hydrogenation reaction.

Starting from the acid intermediates, acid-base reaction between acid intermediates and Ag salts generates Ag carboxylate 12 followed by decarboxylation to aryl Ag species 13. 13 is mediated with protodemetallation to afford the arene product. In comparison to Cu, Ag is a more efficient catalyst for decarboxylation. The presence of catalytic amount of Ag effectively promotes the decarboxylative hydrogenation of acid intermediates.1-3

Figure S19. Plausible reaction pathway for the oxidative C(aryl)−C(OH) bonds carbonization reaction.

COOH

OCu(II)

O

Cu(II)

CO2

XCu(II)X

X

XHetCu(II)X

HetCu(II)

HetCu(III)

Cu(I)

XCu(II)X

O2

Ag(I)

H Het

Het

6

4

5 1819

16

17

15

Carbonization Decarboxylation

Acid

COOH

Ag XH

CO2

Ag

OAg

O

14

12

13

H2O

H3OX

H3OX

Hydrogenation

Acid

Page 12: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Starting from the acid intermediates, carbonization reaction is mediated with the same decarboxylation step for thioetherification reaction and generates intermediate 5. 5 is further converted into a bifunctional aryl metal species 15 via transmetalation. The final products are generated by oxidation of 15 with Ag salts and reductive elimination of 16. Stoichiometric amounts of Ag salt in carbonization reactions acts as a stronger oxidant than O2 and oxidizes the Cu(II) 15 into Cu(III) 16.4-6

Page 13: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

Reference

1. J. Cornella, C. Sanchez, D. Banawa and I. Larrosa, Chem. Commun., 2009, DOI: 10.1039/B916646G, 7176-7178.

2. P. Lu, C. Sanchez, J. Cornella and I. Larrosa, Org. Lett., 2009, 11, 5710-5713.3. R. A. Crovak and J. M. Hoover, J. Am. Chem. Soc., 2018, 140, 2434-2437.4. K. Xie, Z. Yang, X. Zhou, X. Li, S. Wang, Z. Tan, X. An and C.-C. Guo, Org. Lett., 2010, 12,

1564-1567.5. L. Chen, L. Ju, K. A. Bustin and J. M. Hoover, Chem. Commun., 2015, 51, 15059-15062.6. T. Patra, S. Nandi, S. K. Sahoo and D. Maiti, Chem. Commun., 2016, 52, 1432-1435.

Page 14: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

NMR spectra

S OH

S OH

Page 15: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

OH

NO2O

O

OH

NO2O

O

Page 16: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

NO2

OH

Cl

NO2

OH

Cl

Page 17: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

OH

NO2

Cl

OH

NO2

Cl

Page 18: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

NO2

OHBr

NO2

OHBr

Page 19: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

NO2

OHO

O

NO2

OHO

O

Page 20: a b › suppdata › d0 › sc › d0sc01229g › d0sc01229g1.pdf · monodentate N or P containing ligands (L5 and L6) showed no activity for the reaction. N N N N N Cl N Cl N N N

OH

O2N

OH

O2N