9789812774828_0009

Upload: mohdsolihat1

Post on 07-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 9789812774828_0009

    1/148

    Chapter 9

    Real Ocean W aves

    9.1.  Introduction

    Kinsman (1965, p. 386) is careful to point out that a valid specification of real

    ocean waves m ust integrate the following three concepts: 1) Fourier and spec

    tral analyses of random processes, 2) probability theories applied to stochastic

    processes, and 3) hydrody nam ics. Techniques from the first two concepts that

    do not depend on the physics of the hydrodynamic processes are available for

    analyzing real ocean waves. However, only those techniques from concepts

    that may be related rigorously to the physics of the hydrodynamics of real

    ocean waves are reviewed.

    The theoretical techniques reviewed are applicable to

      stationary ergodic

    processes and are limited strictly to short term statics. Isaacson and

    M acKenzie (1981) give an excellent review of long term statistical and prob

    abilistic techniques applied to real ocean waves. The significance of the

    stationary ergodic

      hypothesis is that the

      ensemble

      average

      E[x(t\)]

      at the

    same time  t\  shown in Fig. 9.1 of an infinite number of finite length time

    series  x\(t\),X2(t\),x-s(t\),  ,*oo(^l) is equivalent to the  temporal  aver

    age over all times shown in Fig. 9.2 of an infinitely long single time series

    X\(t\),X\(t2),Xl{tl),....,X\(tooY,i-S;

    E[x(t

    n

    )]=

      lim —

      I

      R

     xi(t)dt.

      (9.1)

    T

    R

    ^OO  1R JO

    719

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    2/148

    720 Waves and Wave Forces on Coastal and O cean Structures

    Xjrft)

    x

    3

    (0

    -A/l/yAA^JjV/

    x

    2

    (t)

    xtf)

    -X -

    1

      ' /

    *

    / /

    Fig. 9.1. Two ensemble averages of finite length records

     *,- (t

    ) at times

      t\

      and

     ti

      (Bendat and

    Piersol, 1986).

    Xrft)

    Fig. 9.2. Temporal average of a single time series

     x\ it)

      of infinite length.

    9.2. Fourier Analyses

    Definitions of Fourier coefficients

    Fourier coefficients are defined separately for

      deterministic

      and for

      non-

    deterministic

      (or, equivalently,

      random)

     analyses.

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    3/148

    Real Ocean Waves

    721

    Deterministic:

      Fourier coefficients are those coefficients that provide the

    best least squares fit to the data.

    Non-Deterministic: Fourier coefficients are those coefficients that explain

    the contribution by each frequency to the total variance of

     a

     random process.

    W hen both time and frequency are continuous, the Fourier transform pairs

    are given by the following integrals:

    i

      r

    +0

    °

    r)(t)

     =

      —f==.

      /

      F(a))exp±(i(ot)d(D,

      (9.2a)

    J—

    c

    'In  j —  oo

    i

      r

    +

    °°

    F(a>)  = - = t](t)exp^(icot)dt,  (9.2b)

    V2TT

     J—OO

    where  u>

      = 2nf =

      radian frequency; where

      F(co) = Fourier transform

    of the time series

      r){t);

      and where the plus + sign in Eq. (9.2a) must be

    paired with the negative — sign in Eq. (9.2b). Both choices for the ±

    signs in the arguments of the exponential functions exp(«) in Eqs. (9.2)

    may be found in the literature; and the placement of the normalizing con

    stant

      2n

      is also arbitrary (Ligh thill, 1964). If the frequency / is given

    in Hertz, the normalizing constant

      2n

      does not appear and Eqs. (9.2)

    reduce to

    /

    + 0 0

    F(f)ex

    V

    ±(i2nft)df,

      (9.3a)

    -00

    / + 0 O

    r,(t)exp

    T

    (i2nft)dt.  (9.3b)

    -00

    Data records that are continuous in time are termed

      time series;

      and data

    records that are digitized to discrete values of time are termed

     time sequences.

    Modern Fourier analyses employ discrete/inite Fourier transform (FFT)

    algorithms that are designed

     to

     take advantage of high speed digital compu ters.

    Discretization of Eqs. (9.3) requires a finite record length   TR  and discrete

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    4/148

    722 Waves a nd Wave Forces on Coastal and O cean Structures

    values of both time and frequency; i.e.;

    t  ->• t„ = nAt, f  ->•  f

    m

    = mAf,  co  -»  co

    m

     =

     2nf

    m

      =  InmAf,

    (9.4 a-c)

    where  At(=T[t/N)  and  Af(=l/NAt)  are constant fixed temp oral and

    frequency intervals, respectively, of  N  total discrete values of time and fre

    quency. A   discrete  Fourier transform pair may be approximated from

    Eqs. (9.2) by

    N-l

    rj(n) =   A / ^ F ( r a )e x p ±  {ilizrimAf

      At),

      n  = 0 , 1 , 2 , . . .  ,N -  1,

    m=0

    (9.5a)

    N-l

    F(m) = At  y ^  rj(n)exp ^(Unnm AtAf), m = 0,1,2,..  .,N  —  1,

    n=0

    (9.5b)

    where the total number of discrete time and frequency values are equal to ./V;

    and where

     the

     FF T coefficients  F(m)  are complex-valued quantities.

     The

     mean

    value of the discrete time sequence r\ (n) is given by the real-valued FFT coeffi

    cient ^ ( 0 ) ; and the FFT coefficient

      F(N/2)

      is also real-valued at the Nyquist

    or folding frequency

      fy

      =

      (N/2)Af

      in Eq. (9.5a). The discrete positive-

    definite frequencies  f

    m

      > 0 in Eq s. (9.2 and 9.3) are represented by the

    indices 1

  • 8/18/2019 9789812774828_0009

    5/148

    Real Ocean Waves

    723

    Eqs.

      (9.5) did not permit zero indices and Eqs. (9.5) were given by only

    positive-definite indices m, n  > 0 according to

    N

    rj(n) =   A / ^ F ( m ) e x p ± ( / 2 ; r ( M - l)(m - 1 ) A / A 0 ,  n =  l,2,...,N

    (9.6a)

    N

    F(m) = At^t](n)exp  =F(/2jr(n  - \)(m - \)AtAf), m =

      1,2,...

      ,N.

    (9.6b)

    The mean value of  r)(n)  in Eqs. (9.6) is given now by the real-valued FFT

    coefficient

      F(l);

      and the real-valued coefficient

      F(N/2

      + 1) is now at the

    Nyquist or folding frequency

      /N = (N/2

      + 1 ) A / . The discrete positive-

    definite frequencies

      f

    m

      >  0 in Eq. (9.5a) now have the indices 2

     

  • 8/18/2019 9789812774828_0009

    6/148

    724

    Waves and Wa ve Forces on Coastal and Ocean Structures

    that may be reduced to the following compact result:

    -;\-z

    N

    SN  —

    \-z

    N

    ,  z # l

    , z = l

    If z is a complex-valued variable given by

    z

      = exp ±

      {i2n(m

      —

      m)/N),

    where m  and m  are integer constants; then Eq . (9.7a) becom es

    N-l

    S

    N

      =  ^  exp[±i2jr(#n -  m)/Nf

    n=0

    and Eq. (9.7b) is

    SN  =

    1

     —

      exp ±  \i2n{m

      —

     m)\

    1

     —

      exp ±  [ilTz{m —  m)/N]

    N, m

     —

     m =

      0,

    0 , 0 < m —

     m < N

      —  1.

    (9.7b)

    (9.7c)

    (9.8)

    (9.9a)

    (9.9b)

    (9.9c)

    The normalizing constant  CN  may be determined by substituting Eq. (9.5a)

    into Eq. (9.5b) with a careful change of dummy indices from

      m

      to

      m

      and

    obtaining

    N-l

    F(m) =

      AtJ2

    n=0

    N-l

    A / y ^  F(m)  exp ±  (ilnnmAf At)

    x exp

     ==

     {ilnnm Af At)

    N-l  (N-l

    = A ? A / ] T F (m) | ] T exp ±  (ilnim - m)nAfAt)

    m=0

    N-l

    l n = 0

    N-l

    = AtAf J^

      F

    ^)

      J ]

    { e x p  ±

      (

    i2n

    (™

     ~

     m)AfAt)f.

      (9.9d)

    m = 0 n = 0

    If

     AtAf = N

      1

    ; then the term in curly brackets {•}" = N (5^

    m

     by

     Eqs.

     (9.9b, c

    and 9.5b) reduces to

    F(m) =   ( A f A / ) F ( m ) { A ^

    m

    )

    (9.9e)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    7/148

    Real Ocean Waves

    725

    that is possible only if

    At  • Af  • N = I,

    so that

    Af A /  = i

      =

      CN

      (9.10)

    and the normalizing constant  CN is inversely proportional to N.

    For example,

      the FFT

      algorithm

      in the

      symbolic software

    MATHEMATICA™   employs  the  finite Fourier transform pair Eqs. (9.6),

    pre-multiplies the complex-valued  FFT coefficients  F(m) by a  normalizing

    constant

      CN = s/N

      and selects the minus (—) sign for  the exponential func

    tion in Eq. (9.6a) and the positive sign (+) for the  exponential function  in

    Eqs. (9.6b). With this convention, Eqs. (9.6) become

    N

    r](n)=  ] [ ^ f l ( m ) e x p - ( i 2 j r ( n -

      l)(m -

      \)/N);

      n = l,2,...,N,

    (9.11a)

    N

    B(m)  = */NF(m)  =

     ^  rj(n) exp+(/27r(n  - l)(ra -  l)/N);

    m = l,2,...,N.  (9.11b)

    Because  Eq.  (9.11a) applies  the  minus  (—)  sign  for the  argument  in the

    exponential function exp(«), the com plex-valued FFT coefficients  B(m) are

    expressed with a negative (—) sign for the phase by

    B(m)  =  \B(m)\

      exp  -

      ia(m),

      (9.11c)

    where a(m) =  phase angle at the discrete frequency mAf.  Figure 9.3 illus

    trates the frequency domain representation of the amplitudes (m oduli)  \B(m)\

    in Eq. (9.11c).

    To illustrate  a  simple numerical test that may be  applied  to  determine

    where a particular FFT algorithm places the norm alizing constant

     CN,

     synthe

    size the following time sequence that consists of

     a

     non-zero m ean F(l);  first

    F(2)

      and fourth

     F(5)

     harmonic components with positive and negative phase

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    8/148

    726

    Waves and  Wave Forces on Coastal and Ocean Structures

    \B(m)\

    , I-J I i I U,J_I I .

    t i >

      i s

      1

      e  • \ i | J « J . « " •

    , M ,

    -

    m H H

    " ' ' "

      fff

    Fig. 9.3. Frequency d oma in representation of the amplitudes of the FFT coefficients

      \B{m)\.

    1 1

    0.5   ,

    0

    "sT  -l

    -2 -

    1 1 1 .

    i  1  j i

    i

      i i T •

    "-• r r r r '

    J-  J - J- 4_

    1 1 •

    1  1 1 - 1

    . • L L  L » L

    I  • I • I I

    1 -

      » - H  -i i

    I

      I I I

    i * i i

    1 4 7 10 13 1

    n

    Fig. 9.4. Discrete nondim ensional time sequence for

      N =

      16.

    angles

     a(2)

      and a (5 ), respectively; and a total number of discrete sequences

    N

      = 16 = 2

    4

     (NOT E: «/w«ys

     select N = 2

    2M

      where 2M must always be an

    even integer so that if the FFT algorithm applies the square root J conven

    tion for the normalizing constant

      CN

      then the normalizing constant  CM  will

    always be a rational num ber).  Consider the discrete time sequence

    3  (Inn

      TT

    1   (litAn n

    +

      2

    C

    °

    S

    U ^ ~ 4

    (9.12)

    that is illustrated in Fig. 9.4. A program for synthesizing the normalized dis

    crete time sequence in Eq. (9.12) by the FFT algorithm in

      MATHEMATICA™

    is listed below. The amplitudes

      \B(m)\

      of the complex-valued FFT coeffi

    cients are illustrated in Fig. 9.5; and the phases aim)  of the complex-valued

    FFT coefficients are illustrated in Fig. 9.6. Note the change in sign of the

    phases  a(m)  in Fig. 9.6 as a result of the sign convention defined for the

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C

       G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1   6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    9/148

    Real Ocean Waves

    727

    5

    4

    ~^~   3

    1

    0

    7 10

    m

    i

    i

    -r-

    i

    13

    16

    Fig. 9.5. Am plitudes of the FFT coefficients for the discrete time sequ ence

     r)(ri)

      in Fig. 9.4.

    1 4

    Fig. 9.6. FFT phase angles for the discrete time sequen ce shown in Fig. 9.4.

    FFT coefficients in Eq. (9.11c). Table 9.1 lists both the  expected  amplitudes

    \F(m) |

     of the Fourier coefficients without regard for the normalizing constant

    C

    N

      and the amplitudes  \B(m)\  from the program  MATHEMATICA™. By

    dividing the values of the amplitudes

      \B(m)\

      from

      MATHEMATICA™

      by

    the expected  amplitudes  \F{m)\  of

     the

     Fourier coefficients in Table 9.1 , it is

    easy to obtain the normalizing constant CV = V 1 6 =  4. Note that in Table 9.1

    that the negative-definite frequencies in the FFT algorithm are stored in the

    discrete frequencies identified by the indices N /2  + 2 

  • 8/18/2019 9789812774828_0009

    10/148

    728 Waves and Wave Forces on Coastal and Ocean Structures

    Table

     9.1.

      Determination of normalizing constant Q y and phase angles

     a (m)

    from MATHEMATICA™  FFT algorithm for  N =  16 = 4

    2

      {terms in (•)

    are the amplitudes and phases of the complex-conjugate FFT  values}.

    a(m)

    m

    1

    2(16 )

    3(15)

    4 (14 )

    5(13)

    6(12)

    7 (11)

    8(10)

    9

    \F(m)\

    1.0

    0.75 (0.75)

    0(0)

    0(0)

    0.25 (0.25)

    0(0)

    0(0)

    0(0)

    0

    \B(m)\  = C

    N

    \F(m)\

    4.0

    3.0(3.0)

    0(0)

    0 (0 )

    1.0(1.0)

    0(0 )

    0 (0 )

    0 (0 )

    0

    C

    N

      = JN

    4.0

    4.0 (4.0)

    - ( - )

    - ( - )

    4.0 (4.0)

    - ( - )

    - ( - )

    - ( - )

    -

    (Radians)

    n

    -JT/4(+TC/4)

    0(0)

    0(0)

    + j r / 4 ( - 7 r / 4 )

    0(0)

    0(0)

    0(0)

    0(0)

    of the positive-definite frequencies with indices 2

  • 8/18/2019 9789812774828_0009

    11/148

  • 8/18/2019 9789812774828_0009

    12/148

    730 Waves

     a nd

     Wave

     Forces on Coastal and O cean Structures

    SameQ[finv==f]

    (* OUTPUT FILE TO BE IMPORTED TO SPREADSHEET "QP RO " *)

    SetDirectory["C:\lfn\"];

    z=Table[ { t[[i]],f[[i]],absbn[[i]],phase[[i]]}, {i, 1,16}]

    ColumnForm[z];»debugfft.prn

    9.3.

      Ocean Wave Spectra

    Spectral representations of  stationary ergodic  random seas are required for

    engineering analyses of random ocean waves. Several two-parameter theoret

    ical spectral models have been applied to engineering applications along with

    five-

     and six-parameter spectral models. The parameters applied

     in the

     original

    derivations of these spectral models are varied. Among the most commonly

    applied parameters are wind speed U

    w

    ,  fetch length F , significant wave height

    H

    s

     and period  T

    s

    . For those two-parameter spectral densities, it is convenient

    for engineering design

     to

     replace the original parameters with

     the

     zeroeth spec

    tral

     m oment mo (= to the variance

     a

    2

      of the time series or the area under the

    spectrum) and the frequency of the spectral peak /o or COQ.

    The mean  ( =  p,\),  the mean square value ( =  \xi),  the  variance  (=

      a%

      =

    mo)  and the  standard deviation  ( =

     

      9

    = lim — /

      (x(t) - n\Ydt = 112- p\,

      (9.14b)

    T

    R

    ^oo

      TR

      JO

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    13/148

    Real O cean Waves

    731

    where £[•] = an ensemble averaging operator defined in

     Eq.

     (9.1);

     p(»)

      = the

    probability density function (pdf) for the random variable (•) ; and 7> = a tem

    poral record that is infinitely long in

     Eq.

     (9.1). Data are frequently normalized

    by subtracting the mean \x\  and then dividing by the standard deviation a

    x

      of

    x(t)

      in order to obtain the following zero-mean , unit variance data record:

    =

      * ( O - M I W

      ( 9 1 4 c )

    Ox

    The

     Wiener-Khinchine Fourier transform pair

     is

     similar

     to the

     Fourier series

    transform pair from Eqs. (9.2) but relates the covariance function  C

    xy

    (x)  to

    the two-sided spectral density function  G

    xy

    (co)  (Bendat and Piersol, 1986)

    according to

    1   r+°°

    C

    xy

    (r)  = —— /  G

    xy

    (oo)exp ±(ioor)dco,  (9.15a)

    V2TT

      J—

    oo

    i  r+°°

    G

    xy

    (co)

      = —= I C

    xy

    (r)exTp^(ia)T)dr,

      (9.15b)

    V2TT  J-OO

    where G

    xy

      (co) = a complex-valued, two -sided cross-spectral density function

    that may be expressed as

    G

    xy

    (co)  = C

    xy

    (co) ±  iQ

    xy

    (a>),  (9.15c)

    where C

    xy

     (oo) = coincident spectral  density function and  Q

    xy

      (co) = quadra

    ture spectral  density function. Alternatively, the complex-valued, two-sided

    cross-spectral density function

     in Eq.

     (9.15c) may be expressed

     as

     an amplitude

    and a phase by

    G

    xy

    (co)  - \G

    xy

    (oo)\exp ±ia

    xy

    (co),  (9.15d)

    where the amplitude

      \G

    xy

    (oo)\

     and phase

     a

    xy

    (co)

      are computed from

    G

    xy

    (oo)\ = JC^Jco) + Q lJco), a

    xy

    (co) =

      arctan

    Q xy (CO)

    C

    xy

    (00)  _

    (9.15e,f)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    14/148

    732

    Waves

     and

     Wave

     Forces on Coastal and Ocean Structures

    A real-valued  coherence function  may be computed by

    2

      \G

    xy

    {co)\

    2

    YI

    y

    (w )  =  \ )

     = area l-valu ed, two-sided spectral density function for the time

    series £(/)• A real-valued one-sided spectral density function

      S

    m

    {co)

      for the

    time series r) (t) may be computed from the two-sided spectral density function

    G

    xy

    {(o)  by

    S

    m

    {a>)=2G

    m

    (a>)U{a))

      (9.15h)

    where  U(a>) = the Heaviside step function in Eq. (2.1) in Sec. 2.2.2. One

    sided spectral

     density

     values

     S

    nri

     (a>

    m

    ) m ay be computed for the discrete radian

    frequency

     co

    m

     from two-sided, com plex-valued discrete FFT

     amplitudes

      | B

    m

     \

    in Eq. (9.11c) by

    2\B

    m

    \

    2

      \B

    m

    \

    2

    S

    m

    (a )

    m

    ) =  ' " ' =  —^Ndt,  (9.15i)

    IjcdfC^i  TTCN

    where Eq. (9.10) has been substituted for ^f and where

      CN

     = th e FFT nor

    malizing constant defined in Eq. (9.10) for the FFT coefficients computed by

    MATHEMATICA™.  Similarly, values may be computed from Eq. (9.1 5i)for

    the random wave simulations in Sec. 9.6 by

    2\B

    m

    \

    2

    S^icom) = ^ - ^  (9.15J)

    where  CN =  the FFT normalizing constant defined in Eq. (9.10) for the FFT

    coefficients computed by

      MATHEMATICA™.

    One-sided spectral density functions

      S

    m

      (•) m ay be expressed as functions

    of the independen t variables (• ) of radian frequencies  a>(=27tf), or of cycles-

    per-second (cps) frequencies / , or of wave periods

      T,

      or of scalar wave

    numbers  k{=2iz/X)  or of vector wave num bers k.  In order to determine the

    relationship between spectral densities expressed with different independent

    variables, equate the differential area under each spectral density in a small

    incremental interval of the independent variable according to

    -S^mdT =

     S

    nr}

    {(o)da>

      = Sr,„(f)df = S

    nn

    {k)dk  =  S

    nri

    {k)dk.  (9.16a)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    15/148

    Real Ocean Waves

    733

    For co

      = 2nf,

      the transformation Jacobians required for Eq. (9.16a) may be

    determined from

    dco

      = litdf = -^rdT = -—d T =

      -27tf

    2

    dT;  (9.16b)

    T

    z

      2n

    so that, accordingly, for the independent variables

      T, f

      and co

    7

    T

      CO

    S

    m

    (T) =

      f

    2

    S

    m

    (f)

      = —

      S

    m

    (a>),

      (9.16c)

    lie

    S^f) = 2nSr,

    n

    (eo).

      (9.16d)

    Transformations between frequency / and wave num ber

     k

     spectra require the

    linear dispersion equations (4.15) in Chapter 4.3 given by

    co

    2

     =

      ( 2 T T / )

    2

      =

      gktanhkh;

      (9.16e)

    and the corresponding Jacobian transformation from Eq. (9.16e) is given

    by Eq. (4.60c) in Chapter 4.5

    where  CG  = t h e wave group velocity. The Jacobians from Eq. (9.16f) for the

    deep-

     and shallow-water approximations, respectively, for Eq. (9.16e) are

    dco co dco co /—-  ,„ ,   ̂ , s

    TT =^r>   ^  =

    T

      = Vgk,  (9.16g,h)

    UK deep-water  ZICQ  UK shallow-water  K

    where the deep-water wave num ber ko

     = co

    2

    /g.

    Correlation-covariance definitions

    There do not appear to be consistent definitions with respect to the time

    series C

    xy

    {x)  (Kinsm an, 1 965). The function  C

    xy

    (r)  is defined as a cross-

    correlation

      function if the times series

      x(t)

      and

      y{t)

      are scaled by their

    means

      [i\

      and standard deviations

      at

      in accordance with Eq. (9.14c) such

    that each time series has zero-mean /xi = 0 and unit variance

      of

      = 1.

    If the time series

      x{t)

      and

      y(t)

      of record length

      TR

      are not scaled by

    Eq. (9.1 4c), then the function

     C

    xy

      ( r ) is defined as a

     cross-covariance

     function.

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    16/148

    734

    Waves and Wave Forces on Coastal and O cean Structures

    The two-sided spectral density function

     G

    xy

    (a>)

      is always defined as a cross-

    spectral  density function regardless of whether or not the time series  x(t)

    and

      y(t)

      are scaled in accordance with Eq. (9.14c). If the two time series

    x(t)

      and

     y(t)

      are identical, then Eq. (9.15a) is defined as an

      auto-covariance

    (or

      -correlation)

      and Eq. (9.15b) the

      auto-spectral

      density

    function.

    Historically, the covariance (or correlation) function

     was

     computed in order

    to efface the randomness from a time series of a random process in order to

    expose the invariant statistical anatomy of the process (Wiener 1964, p. 6).

    The cross-covariance and cross-correlation functions are computed from time

    series x(t)  and y{t)  by

    1   fT

    R

    /2

    C

    xy

    (x)  =  lim — /  x(t)y(t + r)dt,  | r | < oo, (9.17a)

    TR^OO 1R J-T

    R

    /2

    T

    R

    -+oo  1

    R

      J-T

    R

    /2

      T

    R

    /2

    C

    xx

    (r)=  lim — /  x(t)x(t + r)dt,  (9.18a)

    r

    f i

    ^ o o

      1

    R

      J-T

    R

    /2

    c

    ? x & ( T ) =

      T

    l m i — /  —

    2

      dt,  ( 9 . 1 8 b )

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    17/148

    Real Ocean Waves

    735

    where

     Eqs.

     (9.18a, b) are always real-valued functions, symm etric about

     x

      = 0

    and equal to the variance

     0%

      of x(t)  for r = 0; i.e.,

    Cxx(0) 1

      =

      }a

    x

    2

    ] (9 8c )

    lCfc

    &

    (0)J 1 1 J (9.18d)

    Unless  x(t)  is a strictly periodic time series, Eq. (9.18b) is also proportional

    to the mean  ii\  (x) for r

      —

    >  ±00; i.e.,

    j

      y/C

    xx

    {±oo)

     I _ j ^ j ^ J (9.18e)

    I V ^ ( ± ° ° ) J ~ 1 ° J (9.18f)

    The first analyses of random data computed the cross- (or auto-) covariance

    (or correlation) function from the time series by Eqs. (9.17a, b or 9.18a, b) and

    then applied the Wiener-Khinchine Fourier transform Eq. (9.15b) to obtain

    the two-sided spectral density function. Modern analyses of digitized dis

    crete time sequences  (t

    n

      = ndt,  Eq. (9.4a)) employ the discrete finite Fourier

    transform (FFT)

      (f

    m

      — mdf,

      Eq. (9.4b)) to compute the complex-valued

    discrete FFT coefficients

      F

    x

    (m )

      and

      F

    y

    {m)

      of the discrete time sequences

    x(n)

      and

      y(n);

      and then apply these discrete coefficients to com pute either

    the discrete cross-covariance

     C

    xy

    {n)

      (or cross-correlation

     C

    xy

    {n))

      function or

    the two-sided

     G

    xy

    (m)

      (or one-sided  S

    xy

    (m))  cross-spectral density functions.

    A comparison of these two methods for obtaining discrete spectral estimates

    from an FFT algorithm is illustrated

     in

     Fig. 9.7 where the notation F F T implies

    the forward transform from Eq. (9.11b); and the notation F F T

    - 1

      implies the

    inverse transform from Eq. (9.11a).

    To illustrate how either a two-sided G

    xy

    (m)  or a one-sided

      S

    xy

    (m )

      cross-

    spectrum may be com puted by either of the two paths in Fig. 9.7 by a discrete

    FFT form of the Wiener-Khinchine Fourier transform pair in Eqs. (9.15a, b),

    a random time series

      rj{t)

     of six cosine waves is synthesized from the ampli

    tudes and phase angles listed in Table 9.2 and is illustrated in Fig. 9.8a. The

    amplitudes

      A

    m

    ,

      phase angles

     a

    m

      and discrete frequencies

      co

    m

      = lizmdf

      for

    each of the six cosine wave are summarized in Table 9.2. Continuous time

    and frequency are discretized by Eqs. (9.4a, b) for application of an FFT algo

    rithm where  dt  = 0.2 sec,

      AT

      = 64 and df = 1/Ndt =  0.078125 Hz. The

    auto-correlation function  C^(x)  for the normalized random time series f (/ )

    computed from  x (t) = rj (t) by Eq. (9.14c) m ay be computed from the discrete

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    18/148

    736

    Waves and Wave Forces on C oastal and Ocean Structures

    {x(n),y(n)}

    C„

      {n) " F

    x

     (m),F

    y

      (m)

    G

    xy

    (m),S

    xl

    ,(m)

    Fig. 9.7. Com parison of method s for compu ting spectra by FFT and by covariance functions.

    Table 9.2. Parameters for the six cosine waves for

    the random time sequence in Figs. 9.8a and b  (d t  =

    dx

      = 0.2

     sec, N =

      64,

      df = 1/Ndt =

    0.078125 Hz,  MI (?) = 0 ft and tr

    2

      =  64ft

    2

    ).

    frequency  m

    5

    1

    9

    11

    13

    15

    a>

    m

      (rads/ sec)

    2.4544

    3.4361

    4.4179

    5.3996

    6.3814

    7.3631

    A

    m

    (f t )

    2.0

    4.0

    8.0

    6.0

    2.0

    2.0

    a

    m

      (rads)

    1.0192

    2.0579

    5.2495

    5.3168

    2.6336

    0.6556

    Fourier coefficients F

    f

     (m ) by the FFT coefficients  B

    m

      for f (n)  following the

    horizontal path in the middle of Fig. 9.7 according to

    C

    ff

    (T„)  = |F

    f

    ( m ) |

    2

      = - ^ - , (9.1 9a)

    where Civ=the FFT normalizing constant defined in Eq. (9.10) for the

    complex-valued FFT coefficients

      B

    m

      computed by

      MATHEMATICA™.

    The two-sided discrete amplitude spectrum

      \G^(m)\

      in Eq. (9.15d) may be

    computed from discrete FFT coefficients  B

    m

      by

    \Gu(m)\  = \F

    (

    (m)\

    2

      = ¥^-,  (9.19b)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    19/148

    Real Ocean Waves

    737

    0 2 4 6 8 10 12 14

    t

      (sec)

    Fig. 9.8a. Random time sequence  r){t

    n

    )  of six cosine waves in Table 9.2 where  t

    n

      =

    n(0.2) sec.

    JJJ..

    JJJ..

    JJJ..

    JJJ..

    JJJ.

    JJJ..

    JJJ..

    JJJ,

    JJJ..

    JJJ,.

    JJJ..

    JJJ.

    _LLL

    _LLL

    .LLL

    -LLL

    .LLL

    JJJ.

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    J.1L

    J-LL

    J-LL

    AIL

    J-LL

    JJ.L

    J 1 L

    J 1 L

    J L L

    AIL

    ALLALL

    _

    L

    L

    L

     

    L

    L

    L

     

    _UJ.

    JJJ.

    JJJ.

    JJJ.

    JJJ.

    JJJ.

    JJJ.

    JJJ.

    JJJ

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    .LLL

    —J,

    AAL

    AIL

    AIL

    AAL

    J-LL

    J 1 L

    J-LL

    i l l

    J L L

    J 1 L

    J 1 L

    J 1 L

    -J—

    JJJ.

    -UJ.

    .UJ.

    JJJ.

    -UJ.

    -UJ,

    -UJ-

    -UJ_

    -UJ-

    _UJ_

    -UJ.

    .LLL

    .LLL

    LLL

    LLL

    LLL

    LLL

    LLL

    LLL

    LLL

    LLL

    LLL

    -UJ*

    0 8 16 24 32 40 48 56 64

    m

    Fig. 9.8b. Two-sided discrete amplitude spectrum computed from FFT coefficients for six

    cosine waves in Table 9.2 for  f

    m

      =  m/Ndt  Hz.

    where

      CM

     =the FFT normalizing constant defined in Eq. (9.10) for the FFT

    coefficients computed by

      MATHEMATICA™.

    The two-sided discrete amplitude spectrum |G

    w

    ( m ) | for the time series

    rj(t)

      computed from FFT coefficients

      B

    m

      by Eq. (9.19b) is illustrated in

    Fig. 9.8b. The symmetry about the Nyquist or folding frequency

      m — N/2 +

    1 = 33 in Fig. 9.8b of the two-sided discrete amplitude spectrum

      \G

    m

    (m)\

      is

    a consequence of the negative-definite frequencies being represented by the

    discrete frequency interval

      N/2 + 2 < m < N

      —  1.

    The mean and standard deviation of

     the

     random time series

     r](t)

     synthesized

    from the parameters in Table 9.2 are  ii\{r))  = Oft and  o

    r]

      =

      8.0ft,

      respec

    tively. The random time series  r](t)  is normalized by this mean  ii\(,rf)  and

    standard deviation 

  • 8/18/2019 9789812774828_0009

    20/148

    738

    Waves and Wave Forces on Coastal and Ocean Structures

    2 4 6 8 10 12 14

    t

     (sec)

    Fig. 9.9a. Normalized random time sequence f (t

    n

    )  of the six cosine waves in Table 9.2 where

    0.25

    _ 0.2

    10.15

    to. 0.1

    0.05

    0

    H-4 +

    '4 4 +

    43±

    -1-4 +

    lOT

    TO

    E d :

    4-14-

    L I J - l L U -

    i-l-ti-i—n-t-

    TTT44-HI4T

    - t -H-  + 4-4-4+4-

    xrt

    + 4-h

    xnr

    -4 +

    3 1

    44 +

    trnnTrriTT

    uremic 431

      B J '

    i t t i ± t J i t

    1-4 +

    331

    -U +

    111

    0 8 16 24 32 40 48 56 64

    m

    Fig. 9.9b. Two-sided discrete amplitude spectrum computed from FFT coefficients for the

    normalized time sequence

     r (t)

     in Table 9.2 for

      f

    m

      = m/Ndt

      Hz.

    by

     Eq.

     (9.19b) and is illustrated in Fig. 9.9b. This illustrates the computational

    procedure for computing the two-sided discrete amplitude spectrum  \Grr(m)\

    following the FFT path on the right side of

     Fig.

     9.7.

    The two paths illustrated in Fig. 9.7 for computing the two-sided discrete

    amplitude spectrum \Grr(m)\  for the normalized random time sequence f (t

    n

    )

    in Fig. 9.9a will both be followed in order to demonstrate their differences.

    First, the auto-correlation function  Crr(t)  is computed by Eq. (9.19a) from

    the FFT coefficients  B

    m

      for the normalized random time sequence £(?„) and

    is illustrated in Fig. 9.10a. Algorithms for constructing covariance or corre

    lation functions from FFT coefficients are given by Brigham (1974, p.206,

    Fig.

      13-6a) or by Bendat and Piersol (1986, Chapter 11.6.2, pp. 406-407).

    Note in Fig. 9.10a the symmetry about  T = 0 of the auto-correlation function

    Crr (T)

     in accordance with Eq. (9.17d); and the limiting values of the auto

    correlation function  Crr (T)  ~ 0 = the mean  /AI(£)  as r ->•  ±7>2dt  = 6.4

    sec in accordance with Eq. (9.18f). Next, the two-sided discrete amplitude

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    21/148

    Real Ocean Waves

    739

    - 6 - 4 - 2 0 2 4 6

    T  (sec)

    Fig. 9.10a.  Au to-correlation function for normalized time sequence f (?„) in Table 9.2.

    0.25

    -H4-

    0.2

     FmF -"

    fc

    444-

    ; 0 . 1 5 : m

    0.1 --H-I-

    : B I

    0.05

    444*^4-

    H 4 - H 4 -

    ^ 4 -

    - 1 ^ * 1 .

      -|—i*r« -jp r-i -T-T—I"

    Q ^ . . i | r 5 y h » | T r T

    : P 3 : : c q :

    bzfci l t d : t t t

    - t - H - - n - i - - n - t - - i - n -

    t c t l t c a i t z l i t

    -H -

    rp:

    1 1 1 : 3 1 1 : 3 1 1

    -t-i-t--t-t-t--i-t-t-

    4 J -H4

    41- 1 - 4

    iIBIWi

    • l -H-

      4 H - 4 +

    t + t

    i n n t t n n i r

    4

    :

    S

    -144

    -144-

    nrx

    . . . . . . . J -H -

    m c d u m t a r

    ' - + 4 * 4 4 4

    : •

    0 8 16 24 32 40 48 56 64

    m

    Fig. 9.10b. Two-sided discrete amp litude spectra for the auto-correlation function C jf (r ) com

    puted from Table 9.2 by the FFT coefficients from f (r){ »»} and by the Wiener-Khinchine

    Fourier transform pair {xx}.

    function

      \G^(m)\

      is then computed from the FFT coefficients of the auto

    correlation function

      C^(t) by Eq.

     (9.19b) following the path on the lower left

    side in Fig. 9.7. Second, the two-sided discrete am plitude spectrum  |

     G^

      {m) \

    is computed from the FFT coefficients of

     the

     normalized time sequence £ (/)

    by Eq. (9.19b) following the path on the lower right in Fig. 9.7. Both of these

    two-sided discrete amplitude spectra  \G^(m)\  are compared in Fig. 9.10b.

    The non-deterministic definition for Fourier coefficients in Sec. 9.2 is

    illustrated in Fig. 9.10b. Both of the two-sided discrete amplitude spectra in

    Fig. 9.10b have unit variance; but contributions to the variance by the ampli

    tudes from each frequency are very different. The discrete spectrum computed

    from the FFT coefficients for f (f) by the path on the right side in Fig. 9.7 are

    limited

     to

     only

     the

     six discrete frequencies in Table 9.2. In contrast, the d iscrete

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    22/148

  • 8/18/2019 9789812774828_0009

    23/148

    Real Ocean Waves

    741

    then a dimensionless generic four-parameter one-sided wave density spectrum

    S( Q)

      may be expressed by the product of the two dimensionless functions

    F\ (Q )  and F2(fi) that are defined by

    m mour

    p

      '

    F i(f l )  =  — , F

    2

    (Q) = exp - « " « ,

    and that may be com bined according to the following product

    — < oo. . (9.23e)

    m

    Dim ensionless values of

     F \ (Si)/A,  F

    2

     (fi) and S( fi) are illustrated in Fig. 9.11

    and demonstrate that

      F\{Q )/A

      controls the spectral behavior at frequencies

    higher than the dim ension less spectral peak frequency £2 > £2o =

      a)/mo =

      1

    and that

      F

    2

    (Q )

      controls the spectral behavior at frequencies lower than the

    dimensionless spectral peak frequency

      Q

      < £2o = «/

  • 8/18/2019 9789812774828_0009

    24/148

    742

    Waves and  Wave Forces on Coastal and Ocean Structures

    defined by

    mour

    n

      Jo \m J mo/m

      '

    /0,  (9.25a)

    q \ q J

    where T(«) = Gam ma function defined by Eq. (2.6a) in Chapter 2.2.5 and

    the dimensionless zeroth moment mo = 1. For each dimensionless spectral

    moment

      n

      in Eq. (9.25a), there corresponds a dimensionless characteristic

    radian wave frequency defined by (Vanmarcke, 1983, Chapter 4 .1 , Eq. (4.1.4))

    On =

     (^)

    l/

    "

      =

     (-J^-Y"

      =

      (m,)

    1

    '-, »>0.  ( 9 . 2 5 b )

    m I  \mozrr" 

    Spectral peak frequency

     a>o

    The dimensional spectral peak frequency  u>o  may be computed from

    Eq. (9.23e) by

    — ^ = 0, n = «

    0

      = - = 1 (9.26)

    ail coo

    so that the dimensional characteristic radian wave frequency parameter

     m

      may

    be defined by COQ  as

    m =

     coo

      (-)

      (9.27)

    where  (p/q)

    l

    ^

    q

      is the multiplicative constant noted following Eq s. (9.20).

    The dimensionless generic parameter

      A

      in Eq. (9.23e) may be replaced by

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

    http://mozrr/http://mozrr/http://mozrr/http://mozrr/

  • 8/18/2019 9789812774828_0009

    25/148

    Real Ocean Waves

    143

    Eq. (9 .25a) wi th

      n =

      0 and wi th the d ime nsionless var iance of the t ime

    series mo = 1.0 (or, equivalently, the area und er the dim ensio nless spec trum

    5 ( f i ) ) ;

      i.e.,

    A = - (9 .28)

    r « / > - i )A? )

    and the d imensional character is t ic radian wave frequency

      m

      from Eq. (9 .27)

    so that Eq . (9 .23e) becomes

    S(Q

    0

    ) =

    jP/o

    q(.(j>/9)-D r ((p - \)/q)

    u>

    0 <

      SIQ   =

      — < oo .

    coo

    Q

    0

      p

      exp

     —

      | — Q

    0

      q

    (9 .29a)

    A dimensional form of Eq. (9 .29a) for arbitrary values of the exponents

      p

      and

    q

      may be obtained by mul t ip ly ing Eq. (9 .29a) by

      mo/m

      wi th

      m

      defined by

    Eq. (9 .27) to obtain

    S(co,mo,coo,p,q) =

    1

    (iq + \-p)lq)

    m

    0

    p ( d - p ) / « )  co

    0

    r((p - \)/q) \ o

    x exp

    (9 .29b)

    _  im

    q\co

    A number of theoret ical wave spect ra l densi ty funct ions have exponent

    values of

      p —

      5 and

      q =

      4 . The parameters of several of these theoret ical

    wave spectral density functions may be converted to the parameters of mo and

    coo

      to obtain a generic d imensional two-parameter spect ra l densi ty funct ion

    given by

    S(co,

     m o,

     coo,

     P =  5 , q  = 4) = 5

    mo

      (coo

    COQ   \

      co

    exp

    5

      /coo

    ~4\~co~

    (9 .29c)

    and that are tabula ted in Table 9 .5 . A d im ensio nless plo t of the gene ric spectral

    density function Eq. (9 .29c) is shown in Fig. 9 .12.

    It is not an easy task to dete rm ine the spe ctral peak freque ncy

      coo

     f rom me a

    sured wave data because of the variabil i ty in real spectral est imates obtained

    from dim ensiona l FFT algori thm s. An es t imate of the spectra l pea k frequency

    may be computed from FFT coefficients in a best least-squares sense by

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    26/148

    744

    Waves

     and

     Wave

      Forces on Coastal and Ocean Structures

    mju>

    a

    1 . 9

    n

      K-

    n

    i

    i

    [.../.

    -4

    i

    1

    \

    1

    0 0.5 1 1.5 2 2.5 3

    G5/W„

    Fig. 9.12. Dimensionless two-parameter generic spectral density function for

      p

      = 5 and

    q=4.

    applying the linear Taylor differential correction method (Marquardt, 1963).

    Because the dimensional FFT coefficients are indexed to discrete frequen

    cies m, the method may be defined with discrete dimensional radian wave

    frequencies  a)

    m

      = mAco = m2nAf  for the dimensional FFT algorithm

    from Eq. (9.5b). A dimensional mean-square error e~ between a dimensional

    measured

      spectral density estimate  SM(W)  computed from the dimensional

    two-sided discrete FFT coefficients at discrete frequencies   m  by Eq. (9.15i)

    and the dimensional theoretical generic spectral density

      S(m)

      computed by

    Eq. (9.29c) may be defined by

    M

    C

      2

    J2  [SM("0

      -

      5(m)]

      ,

      (9.30)

    1  =

    1

    M

    c

      -M

    s

    m—Ms

    where

      Ms =

      the starting index for the first significant dimensional FFT

    coefficient and  Mc =  the index of the cut-off frequency above which the

    dimensional FFT coefficients are negligible in the measured spectral density

    SM(»») -

     By restricting the linear Taylor differential correction method to only

    those few frequencies in the vicinity of the estimated value of COQ , the algorithm

    is very efficient. The generic dimensional theoretical spectral density  S(m)

    from Eq. (9.29c) may be expanded in a Taylor series about the dimensional

    spectral peak frequency  u>o by

    dS(m)

    S(m) = S(m) +

    dcoo

    -

  • 8/18/2019 9789812774828_0009

    27/148

    Real Ocean Waves

    745

    gives

    SCOQ   =

    9 < w o

    j :  (S

    M

    (m )

      - S(m))

    m=Ms

    (9.32)

    An initial estimate for

     

    J

    0

      +

      8 1 .

      (9.33)

    The iterations  are  terminated when  the  corrections  8a)

    J

    Q

     are  stable  and

    acceptably small (10~

    6

    ,say). Note that the theoretical spectrum S(m)  from

    Eq. (9.29c) must be recomputed after each iteration because of the newly com

    puted value of  o  from data, the dimensional characteristic radian wave frequency m  in the

    dimensionless generic four-parameter spectrum in Eq . (9.23e) may be replaced

    Table 9 .3 . Sum mary of least -squares fit to  Hurr icane Car la da ta for

     MQ

     —

     Ms

      = 305

    and N =  4096 (Hudspe th , 1975) .

    R e c o r d N o .

    06885 /1

    0 6 8 8 6 / 1

    06886 /2

    06887 /1

    Init ial col.

    [rad/sec]

    0 .52

    0.50

    0.50

    0.50

    Final

      Q

    [rad/sec]

    0 .4990

    0 .5187

    0.4847

    0 .5199

    Final

     

  • 8/18/2019 9789812774828_0009

    28/148

    746

    Waves

     a nd

      Wave

     Forces on C oastal and Ocean Structures

    by the dim ensional average or mean radian w ave frequency

     cb

     or period T  that

    may be computed easily from the spectral moments in Eqs. (9.25) for

      n =

      1

    by (Vanmarcke, 1983)

    m\

      {mQ Tu)m\  „  \ i J

    co

      = — =

      — — — =

      mmi = w—)

    —-Y =

      mA

    2

    \(p,q)

      (9.34a)

    m

    0

      (m

    0

    )(m

    0

      = 1) H ^ )

    from Eq. (9.25a) and where

    Aijip, q)

      =

      )

    q

      .{ .

      (9.34b)

    A dimensional characteristic radian wave frequency

      m

      and dimensionless

    frequency ratio  Q  may be replaced by

    OJ

    m = coAn(p,q),  fit = —, (9.35a,b)

    OJ

    where A12 is the multiplicative constant noted following Eq. (9.20) and

    Eq. (9.23e) becomes

    qA\

    2

    {p,q) (A

    n

    (p,q)\

    q

    CO

    S(Q )= ' " " ' "  e x p -  "-?'

    1

    '  , 0s

      radian wave fre

    quency may be defined as

    mi

      /

      (mom

    2

    )m

    2

      _ .— .- __ .

    a>

    z

    =Q )s = J— = J   - T —   — =  mjmi  (9.37a)

    V  mo  V  (

    m

    o)(mo = 1)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o

      n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1   6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    29/148

    Real Ocean Waves

    1A1

    and the dimensionless seco nd-mo ment  m,2  from Eq. (9.25a) with the constant

    A  defined  b y Eq. (9.28)  for

     mo

     =  1  as

    m

    2

      = )  \[  =

      A31

     (p,q),  Vz = ^-  (9.37b,c)

    and Eq. (9.23e) becomes

    •S("z) = —7 rv

      TZ v

      e x p - '

    '(V)

    « r

      v «?

    0  < ^

    z

      = - ^ < o o .  (9.38)

    Vanmarcke (1983) defines  a  generic characteristic wave frequency

      Q k

     as

    i/k

    " (

    mA

    m

    0

    /

    «jfc = — • (9 -3 9 )

    9 .3 .2 .

      Wave  and  Spectral Parameters Computed from Spectral

    Moments  m

    n

    All  o f the variab les  in  this section Sec. 9 .3 .2 are dimensional  variables; and ,

    consequently,

      th e

     tilde

      ( • )

      notation applied

      in

      Sec. 9.3.1

      is not

      applied here

    to denote dimensional variables. Dimensional spectral density moments

      are

    computed from

      a

      dimensional one-sided spectrum

      S

    m

    {a))

      b y

    /•OO

    m

    n

    =  I

      co

    n

     S

    nr)

    (oo)da).  (9.40)

    Jo

    Many of the wave

      a n d

      spectral parameters that are computed below are eval

    uated

      for the

      dim ension al generic two- param eter sp ectrum

      S

    m

    {ma,a>o,co,

    p

      = 5,q =

      4) in Eq.  (9.29c); consequently,  th e  first four dim ens ion less

    spectral moments computed  b y a  dimensionless  E q . (9.40)  are  summarized

    in Table

      9.4

      where

      th e

      Gamma function

      F(»)  is

      defined

      b y E q .

      (2.6a)

      in

    Chapter 2.2.5.

    Spectral shapes

    Dimensional spectral moments

      m

    n

      computed from

      E q .

     (9.40)

      are

      functions

    of the shape  o f the dimen sional spectral density  S

    nn

    {co).  These dimensional

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    30/148

    748

    Waves and  Wave Forces on Coastal and Ocean Structures

    Table 9.4. Summ ary of dimensionless spectral moments

      m

    n

      for a dimen-

    sionless generic two-parameter spectrum   S^imo,ci)o,a>,p  =  5,q  = 4 )

    where m

    n

      =

      m

    n

     /o,5),p =  5,

    q  = 4) in Eq. (9.29c) for the first five dimensionless spectral mom ents

    n =

      0 - 4 in Table 9.4.

    Spectral bandwidth parameters

     e,q  and

     v

    A dimensionless spectral bandwidth parameter e that may be applied to com

    pute some extreme value statistics for a Gaussian process (vide., Sec. 9.4) is

    the following (Cartwright and Longuet-Higgins, 1956):

    e

    2

      =  1

      2

    -,  (9.41)

    where the dimensional spectral density moments  m

    n

      are computed from

    Eq. (9.40). For a narrow-banded spectrum, e -> 0 and the maximum values

    for a stochastic process that is represented by a narrow-banded spectrum are

    Rayleigh distributed (vide., Sec. 9.4.2). For a broad-banded spectrum,

     e

      -» 1

    and the maxim a values for a stochastic process that is represented by a broad-

    banded spectrum are Gaussian distributed (vide., Sec. 9.4.1). For the generic

    two-parameter dimensional spectral density 5^^(mo,a>0  P  = 5,g = 4) in

    Eq. (9.29c), Eq. (9.41) is

    rHm_

     =

    r ( i ) r (0)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o

      n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1   6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    31/148

    Real Ocean Waves

    749

    where r ( 0 ) = oo in Table 9.4. Consequently, all of the generic two-parameter

    dimensional spectra

      S

    vr)

    {m,Q,coQ,CL>,p

      —  5, q =  4) that are tabulated in

    Table 9.5 may be interpreted as being dimensional broad-banded spectra;

    i.e.,  e  —>   1. However, even though the dimensionless spectral bandwidth

    parameters e,

      q

      and

      v

      discussed here are useful for estimating certain sta

    tistical quantities, the effects of the variability in the spectra computed from

    measured realizations limit the interpretation that these measured spectra are

    broad-banded for engineering applications. The effects of this variability in the

    realizations from these spectra are evaluated by the Hilbert transform and the

    envelope function for engineering applications to damage estimates for rubble

    mound breakwaters in Sec. 9.5. The fourth spectral moment m.4  is undefined

    by Eq. (9.40) and in Table 9.4 for the generic two-parameter dimensional

    spectra  S(mo,coo,co,p  =  5,q  = 4) in Eq. (9.29c). In addition,  m.4  is also

    non-converging when computed numerically from data. For this reason, the

    spectral bandwidth parameter  e  may not be computed reliably in engineer

    ing applications from data; but it does continue to serve a useful purpose for

    evaluating the theoretical distributions of the maximum values in time series

    analyses (vide., Cartwright and Longuet-Higgins, 1956, Sec. 4, and Rice,

    1954).

    Extremal statistics may also be computed from the dispersion of the

    wave frequency spectrum about the central spectral wave frequency from the

    following alternative dimensionless spectral bandw idth parameter q (Vanmar-

    cke,

      1972):

    2

    ,  mi

    q

    2

      = 1

      1

    — ,

      (9.43a)

    mom2

    where the  bold  q in Eq. (9.43a) should not be confused with the  italic q

    in the exponent in Eq. (9.21). Because the spectral bandwidth parameter q

    in Eq. (9.43a) does not require the fourth spectral moment ra4,q

    2

      may be

    computed reliably from data. Vanmarcke  (1983,  Chapter 4) determines that

    extreme values are Poisson distributed. For the generic two-parameter spec

    trum

      S(mo,(Oo,(o,p = 5,q =

      4 ) , q

    2

      from Eq. (9.43a) with the dimensional

    spectral mom ents ra„ from Table 9.4 is given by

    7 r

    2

    ( 3 / 4 )

    q

    2

      = 1  - ^ =  0.152787. (9.43b)

    Jn

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n

       C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s

      c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    32/148

    Table 9.5. Conversion of two-param eter theoretical spectra to generic spectral param eters

     m Q , a>o

      a n (

    l £/(•) = Heaviside step function.

    SPECTRUM  S(u>)

    m

    0

    a>0

    S(mo, C O Q , a>)

    S-M-B: {H

    s

    ,co

    s

    ) (Bretschneider 1 958, 1966)

    1.618f(^)

    5

    exp [-1.03(f)

    4

    ]

    Neumann  {C , U

    w

    ]  (1943) (Kinsman, 1965)

    (¥)

    -)a>  "exp '•\u

    w

    w)  ]

    P-N-J: Pierson, etal. {a,U

    w

    }  (1955)

    (vide., Pierson and M oskowitz, 1 964 )

    ^

    e x

    P

    - 0 . 7 4

    \UuCo)  ]

    ISSC{H

    s

    ,

    0

     + 0.26) -U(co-

      co

    0

     -  1.65)}

    WALLOPS

      IP,p,coo)

      (Huang, etal.,  1981)

    (^r-p[-f(^)

    4

    ]

    0.3932  tf

    0

    2

      0.9528&).

    3 C JT

    64

    \

    Q.11U5)

    0.71ft>

    7

    ft)o

    ft)o

    5^( f)

    5

    exp[- e)

    4

    ]

    24/|^(t)

    6

    ex

    P

    [-3(^)

    2

    ]

    5^(^)

    5

    exp[-I(f)

    4

    ]

    5^( f)

    5

    ex

    P

    [-I(^)

    4

    ]

    5 ^ e )

    5

    e x p [ - f e )

    4

    ]

    3.424mo exp

    ( a ) - a ) p )

    [ 0 . 0 6 5 ( a ) - w o -

    A l

    s

    8

    £

    a

    s

    a.

    55

    SPECTRUM  S(f)

    mo

    /o

    S(m ) « P -

    (ff   W  a  v  e  s  a  n   d   W  a

      v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s   D  o  w  n

       l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1   6 .

       F  o  r

      p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

    http://uuco/http://uuco/http://uuco/

  • 8/18/2019 9789812774828_0009

    33/148

    Real Ocean Waves

    751

    Longuet-Higgins (1975) defines a spectral narrowness parameter v that

    may be related to the Vanmarcke param eter q according to

    v2 =

      mom _

      1 =

      /momA

    q 2

      {gM)

    m\ \ m\ ]

    Goda dimensionless spectral peakedness parameter  Q

    p

    Goda (1970) identifies a parameter  Q

    p

      that correlates with wave groups in

    Sec.

     9.5 and is defined for dimensional one-sided spectral densities S

    m

    (f)  by

    2 r

    0 0

    Q P = —,\

      fSl(f)df.

      (9.45)

    vv

    The Goda spectral peakedness parameter  Q

    p

      appears to be less sensitive to

    the cutoff frequency that is required in order to compute spectral moments

    m

    n

      from data and also less sensitive to wave nonlinearities than the spectral

    narrowness parameter v in Eq. (9.44). The generic two-parameter spectrum

    S

    m

      (mo, coo,  co,p = 5,q

      = 4) in Eq. (9.29c) may be converted from radial fre

    quencies co = 2n f  to Hertzian frequencies / by equating differential spectral

    areas from Eq. (9.16d) according to

    S(f)df =  S(co)dco  = S((o)2 7tdf,

    S(f) = 2TZ S(CO).

    For the generic four-parameter spectrum

      S^  (mo, coo, 

  • 8/18/2019 9789812774828_0009

    34/148

    752

    Waves

     and

      Wave

     Forces on Coastal and O cean Structures

    For the dimensional generic two-parameter spectrum   S^  (mo, U>Q , CO, 5,4)

    in Eq. (9.29c),  Q

    p

      is

    Q

    P

      = h  (9.47)

    that is approximately equivalent to

      Q

    p

      for a broad-banded Gaussian white

    noise spectrum (Goda, 1985).

    9.3.3.  M ulti-Param eter Theoretical Spectra

    All of

     the

     variables in this section Sec. 9.3.3 are

     dimensional

      variables; and,

    consequently, the tilde (•) notation applied in Sec. 9.3.1 is not applied here

    to denote dimensional variables. Multi-parameter theoretical spectra include

    both variance-preserving variable shape spectra and multiple peak (bi-modal)

    spectra.

    Goda-JONSWAP variance-preserving spectrum

    The dimensional variance-preserving Goda-JONSWAP one-sided wave spec

    trum is (Goda, 1985 or Chakrabarti, 1987)

    e x p [ - ( / V o )

    2

    / (2 r ,

    2

    /

    0

    2

    ) ]

    ;

    (9.48a)

    where

    „ _ 0.0624

    _

      0.230

     + 0 . 0 3 3 6 / - 0.1 85(1 .9 + y ) -

    1

    '

    r

    a

      = 0.07 i f / < /

    0

    ;  r

    b

      =  0.09 if / > /< ,,

    and where 1 ,p  = 5,q = 4) in Eq. (9.29c)

    Snri(f)  = a *

    Hi

    /o

    exp

    - 1 . 2 5

    (9.48b)

    (9.48c,d)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    35/148

    Real Ocean Waves

    753

    derived in Sec. 9.3.1 if

     Eq.

      (9.29c) is converted from radian frequency

      co

      to

    Hertzian frequency / by Eq. (9.16d) and

      H

    s

      = 4^/mo

      from Table 9.6. When

    the spectral peakedness parameter  y =  10, Eq. (9.48a) is a relatively narrow-

    banded spectrum. Exam ples of these two extreme values for  y  are applied to

    rubble m ound breakw aters in Sec. 9.5 in order to evaluate the effects of spec

    tral shapes on wave groups and the corresponding damage to rubble mound

    breakwaters. Goda (1998) modified the variance preserving coefficient  a  in

    Eqs.

     (9.48); but these modifications do not appear to be a good as the variance

    preserv ing coefficient

      a*

      in Eqs. (9.48).

    OCHI-HUBBLE six-parameter (bi-modal) spectrum

    Ochi-Hubble (1976) derive a theoretical six-parameter (bi-modal) wav e spec

    trum consisting of both low and high frequency peaks that results in a double

    peaked spectrum. Each of these two frequency components require three

    param eters: viz., a significant w ave height

      H

    Sj

    ,

      a modal peak frequency /o

    7

    ,

    and a shape (or peakedness) parameter

      Xj

     where the subscript

      j =

      1 for the

    low frequency components and  j = 2  for the high frequency components.

    Each of the two three-parameter spectral peaks may be combined into the

    following single double peaked, one-sided spectral density function:

    'nv

    (/) = i E

    (^-f

    H

    j=i

    x exp

    r(kj)

      2TT/O,

    f

    4A.J + 1

    4A./ + 1

    f

    (9.49a)

    Ai = 2.72,

      X

    2

      =

      1.82exp(0.0277/,)  = 1 .82exp(0 .108v^o) .

    (9.49b,c)

    The dimensional significant wave heights  H

    s

    .  in each of the two frequency

    regions  j  may be replaced by the total variance of the wave spectrum

    according to

    Hi

    H's

    HU]

    • =   i

    -«i

    +• H ^ =

      1 6 m

    0

    Rfrf]

    = 16mo-

    (9.50a)

    (9.50b,c)

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    36/148

    754 Waves

     and

     Wave

     Forces on Coastal and O cean Structures

    f/foi

    Fig. 9.1 3. Hinged wavemaker laboratory simulation of Ochi-Hubble 6 parameter wave spec

    trum (| = raw unsmo othed spectral density estimates; = smoothed estimate; and =

    theoretical spectral density function).

    In order to compare laboratory or field spectra with Eqs. (9.49), it is

    convenient to scale Eq. (9.49a) by m o /2 ^ /o , and obtain

    Snnif/foj) _

    m o / 2 7 T /

    0 l

    4((4A

    1

     + l)/4)*l f, , (

    H

    2

    \  (X-\

    r ( M )   j

    i   +

      U J J  \foJ

    , 4 /

    0 l

     «4A

    2

    +l)/4)*2 J  Oh.}

    2

    ]

    1

      (J-\

    +

      /o

    2

    r(x

    2

    ) 1

    1 +

      \n

    n

    )

      I

      \fo

    2

    )

    (4A, + 1)

    exp

    - (4X2+1)

    -*[-m(*r]

    (9.51)

    An exam ple of a laboratory simulation of random waves by Eq. (9.51 ) in

    a 2D w ave channel (vide., Fig. 5.1 in Chapter 5.1) by a hinged wavem aker at

    the O. H. Hinsdale-Wave Research Laboratory at Oregon State University in

    the USA is shown in Fig. 9.13.

    The parameters applied in the laboratory simulation in

     Fig.

     9.13 w ere Ai

      —

    2.72,^2 =  1.8,/o

    2

    //o,  - 3 . 5 , /

    0 l

      =  1/7Hz,

      fo

    2

      =

      1/2Hz,

     H

    S2

    /H

    S1

      =

      1.0

    and mo = 0.01 1m

    2

    .

    9.3.4.  Spectral Directional Spreading Fun ctions

    The ocean wave spectra reviewed in Sec. 9.3 and tabulated in Table 9.5 are

    unidirectional spectra. The Wave Project I and II hurricane wave force records

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G

       I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    37/148

    Real Ocean Waves

    755

    reviewed in Chapter 7.6.6 identify  in-line and resultant  force coefficients  C

    m

    and

     Cd

     •

     This

     distinction

     is due

     to the directionality of

     the

     random waves passing

    the instrumented offshore platform. The spectral models that incorporate this

    directionality of random waves are reviewed briefly (vide., Borgman, 1969a

    for an extensive review)

    A fundamental method for incorporating wave directionality is to assume

    a separation of variables model according to

    ~S

    m

    (eo, 9) = S

    m

    {o))D(e,

      n,-), (9.52a)

    D (0 ,n . - ) = % ^ , (9.52b)

    where

      S

    m

      (a>)

      =

      the unidirectional one-side spectra models reviewed above

    and  D(0,Tli) = a directional spreading function that may depend on sev

    eral empirical parameters n, and/or radian wave frequencies

      w

     and that must

    satisfy the variance-preserving constraint required by

    / .

    71

    D(9,Tli)d9 = l

      (9.52c)

    n

    so that the variance of the time series of random w aves may be com puted from

    m

    0

      = tf=

      /

      S

    nJ]

    {(o)D{e,Ui)dedo.

      (9.52d)

    Dirac delta distribution for uni-directional

     wave

      spectra

    For the special situation where the random waves propagate uniformly in the

    same direction, the spreading function may be represented by the Dirac delta

    distribution in Chapter 2.2.3 that is given by

    S(9-9

    0

    )

    D(e,Yli)= \ °\

      (9.53)

    27T

    where

     0

    = the direction of propagation of the unidirectional wave spectrum.

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o

      n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1   6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    38/148

    756 Waves and Wave Forces on Coastal and Ocea n Structures

    Cosine raised to even integer powers

    Mitsuyasu (1971) proposed a fetch-limited directional wave spreading

    function given by

    D(9, n,o

    C(s) =

    C(s)

      cos

    2s

    o-e

    0

    -n < 9

      <

      n

    C(s)cos

    2

    '

    s

    (0-9o)

    2

    (2s-l)

      r

    2

    ( j +

      j )

    it  r ( 2 s + i ) '

    n

    <

    2

      _

    < f

    C(s) =

    1   l\s + l)

    (9.54a)

    (9.54b)

    (9.54c,d)

    where 9Q

     =

     principal direction of propagation of the unidirectional wave spec

    trum,

     the

     param eters n,- = J and 5 = empirically determined integer constants

    that control the amount of angular spreading about the principal direction

    #o;  and the Gam ma function T(«) is defined by Eq. (2.6a) in Chapter 2.2.5 .

    The parametric dependency on the empirical parameter  s  of the w idth of the

    spreading function is illustrated in Fig. 9.1 4.

    When the integer parameters  s = s =  1, then T

    2

    (2) = 1, T( 3/2 ) =

    *Jn72,  r(3) = 2 and Eqs. (9.54) reduce to (Borgman 1969a and 1972b)

    '9-9

    0

    '

    0(0,n,-)

    s>

    f

    =1

      =

    C(s =

      1) cos"

    -it < 9 < n,

    n

    Cis =

      1)

     cos

    z

    (9 - do),

      -

      -z

      <

      9 <

    TC

    1 2

    C(s =  1) = - ,  C(s = l) = -= 2C(s =  1).

    it n

    (9.55a)

    (9.55b)

    (9.55c,d)

    -180-120 -60 0 60 120 180

    (9-e„) (deg)

    Fig. 9.14. Parametric dependency of cos

    2i

    (fl

      — 9Q )

      spreading function on the shape

    parameters .

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e  s

       D  o  w  n   l  o  a   d  e   d   f  r  o  m  w  w  w .  w  o  r   l   d  s  c   i  e  n   t   i   f   i  c .  c  o  m

       b  y   M   C   G   I   L   L   U   N   I   V   E   R   S   I   T   Y  o  n   0   4   /   0   5   /   1

       6 .

       F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

  • 8/18/2019 9789812774828_0009

    39/148

  • 8/18/2019 9789812774828_0009

    40/148

    758

    Waves and Wave Forces on Coastal and O cean Structures

    1.4i

    1.2

    ^ 1

    CD

     0.8

    Q 0 . 6

    0.4

     H

    0.2

    0

    — j _

    — i

    _ _ _ u .

    —f_

    « = 8

    —f-

    — h a = 4

    — h

    ___;_.

    s^^s

    — r -

    -\—

    /

    //"

    ~ ^

    ~3T^

    y

      a

    - 1

    a =

     10-i-j--

    NT~

    M "

    - ^v\

    afO

    __L

    a =

     6

    . J _ l _

    - ; - r -

    - H -

    i

      - t

    -fi-

      i

    — J — i —

    H ^ S f ^

    -90 -60 -30 0 30 60 90

    (6-e

    0

    ) (deg)

    Fig. 9.1 5. Param etric dependency of circular normal spreading function on the shape

    parameter a.

    to the shape parameter

     5

     in Eqs. (9.54) by

    2 a r c c o s f l - — } = 4 ar cc os [( 0. 5)

    1 /2

    *]. (9.58b)

    Figure 9.15 illustrates the parametric dependency on the shape parameter a of

    the circular normal directional wave spreading function.

    SW OP w ave spreading function

    A wave directional spreading function derived from stereo photographs of

    ocean waves is the SWOP model (Stereo

      Wave

      Observation Project, Cox

    and Munk , 1954a, b) given by

    D(6, &) = - •

    it

    1 + I 0.50 + 0.82 exp

    + 0.32 exp

    -*©'

    K I

    0)'

    cos46>

    cos 20

    (O =

    U

    5

    '

    it

    (9.59a)

    (9.59b)

    where  Us = wind speed measu red at 5 m (16.4 ft) above the sea surface.

       W  a  v  e  s  a  n   d   W  a  v  e   F  o  r  c  e  s  o  n   C  o  a  s   t  a   l  a  n   d   O  c  e  a  n   S   t  r  u  c   t  u  r  e