9/5/2006pre-calculus r r { [ 4, ) } { (- , 3 ] } { r \ { 2 } } { r \ { 1 } } { r \ { -3, 0 } } r {...

83
9/5/2006 Pre-Calculus R R { [ 4, ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3, ) } { (- , 4 ] U [ 2, ) } { (- , -1) U [ 0, ) } { [ 0, ) } R { [ -8, ) } { [ 0, ) } { [ 0, ) } { R \ { ½ } }

Upload: fay-white

Post on 25-Dec-2015

225 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

R

R

{ [ 4, ) }

{ (- , 3 ] }

{ R \ { 2 } }

{ R \ { 1 } }

{ R \ { -3, 0 } }

R

{ (- 3, ) }{ (- , 4 ] U [ 2, ) }

{ (- , -1) U [ 0, ) } { [ 0, ) }

R

{ [ -8, ) }

{ [ 0, ) }

{ [ 0, ) }

{ R \ { ½ } }

Page 2: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 3: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

continuous discontinuousinfinite

discontinuousremovable

continuous discontinuousremovable

discontinuousjump

discontinuous - jump

continuous

discontinuous - infinite

continuous

continuous

discontinuous - infinite

Page 4: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 5: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

(3x+4)(x<1)+(x-1)(x>1)

jump

(x^3+1)(x0)+

(2)(x=0)

removable

(3+x2)(x<-2)+(2x)(x>-2)

(x<1)+(11-x2)(x>1)

jump

Page 6: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 7: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

incr: (- , ) decr: (- , 0 ]incr: [ 0, )

decr: (- , 0 ]incr: [ 0, )

decr: [ - 1, 1 ]incr: (- , -1 ], [ 1, )

decr: [ 3, 5 ], incr: [ , 3 ]constant: [ 5, )

decr: [ 3, ), incr: ( 0 ]constant: [ 0, 3)

decr: ( - , )

decr: (- , -8 ]incr: [ 8, )

decr: ( - , 0 ]incr: [ 0, 3 )

constant: [ 3, )

decr: ( 0, )incr: ( - , 0 )

decr: ( 2, )incr: ( - , 2)

constant: [ -2, 2 ]

decr: ( - , 7 )decr: ( 7, )

Page 8: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 9: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

unbounded bounded belowb = 0

bounded belowb = 1

unbounded bounded aboveB = 0

boundedb= -1, B = 1

bounded belowb = 0 bounded below

b = -1bounded below

b = 0bounded above

B = 0

Right branch:bounded below

b = 5

Left branch: bounded above

B = 5

Page 10: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

y-axis

EVEN functions

The graph looks the same to the

left of the y-axis as it does to the right

For all x in the domain of f,

f(-x) = f(x)

x-axis

The graph looks the same above

the x-axis as it does below it

(x, - y) is on the graph whenever

(x, y) is on the graph

origin

ODD functions

The graph looks the same upside

Down as it does right side up

For all x in the domain of f,

f(-x) = - f(x)

Page 11: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f (x)=4x4 −3x2 +1

g(x)=4x5 −2x3

Algebraic Test for even/odd/neither:

Replace all x with –x:

Page 12: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f (x)=4x4 −3x2 +1

f(−x) =4(−x)4 −3(−x)2 +1

=4x4 −3x2 +1

g(x)=4x5 −2x3

Algebraic Test for even/odd/neither:

Replace all x with –x:

f(x)=f(-x) so even!

Now try g(-x):

Page 13: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f (x)=4x4 −3x2 +1

f(−x) =4(−x)4 −3(−x)2 +1

=4x4 −3x2 +1

g(x)=4x5 −2x3

g(−x) =4(−x)5 −2(−x)3

=−4x5 +2x3

Algebraic Test for even/odd/neither:

Replace all x with –x:

f(x)=f(-x) so even!

g(-x)=-g(x) so odd!

Page 14: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f (x)=3x4 −3x3 +1

Algebraic Test for even/odd/neither:

Replace all x with –x:

Page 15: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f (x)=3x4 −3x3 +1

f(−x) =3(−x)4 −3(−x)3 +1

=3x4 + 3x3 +1

Algebraic Test for even/odd/neither:

Replace all x with –x:

This is neither the same nor opposite so it is neither!

Page 16: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 17: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Odd Even Even

Odd Even Neither

Even Neither

Even Odd

Page 18: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Students will be able to determine the vertical and

Horizontal asymptotes of functions by inspecting their graphs

Do Now: use your graphing calculator to graph:

f (x)=x

x2 −x−2

Page 19: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

verticallyhorizontally

Page 20: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

horizontally

vertically

will not actually touch

asymptotes

tan and cot

x = -1 x = 2

y = 0

End behavior

x

lim f(x)

x

lim f(x)

Limit notation

x

lim f(x) 0

x

lim f(x) 0

Page 21: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Students will be able to determine the vertical andHorizontal asymptotes of functions by inspecting

their graphs

g(x)=5x

x−2

Graph the function above and determine the verticalAnd the horizontal asymptotes.

Page 22: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Students will be able to determine the vertical andHorizontal asymptotes of functions by inspecting

their graphs

g(x)=5x

x−2

The end behavior of the function above is related to the Horizontal asymptote .

lim f(x ) =5 x → ∞

lim f(x ) =5 x → −∞

x =2

y=5

Vertical:

Horizontal:

Page 23: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

lim f(x ) = x → ∞

We read this as “the limit as x approaches infinity is”Which means “as we look to the far right of the graph,

What y value does it head near”

Page 24: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Vertical: x = - 3 Horizontal: y = 0Vertical: x = 2, -2

Horizontal: y = 0Vertical: x = 3

x

lim f(x) 5

x

lim f(x) 5

x

lim f(x) 3

x

lim f(x) 0

x

lim f(x) 1

x

lim f(x) 1

x

lim f(x) 0

x

lim f(x) 7

x

lim f(x) 0

x

lim f(x)

x

lim f(x) 4

x

lim f(x) 4

Page 25: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Student will be able to use function properties to Analyze a Function.

Page 26: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Yes

{ ( - , -1 ) U (-1, 1) U (1, ) }

Infinite discontinuities

Decreasing: (- , -1), (-1, 0 ]

Unbounded

Left piece: B = 0, Middle piece b = 3, Right piece B = 0

Local min at (0, 3)

Even

Horizontal: y = 0, Vertical: x = -1, 1

Each x-value has only 1 y-value

{ ( - , 0) U [ 3, ) }

Increasing: ([ 0, 1), (1, )

lim f(x) 0 x → ∞

x

lim f(x) 0

Page 27: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

What we just did was to “analyze a function”

The sheet provided to you lists the aspects ofA function to include in an analysis.

Page 28: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

In-class ExerciseSection 1.3

In-class ExerciseSection 1.3

•Domain

•Range

•Continuity

•Increasing

•Decreasing

•Boundedness

•Extrema

•Symmetry

•Asymptotes

•End Behavior

Page 29: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 30: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Yes

{ ( - , ) }

continuous

Decreasing: (- , 0 ]

Bounded below b = 0

Absolute min = (0,0)

Neither even or odd

none

Each x-value has only 1 y-value

{ [ 0, ) }

Increasing: [ 0, )

x

lim f(x)

x

lim f(x)

{ ( - , -3 ] U [ 7, ) }

Page 31: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

10 Basic Functions10 Basic Functions

3f(x) x f(x) sinx

f(x) cos x

f(x) x

f(x) x

2f(x) x

1

f(x)x

f(x) x

xf(x) e

f(x) lnx

Page 32: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Do Now:Add:

Subtract:

(x2 + x)+ (3x−7)

(2x3 −4)−(5x3 −9)

What are the domains of : f (x)=3x3 + 7

g(x) =x2 −1

Page 33: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 34: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f(x) + g(x)f(x) – g(x)

f(x)g(x)f(x)/g(x), provided g(x) 0

3x3 + x2 + 63x3 – x2 + 83x5 – 3x3 + 7x2 – 7

x2 – (x + 4) = x2 – x – 4

3

2

3x 7

x 1

Page 35: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Restricted Domains:Find the domains of the following functions:

f (x)=x2

g(x) = x+ 3

Page 36: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Restricted Domains:Find the domains of the following functions:

f (x)=x2 : domain: (−∞,∞)

g(x) = x+ 3 domain: [−3,∞)

1.Find: and include the overlapping domain

2.Find and include the domain f

g(x)

f −g(x)

Page 37: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Restricted Domains:Find the domains of the following functions:

f (x)=x2 : domain: (−∞,∞)

g(x) = x+ 3 domain: [−3,∞)

f

g(x)=

x2

x+ 3,

f −g(x) =x2 − x−3, Domain:

Domain:

[−3,∞)

(−3,∞)

Page 38: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Do Now:Simplify this “complex” fraction

Student will be able to compose two functionsAnd find their domains

22

x− 2

x2

Page 39: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x2

Page 40: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x2 sinx+,-,x,/

The squaring function the sine functioncomposition

composition

f ○ gf(g(x)

x2

Page 41: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

1. Write the first function2. Replace “x” with ( )

3. Place the 2nd function in ( )4. Decide on the domain and simplify

Steps for composition:

Page 42: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x2 sinx+,-,x,/

The squaring function the sine functioncomposition

composition

f ○ gf(g(x)

x2

4x2 – 12x + 9

2x2 – 3

x4

1

5

4x-9

Page 43: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

The domains of compositions

We need to “inherit” the domain of the second functionAnd consider the new function as well!

Use the graphing calculator to verify!

Page 44: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x 2

4

1

Domain is all reals except -2

Page 45: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

For part b:(see “vars” which is next to clear for the y)

Page 46: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x 2

4

4x

1 2x

1

Domain is all reals except -2

Domain is all reals exc. 0 and -.5

Page 47: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

x 2

4

4x

1 2x

1

1

x1/ x

2(x 2)

x 4

Domain is all reals except -2

Domain is all reals exc. 0 and -.5

D: all reals except 0

D: all reals except -2 and -4

Page 48: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Decomposition: Students will be able to decomposea composite function.

Do Now: perform the composition:

f (x)= x

g(x) =x2 +1f og(x) =

Page 49: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Given the function, find what f(x) and g(x) could be.

f og(x)= x2 +1Recall the steps for composition:

1. Write the first function2. Replace “x” with ( )

3. Place the 2nd function inside ( )4. Decide on the domain and simplify

Ask yourself: what could be in the ( ) ?

Page 50: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

f og(x)= x2 +1

f (x)= x

g(x) =x2 +1

Page 51: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 52: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

inside function

outside function

x2 + 1 x 2 2f(g(x)) f(x 1) x 1 h(x)x2

x 1 2 2f(g(x)) f(x ) x 1 h(x)

Page 53: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Practice examples:

a) h(x)=(2x+1)3

b) h(x) = x2 −5

c) h(x) =(x−1)2 −3(x−1)+ 4

if

h(x)= f og(x)

find f(x) and g(x)

Page 54: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

3

g(x) 2x 1

f(x) x

inside function

outside function

x2 + 1 x 2 2f(g(x)) f(x 1) x 1 h(x)x2

x 1 2 2f(g(x)) f(x ) x 1 h(x)

2g(x) x 5

f(x) x

2

g(x) x 1

f(x) x 3x 4

Page 55: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Hand in this example on an “exit card”

h(x)=4(x−2)7 −5

Page 56: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 57: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 58: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 59: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

inverse

functions

horizontal line test

original relation

Graph is a function

(passes vertical line test.

Inverse is also a function (passes

horizontal line test.)

both vertical and horizontal

line test like A one-to-one function

is paired with a unique y

inverse function

is paired with a unique x

f –1 f –1 (b) = a, iff f(a) = b

Graph is a function

(passes vertical line test.

Inverse is not a function (fails horizontal line

test.)

Page 60: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 61: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Do Now:State the domain and range of the following function:

f (x)=x

x+2

Student will be able to find the inverse function and stateThe inherited domain and range

Page 62: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 63: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

DomainRange:

f (x)=x

x+2

x=y

y+2y=xy+2xy−xy=2xy(1−x) =2x

f−1 =2x1−x

,x≠1

x ≠−2y≠1

Get y terms together!Factor y out

Note the “inherited“ domain

Page 64: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

D: { ( - , ) }R: { ( - , ) }

D: { [ 0, ) }R: { [ 0, ) }

D: { ( - , - 2) U ( -2, ) }R: { ( - , 1) U (1, ) }

D: { ( - , ) }D: { [ 0, ) }

D: { ( - , 1) U (1, ) }

x 2y 3

1 x 3

f (x)2

x y

1 2f (x) x

y

xy 2

1 2xf (x)

x 1

Page 65: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Functions that are not one to one require restrictionsOn their domains in order to make them 1 – 1 and

Find their inverses!

g(x)=x2 + 3

What is the domain and range?

Page 66: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Functions that are not one to one require restrictionsOn their domains in order to make them 1 – 1 and

Find their inverses!

g(x)=x2 + 3

Domain: restricted to Range:

(−∞,∞)→y≥3

x ≥0

Page 67: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Functions that are not one to one require restrictionsOn their domains in order to make them 1 – 1 and

Find their inverses!

g(x)=x2 + 3,

x=y2 + 3

x−3=y2

g−1 = x−3,

Domain: Range:

y≥3x ≥0

x ≥3y≥0

Page 68: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 69: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

{ ( - , ) } 1 5

( x 5) (2x 10) x 52 2

f(x) and g(x) are inverses

1 3

( x 5) (2x 10) x 152 2

21( x 5)(2x 10) x 5x 502

1( x 5)2

(2x 10)

1

(2x 10) 5 x 5 5 x2

1

2( x 5) 10) x 10 10 x2

{ ( - , ) }

{ ( - , ) }

{ ( - , - 5) U ( - 5, ) }

{ ( - , ) }

{ ( - , ) }

Page 70: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

( 3,6.75)

( 2,2)

( 1,0.25)

(0,0)

(1, .25)

(2, 2)

(3, 6.75)

1x 4

y

1y

x 4

Yes

passes horizontal line test

Yes

(6.75, 3)

(2, 2)

(0.25, 1)

(0,0)

( .25,1)

( 2,2)

( 6.75,3)

D: { ( - , 0 ) U ( 0, ) }

R: { ( - , 4 ) U ( 4, ) } D: { ( - , 4 ) U ( 4, ) }

1 1f (x)

x 4

2g(x) x 2

f(x) x 2 2f(g(x)) f(x 2) (x 2) h(x)

Page 71: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

D: { ( - , - 2 ) U ( - 2, 1 ) U ( 1, ) }

3x 2f(g(x))3

1x 2

3g(f(x))

x2

x 1

xf x 1(x)

3gx 2

D: { (- , - 2) U (- 2, 1) U ( 1, ) }

3

xy 2 D: { ( - , 0 ) U ( 0, ) }

3

1 x

3x 3

3x 2D: { ( - , 2/3 ) U ( 2/3, 1 ) U ( 1, ) }

2x 2x

3x 3

3 2xy

x

Page 72: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

STUDENTS WILL BE ABLE TO NAME THE TRANSFORMATIONS OF A FUNCTION

THAT TOOK PLACE WHENGIVEN AN EQUATION

DO NOW: worksheet

Page 73: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 74: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 75: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

add or subtract a constant to the entire function

f(x) + c up c units

f(x) – c down c units

add or subtract a constant to x within the function

f(x – c) right c units

f(x + c) left c units

y cos(x) 5 y x 2

2y (x 3) 4

Page 76: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 77: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

multiply c to the entire function

Stretch if c > 1

Shrink if c < 1

multiply c to x within the function

A reflection combined with a distortion

complete any stretches, shrinks or reflections first

complete any shifts (translations)

f1

cx

⎝⎜⎜

⎠⎟⎟ Stretch by C

Shrink by

gc f(x)

f c • x( )

1

c

Page 78: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 79: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

reflections

negate the entire function y = – f(x)

negate x within the function y = f(-x)

f(x) 2

3x 1

x 2

2

3x 1

x 2

f( x)

2

3( x) 1

( x) 2

2

3x 1

x 2

2

3x 1

x 2

2

3x 1

x 2 2

3x 1

x 2

Page 80: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

1. What transformations took place withThe basic absolute value function?

y=5 2x + 32. Write the equation that results by taking the squaring F

function and:

A vertical stretch factor of 4, shift left 6

Page 81: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

1. What transformations took place withThe basic absolute value function?

y=5 2x + 3

2. Write the equation that results by taking the squaring function and:

A vertical stretch factor of 4, shift left 6

Vertical stretch by 5, horiz. Shrink by ½, vertical shift up 3

y=4(x+6)2

Page 82: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Page 83: 9/5/2006Pre-Calculus R R { [ 4,  ) } { (- , 3 ] } { R \ { 2 } } { R \ { 1 } } { R \ { -3, 0 } } R { (- 3,  ) } { (- , 4 ] U [ 2,  ) } { (- , -1)

9/5/2006Pre-Calculus

Answers

Answers

y = 1/x4

y = x, y = x3, y = 1/x, y = ln (x)

y = sqrt(x)y = ln(x)

y = 2sin(0.5x)

Stretch by 8 Shrink ½

Shrink by 1/8 Stretch by 2