832r10005 (evaluation of energy conservation measures for wastewater treatment facilities)

Upload: giuseppe-pastorelli

Post on 08-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    1/222

    Evaluation of

    Energy Conservation

    Measuresfor Wastewater Treatment Facilies

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    2/222

    Evaluation of Energy Conservation Measures ii September 2010

    U.S.EnvironmentalProtectionAgency

    OfficeofWastewaterManagement

    1200PennsylvaniaAvenueNW

    Washington,DC20460

    EPA832R10005

    September2010

    Coverphoto:

    BucklinPointWWTF,MA. PhotocourtesyofNarragansettBayCommission.

    Coverinsertphotos(lefttoright):

    HighSpeedMagneticBearingTurboBlowerattheDePereWTF,WI. PhotocourtesyofGreenBay

    MetropolitanSewerageDistrict.

    OxidationDitchwithAerationRotorattheCityofBartlettWWTP#1,TN.PhotocourtesyofCityof

    BartlettWastewaterDivision.

    VariableOutletVaneDiffuser. PhotocourtesyofTurblex,Inc.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    3/222

    Evaluation of Energy Conservation Measures iii September 2010

    Preface

    TheU.S.EnvironmentalProtectionAgency(EPA)ischargedbyCongresswithprotectingthenations

    land,air,andwaterresources.Underamandateofenvironmentallaws,theAgencystrivestoformulate

    andimplementactionsleadingtoabalancebetweenhumanactivitiesandtheabilityofecosystemsto

    supportandsustainlife.Tomeetthismandate,theOfficeofWastewaterManagement(OWM)provides

    informationandtechnicalsupporttohelpsolveenvironmentalproblemstodayandtobuildthe

    knowledgebasenecessarytoprotectpublichealthandtheenvironmentwellintothefuture.This

    documentwaspreparedundercontracttoEPA,byTheCadmusGroup. Thedocumentprovides

    informationoncurrentstateofdevelopmentasofthepublicationdate;however,itisexpectedthat

    thisdocumentwillberevisedperiodicallytoreflectadvancesinthisrapidlyevolvingarea. Exceptas

    noted,information,interviews,anddatadevelopmentwereconductedbythecontractor.Whilethere

    aremanyproven,costeffectiveenergyconservationpracticesandnumerousnewtechnologiesor

    modificationsofexistingtechnologiesavailablefordetailedstudy,thecasestudiesinthisdocument

    wereselectedonthebasisofspecificcriteria.Thecriteriaincludedtheabilitytoprovideasleastoneyearoffullscaleoperatingandperformancedata,capabilityofprovidingdetailedcapital,operations,

    andmaintenancecostbreakdowns,andtheabilitytoprovidethedatawithinthetimeframeestablished

    forcompletingthedocument.Itisanticipatedthatasthedocumentisupdated,additionalcasestudies

    onnewtechnologiescouldbeincluded.

    DisclaimerThisinformationrepresentsnew,innovativeoremergingapproaches,techniques,ortechnologiesthat

    mayassistutilityownersandoperatorsreducethecapitaloroperatingcostsofwastewatertreatment.

    Someoftheinformation,especiallyrelatedtoemergingtechnologies,wasprovidedbythe

    manufacturer

    or

    vendor

    of

    the

    equipment

    or

    technology,

    and

    could

    not

    be

    verified

    or

    supported

    by

    a

    fullscalecasestudy. Insomecases,costdatawerebasedonestimatedsavingswithoutactualfield

    data. Whenevaluatingtechnologies,estimatedcosts,andstatedperformance,effortsshouldbemade

    bythereadertocollectcurrentandmoreuptodateinformation.

    Thementionoftradenames,specificvendors,orproductsdoesnotrepresentanactualorpresumed

    endorsement,preference,oracceptancebyEPAorthefederalgovernment.Statedresults,conclusions,

    usage,orpracticescontainedhereinmaybedifferentdependingonspecificsiteconditionsanddonot

    necessarilyrepresenttheviewsorpoliciesofEPA.

    ThisdocumenthasbeenreviewedinaccordancewithEPAspeerandadministrativereviewpoliciesand

    approvedforpublication

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    4/222

    Evaluation of Energy Conservation Measures iv September 2010

    AcknowledgementsThisdocumentwaspreparedbyTheCadmusGroup,Inc.(Cadmus)underEPAContractNo.GS10F

    0273KC/I1,TaskOrder311. TheCadmusTeamwasledbyLauraDufresneandStephenCoutureof

    CadmusandDavidReardonandKennethHendersonofHDR. EPAtechnicaldirectionandoversightwereprovidedbyJamesWheelerandPhilZahreddine,EPAOfficeofWastewaterManagement.

    Theprojectwassupportedbyatechnicalexpertpanelconsistingofthefollowingindividuals:

    KathleenOConner,NewYorkStateEnergyResearchandDevelopmentAuthority

    JoeCantwell,SAIC

    MikeWilson,CH2MHill

    SteveBolles,ProcessEnergyServices

    AndreSchmidt,LosAngelesCountySanitationDistrictsEnergyRecoveryEngineeringServices

    JessBurgess,ConsortiumforEnergyEfficiency

    Aformalpeerreviewofthedraftdocumentwasconductedbythefollowingindividuals:

    ThomasE.Jenkins,JenTechInc.

    JuliaGass,Black&Veatch

    GeorgeLawrence,EfficiencyVermont

    GeorgeCrawford,CH2MHILL

    AdditionalreviewwasprovidedbyDavidRedmonofRedmonEngineeringCompany,AndrewShawof

    Black&Veatch,andAndrewTrumanofBlack&Veatch.

    WhileeveryeffortwasmadetoaccommodateallofthePeerReviewcomments,theresultsand

    conclusionsdonotindicateconsensusandmaynotrepresenttheviewsofallthereviewers.

    Theauthorssincerelyappreciatethereviewandguidanceprovidedbythetechnicalexpertpanel

    membersandpeerreviewers.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    5/222

    Evaluation of Energy Conservation Measures v September 2010

    Acronyms and Abbreviations

    ACEEE AmericanCouncilforanEnergyEfficientEconomy

    APPA AmericanPublicPowerAssociation

    ASCE AmericanSocietyofCivilEngineers

    ASE AlliancetoSaveEnergy

    AWWA AmericanWaterWorksAssociation

    BEP BestEfficiencyPoint

    bhp BrakeHorsepower

    BNR BiologicalNutrientRemoval

    BOD BiochemicalOxygenDemand

    CCCSD CentralContraCostaSanitaryDistrict

    CEC CaliforniaEnergyCommission

    CEE ConsortiumforEnergyEfficiency

    CFO CostFlowOpportunity

    CHP CombinedHeatandPower

    DCS DistributedControlSystem

    DO DissolvedOxygen

    DOE DepartmentofEnergy

    DSIRE DatabaseofStateIncentivesforRenewablesandEfficiency

    ECM EnergyConservationMeasure

    EPACT EnergyPolicyAct

    EPC EnergyPerformanceContracting

    EPRI ElectricPowerResearchInstitute

    ESCO EnergyServicesCompany

    GBMSD GreenBay(Wisconsin)MetropolitanSewerageDistrict

    gpm Gallonsperminute

    hp HorsepowerI&I Inflowandinfiltration

    IOA InternationalOzoneAssociation

    IUVA InternationalUltravioletAssociation

    kW Kilowatt

    kWh Kilowatthour

    LPHO LowPressureHighOutput

    MBR MembraneBioreactor

    mg MillionGallons

    mgd MillionGallonsperDay

    MLE ModifiedLudzackEttingerprocess

    MPN MostProbableNumber

    NAESCO NationalAssociationofEnergyServiceCompanies

    NEMA NationalElectricalManufacturersAssociation

    NYSERDA NewYorkStateResearchandDevelopmentAuthority

    PG&E PacificGasandElectric

    PLC ProgrammableLogicController

    PSAT PumpSystemAssessmentTool

    psi PoundsperSquareInch

    psig PoundsperSquareInchGauge

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    6/222

    Evaluation of Energy Conservation Measures vi September 2010

    rpm RevolutionsperMinute

    SRT SolidsResidenceTime

    TDH TotalDynamicHead

    TSS TotalSuspendedSolids

    TVA TennesseeValleyAuthority

    UV UltravioletLight

    UVT UVtransmittance

    VFD VariableFrequencyDrive

    W Watt

    WEF WaterEnvironmentFederation

    WEFTEC WaterEnvironmentFederationTechnicalExhibitionandConference

    WERF WaterEnvironmentResearchFoundation

    WMARSS WacoMetropolitanAreaRegionalSewerSystem

    WPCP WaterPollutionControlPlant

    WRF WaterResearchFoundation

    WSU WashingtonStateUniversity

    WWTP WastewaterTreatmentPlant

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    7/222

    Evaluation of Energy Conservation Measures vii September 2010

    Contents1. Introduction ............................................................................................................... 11

    1.1

    Background

    .........................................................................................................

    1

    1

    1.2 PurposeandAudience........................................................................................ 12

    1.3 ReportOrganization............................................................................................ 13

    1.4 SummaryofInnovativeandEmergingECMS..................................................... 14

    1.5 References.......................................................................................................... 16

    2. RecommendedApproachtoEnergyManagement ........................................................ 21

    2.1 Introduction........................................................................................................ 21

    2.2 RecommendedApproach................................................................................... 21

    2.3 ToolsforEnergyManagement........................................................................... 24

    2.4 FinancingResources............................................................................................ 24

    2.5 OtherECMsandResources................................................................................. 26

    2.6 References.......................................................................................................... 27

    3. EnergyConservationMeasuresforPumpingSystems.................................................... 31

    3.1 Introduction........................................................................................................ 31

    3.2 PumpingSystemDesign...................................................................................... 33

    3.3 Motors ............................................................................................................... 35

    3.3.1 MotorEfficiencyandEfficiencyStandards............................................ 36

    3.3.2 MotorManagementPrograms.............................................................. 37

    3.3.3 InnovativeandEmergingTechnologies................................................. 38

    3.4

    Power

    Factor

    .......................................................................................................

    3

    9

    3.5 VariableFrequencyDrives(VFDs)..................................................................... 310

    3.5.1 EnergySavings..................................................................................... 311

    3.5.2 Applications......................................................................................... 311

    3.5.3 VFDStrategiesforWastewaterPumpingStations.............................. 312

    3.6 References........................................................................................................ 313

    4. DesignandControlofAerationSystems......................................................................... 41

    4.1 Introduction........................................................................................................ 41

    4.2 ECMsforAerationSystems................................................................................ 41

    4.2.1 ECMsforDiffusedAerationSystems..................................................... 42

    4.2.2 ECMsforMechanicalAerators.............................................................. 45

    4.3 ControloftheAerationProcess......................................................................... 47

    4.3.1 AutomatedDOControl.......................................................................... 47

    4.3.1.1DOMeasurementEquipment.................................................. 410

    4.3.1.2AdvancesinDOControlStrategies.......................................... 413

    4.3.2 EmergingTechnologiesUsingControlParametersotherthanDO.....415

    4.4 InnovativeandEmergingControlStrategiesforBiological

    NutrientRemoval.............................................................................................. 418

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    8/222

    Evaluation of Energy Conservation Measures viii September 2010

    4.5 References........................................................................................................ 420

    5. BlowerandDiffuserTechnologyforAerationSystems................................................... 51

    5.1 IntroductionandComparisonofBlowerTypes.................................................. 51

    5.2 HighSpeedGearless(Turbo)Blowers................................................................ 55

    5.3 SingleStageCentrifugalBlowerswithInletGuideVanesandVariable

    DiffuserVanes................................................................................................... 511

    5.4 NewDiffuserTechnology.................................................................................. 515

    5.5 References........................................................................................................ 519

    6. InnovativeandEmergingEnergyConservationMeasuresforSelected

    TreatmentProcesses....................................................................................................... 61

    6.1 Introduction........................................................................................................ 61

    6.2 UVDisinfection................................................................................................... 61

    6.2.1 Design.................................................................................................... 63

    6.2.2 OperationandMaintenance.................................................................. 65

    6.3 MembraneBioreactors(MBRs).......................................................................... 66

    6.4 AnoxicandAnaerobicZoneMixing.................................................................... 68

    6.4.1 HyperbolicMixer.................................................................................... 68

    6.4.2 PulsedLargeBubbleMixing................................................................. 612

    6.5 References........................................................................................................ 613

    7. EnergyConservationMeasuresforSolidsProcessing..................................................... 71

    7.1 Introduction........................................................................................................ 71

    7.2 Digestion............................................................................................................. 71

    7.3

    Incineration

    .........................................................................................................

    7

    4

    7.4 ThermalDrying................................................................................................... 76

    7.5 References.......................................................................................................... 79

    8. SummaryofFacilityCaseStudies.................................................................................... 81

    8.1 Introduction........................................................................................................ 81

    8.2 Approach............................................................................................................. 81

    8.3 SummaryofResults............................................................................................ 83

    AppendixA: FacilityCaseStudies

    AppendixB: WebResources

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    9/222

    Evaluation of Energy Conservation Measures ix September 2010

    ListofTablesTable11. InnovativeandEmergingECMs.......................................................................... 15

    Table31. PumpSystemEfficiency...................................................................................... 32

    Table51. OverviewofBlowerTypesofAerationofWastewater...................................... 52

    Table52. ManufacturerCostRangesforSelectBlowerTypes........................................... 53Table53. TypicalBlowerEfficiencies.................................................................................. 54

    Table53. ExamplesofTurboBlowerManufacturersintheNorthAmericanMarket.......58

    Table54. NetPresentWorthofBlowerSelectionsfortheCityofOneida(2003$).........514

    Table61. DisinfectionEquipmentPowerandCostEstimates(55mgdPeakFlow,

    38mgdAverageFlow,65%DesignUVT)............................................................ 64

    Table81. SummaryofFacilityCaseStudies....................................................................... 84

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    10/222

    Evaluation of Energy Conservation Measures x September 2010

    ListofFiguresFigure11. TypicalEnergyUseProfilefor10mgdSecondaryTreatmentProcesses...........12

    Figure21. StepsinthePlanDoCheckActManagementSystemsApproach..................... 22

    Figure31. VectorRelationshipofACPower........................................................................ 39

    Figure32. WastedEnergyinAlternativeControlSchemesComparedto ...............................

    VariableFrequencyDrives................................................................................ 311

    Figure41. EimcoWaterTechnologiesCarrouselSystemExcellAeratorII........................ 46

    Figure42. CommonCascadeSystemforAutomatedDOControl..................................... 410

    Figure43. OpticalDOSensorOperation............................................................................ 412

    Figure44. IntegratedAirFlowControlSystemforAutomatedDOControl...................... 414

    Figure45. FlowThroughRespirometryCell...................................................................... 416

    Figure46. RepresentationofBIOSProcess....................................................................... 417

    Figure47. RepresentationoftheBiosProcess.................................................................. 419

    Figure51. ExampleofHighSpeedTurboBlowerwithAirBearings(HIS)........................... 56

    Figure52. ExampleofHighSpeedTurboBlowerwithMechanicalBearings

    (Atlas

    Copco)

    .......................................................................................................

    5

    6

    Figure53. ComparisonofPowerDrawforOldandNewBloweratBurlington,VT..........511

    Figure54. ExampleofSingleStageCentrifugalBlowerwithInletGuideVanesand

    VariableDiffuserVanesbyTurblex................................................................. 511

    Figure55. ExampleofSingleStageCentrifugalBlowerwithInletGuideVanesand

    VariableDiffuserVanesbyDresserRoots........................................................ 511

    Figure56. VariableOutletVaneDiffuserfromTurblex................................................... 512

    Figure57. UltrafinePoreMembraneAerationPanel....................................................... 515

    Figure58. AeroStripDiffuserbytheAerostripCorporation............................................ 516

    Figure61. ExampleUVLampConfigurationsforWastewaterTreatment.......................... 62

    Figure62. TypicalInstallationofaHyperboloidMixer........................................................ 69

    Figure63. ConventionalHydrofoilMixer........................................................................... 611

    Figure64. TypicalBioMixTMInstallation............................................................................. 612

    Figure71. VerticalLinearMotionMixerbyEnersaveFluidMixers,Inc.............................. 73

    Figure72. SchematicRepresentationofMultipleHearthIncineratorEnergyEfficiency

    ImprovementsatWSSCWesternBranchWWTP............................................... 76

    Figure73. ExampleofSolarDryerbyParkson..................................................................... 78

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    11/222

    EvaluationofEnergyConservationMeasures 11 September2010

    1.Introduction

    1.1 Background

    Providingreliablewastewaterservicesandsafedrinkingwaterisahighlyenergyintensive

    activity

    in

    the

    United

    States.

    A

    report

    prepared

    for

    the

    Electric

    Power

    Research

    Institute

    (EPRI)

    in

    1996

    estimatedthatbytheendofthatyear,theenergydemandforthewaterandwastewaterindustry

    wouldbeapproximately75billionkilowatthours(kWh)peryear,orabout3percentoftheelectricity

    consumedintheU.S.(Burton1996). TheConsortiumforEnergyEfficiency(CEE)nowestimatesthe

    annualenergyusageatapproximately100billionkWhperyear(Burton1996,extrapolatedbyCEE). At

    anaverageenergycostof$0.075perkWh,thecostforprovidingsafedrinkingwaterandproviding

    effectivewastewatertreatmentisapproximately$7.5billionperyear.

    Energyisusedthroughoutthewastewatertreatmentprocess;however,pumpingandaeration

    operationsaretypicallythelargestenergyusers(seeFigure11foratypicalenergyuseprofilefora

    mediumsizedwastewatertreatmentplant). Energycostsinthewastewaterindustryarerisingdueto

    manyfactors,including:

    Implementationofmorestringenteffluentrequirements,includingenhancedremovalofnutrientsandotheremergingcontaminantsofconcernthatmay,insomecases,leadtotheuse

    ofmoreenergyintensivetechnologies.

    Enhancedtreatmentofbiosolidsincludingdrying/pelletizing. Agingwastewatercollectionsystemsthatresultinadditionalinflowandinfiltration,leadingto

    higherpumpingandtreatmentcosts.

    Increaseinelectricityrates.Asaconsequenceoftheserisingcosts,manywastewaterfacilitieshavedevelopedenergymanagement

    strategiesandimplementedenergyconservationmeasures(ECMs).Usingthefiguresprovidedearlierin

    thissection,improvingtheenergyefficiencyofAmerica'sdrinkingwaterandwastewatersystemsby10

    percentcouldsavemorethan10billionkWheachyear,representingacostsavingsofapproximately

    $750millionannually.

    Chapter1covers:

    1.1 Background

    1.2 PurposeandAudience

    1.3 ReportOrganization

    1.4 SummaryofInnovativeandEmergingECMs

    1.5 References

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    12/222

    EvaluationofEnergyConservationMeasures 12 September2010

    Figure11.TypicalEnergyUseProfilefor10mgdSecondaryTreatmentProcesses.

    Source:WEF2009,Figure7.1.Usedwithpermission.

    Note:energyuseforvarioustreatmentprocesseswillvarygreatlyfromplanttoplant. Advancedtreatment

    processesmayrequiremoreenergythanconventionaltreatmentprocessesandmaynotberepresentedinthis

    figure.

    1.2 PurposeandAudienceThepurposeofthisreportistoencouragetheimplementationofECMsatpubliclyowned

    treatmentworks(POTWs)byprovidingaccurateperformanceandcost/benefitinformationforsuch

    projects.Thereportsfocusismainlyonenergyefficientequipmentreplacement,operational

    modifications,andprocesscontrolenhancementsthatleadtoimprovedenergyefficiencyandcost

    savingswithreasonablepaybackperiods(10yearsorless). Thescopeofthereportdoesnotinclude

    cogenerationtechnologies(alsoknownascombinedheatandpower,orCHP)oralternative/renewable

    energytechnologies,astheinformationonthesetopicsisbeingdevelopedbyEPAunderseparate

    projects.ThemainaudiencesforthisreportarePOTWmanagers,owners,andoperatorswhomaybe

    consideringtheimplementationofECMsandstatesorotheragencieswhomaybeinterestedin

    supportingsuchprojects.

    ThisreportincludessummaryinformationonconventionalECMsthatareinuseintheU.S.and

    haveastrongtrackrecordofsuccesswithrespecttoenergyconservation;however,thefocusis

    identificationofinnovativeandemergingECMs. Forthepurposesofthisdocument,innovativeand

    emergingaredefinedasfollows:

    Innovative: technologiesthatmaybeestablishedoverseasandhaveeitherbeentestedintheU.S.asafullscaledemonstrationprojectorinstalledataU.S.wastewatertreatmentplant

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    13/222

    EvaluationofEnergyConservationMeasures 13 September2010

    (WWTP)foratleastoneyearbutnotmorethan5years. Foratechnologythatmeetstheabove

    criteriatobeconsideredinnovativeratherthanemerging,independenttestdatashowing

    energysavingsmustbepresentedintheliteratureordocumentedinthisreportinoneofthe

    facilitycasestudies.Innovativetechnologiesincludemodificationsandnewapplicationsfor

    establishedtechnologies.

    Emerging:technologiesinthedevelopmentortestingstageintheU.S.andthatshowpotentialforenergysavingsandrelativelyshortpaybackperiods,butforwhichindependentfullscale

    demonstrationoroperatingdataarenotyetavailable.

    SeeSection1.4forasummaryofinnovativeandemergingECMsidentifiedinthisreport.

    ThisreportbuildsuponanextensiveliteraturereviewoftheeffectivenessandcostsofECMsfor

    municipalwastewatertreatmentandsolidsprocessing.Additionally,apaneloftechnicalexperts

    providedinputontheimplementationofvariousECMs.Detailedfacilityassessmentsofninewastewater

    treatmentfacilitiesareprovided,includingdetailedinformationonECMimplementation,energy

    savings,andcostdata.

    1.3 ReportOrganization

    Thereportisorganizedintoninechaptersandtwoappendicesasfollows:

    Chapter1,Introduction,presentsbackground,purpose,audience,andorganizationforthereport.

    Chapter2,RecommendedApproachtoEnergyManagement,presentsacomprehensiveapproachtoenergymanagementatawastewatertreatmentutility,includingdevelopingan

    energymanagementprogram.Itlistsavailabletoolsandfinancingresourcesthatcanhelp

    utilitiesimplementtheirprograms.ItalsolistsotherECMsthatshouldbeconsideredby

    wastewaterutilitiesbutarenotthefocusofthisreport.

    Chapter3,EnergyConservationMeasuresforPumpingSystemsprovidesanoverviewofconventionalECMsrelatedtopumpingdesign,variablefrequencydrives(VFDs),andmotorsand

    refersthereadertoindustrystandardsandweblinksforadditionalguidance.

    Chapter4,DesignandControlofAerationSystems,providesdetailedinformationonECMsrelatedtothedesignofaerationsystemsandautomatedaerationcontrol,including

    conventionalcontrolbasedondissolvedoxygen(DO)measurementsandemergingcontrol

    strategies.Innovativeandemergingtechnologiesforautomatedcontrolofbiologicalnitrogen

    removalarealsodiscussed.

    Chapter5,BlowerandDiffuserTechnologyforAerationSystems,describesinnovativeECMsrelatedtobloweranddiffuserequipment.Itincludesasummaryofvariousblowertypessuchas

    singlestagecentrifugal,highspeedturbo,andscrewcompressorsinadditiontonewdiffuser

    technology.

    Chapter6,InnovativeandEmergingEnergyConservationMeasuresforSelectedTreatmentProcesses,providesadiscussionofECMsforadvancedtechnologies(UVdisinfection,

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    14/222

    EvaluationofEnergyConservationMeasures 14 September2010

    membranes,andanoxiczonemixing)andpresentsfullscaleplanttestresultswhereavailable.

    ForECMsthataretechnicallyfeasibleandpromisingfortheindustrybutwhereoperatingdata

    arenotavailable,manufacturersinformationisprovided.

    Chapter7EnergyConservationMeasuresforSolidsProcessing,describesinnovativeEMSfordigestion,incineration,andthermaldryingandprovidessupportingdatafromcasehistories.

    Chapter8,SummaryofFacilityCaseStudies,describestheapproachusedtoselecttheninefacilitycasestudiesandsummarizescasestudyfindingsinnarrativeformandinsummary

    tables.

    AppendixA,FacilityCaseStudies,containsdetailedinformationandresultsfromninefacilitycasestudies.

    AppendixB,WebResources,providesresourcesforfurtherinformation.Categoriesofwebresourcesincludebooksavailablefromonlineretailers;governmentpublicationsthroughU.S.

    DepartmentofEnergy(DOE)andU.S.EnvironmentalProtectionAgency(EPA);information

    availablefromnonprofitorganizations,stateprograms,WaterEnvironmentResearch

    Foundation(WERF)andWaterResearchFoundation(WaterRF);andonlinejournalsand

    conferenceproceedings.

    1.4 SummaryofInnovativeandEmergingECMs

    Table11liststheinnovativeandemergingECMsidentifiedinthisreportandreferencesthe

    specificreportsectionformoreinformation. AsstatedinSection1.2,independentdemonstrationor

    fullscaleoperatingdatadocumentingenergysavingsarerequiredforanewtechnologytobe

    consideredinnovative;otherwise,itwasclassifiedasemerginginthisreport. Notethatthisreport

    describesmanyotherconventionalECMsthatcanachievesignificantenergysavings.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    15/222

    EvaluationofEnergyConservationMeasures 15 September2010

    Table11. InnovativeandEmergingECMs

    Chapter ECMName ECMCategorization

    andReportSection

    4DesignandControl

    ofAerationSystems

    IntermittentAeration Emerging4.2.1

    DualImpellerAerator(mechanicalmixing) Emerging4.2.2

    Integratedairflowcontrol Innovative4.3.1

    AutomatedSRT/DOControl Innovative 4.3.1

    Respirometryforaerationcontrol Emerging4.3.2

    Criticaloxygenpointcontrol Emerging4.3.2

    Offgasmonitoringandcontrol Emerging4.3.2

    Onlinemonitoringandcontrolofnitrification

    usingnicotinamideadeninedinucleotide(NADH)

    (Symbioprocess)

    Emerging4.4

    BioprocessIntelligentOptimizationSystem(BIOS) Emerging4.4

    5 BlowerandDiffuser

    Technologyfor

    AerationSystems

    Highspeedgearless(Turbo)blowers Innovative5.2

    Singlestagecentrifugalblowerswithinletguide

    vanesandvariablediffuservanes

    Innovative5.3

    Ultrafinebubblediffusers Emerging5.4

    Newdiffusercleaningtechnology Emerging5.5

    6Innovativeand

    EmergingEnergy

    ConservationMeasures

    forSelectedTreatment

    Processes

    LowpressurehighoutputlampsforUV

    disinfection

    Emerging6.2.1

    AutomatedchannelroutingforUVdisinfection Emerging6.2.2

    Membraneairscouralternatives Emerging6.3

    Hyperbolicmixers Innovative6.4.1

    PulsedLargeBubbleMixing(e.g.,BioMx) Innovative6.4.2

    7EnergyConservation

    MeasuresforSolids

    Processing

    Verticallinearmotionmixer Innovative7.2

    Upgradingmultiplehearthfurnacesto

    incorporatewasteheatrecovery/combustionair

    preheating

    Innovative7.3

    Solardrying Emerging7.4

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    16/222

    EvaluationofEnergyConservationMeasures 16 September2010

    1.5 References

    Burton,FranklinL.1996.WaterandWastewaterIndustries:CharacteristicsandEnergyManagement

    Opportunities.BurtonEnvironmentalEngineering,LosAltos,CA.PreparedfortheElectricPower

    ResearchInstitute.PaloAlto,California.ReportCR106941.September,1996.

    Carns,K.,2005.BringingEnergyEfficiencytotheWater&WastewaterIndustry:HowDoWeGetThere?

    InWEFTEC2005Proceedings.

    WaterEnvironmentFederation(WEF).2009.ManualofPractice(MOP)No.32:EnergyConservationin

    WaterandWastewaterFacilities.PreparedbytheEnergyConservationinWaterandWastewater

    TreatmentFacilitiesTaskForceoftheWaterEnvironmentFederation.McGrawHill,NewYork.

    USEPA.2008.EnsuringaSustainableFuture:AnEnergyManagementGuidebookforWastewaterand

    WaterUtilities.January2008.Availableonline:

    http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    17/222

    EvaluationofEnergyConservationMeasures 21 September2010

    2.RecommendedApproachtoEnergyManagement

    2.1 Introduction

    Equipmentupgradesandoperationalmodificationstoreduceenergyuseshouldnotbeone

    timeevents,butshouldbeincorporatedintoacomprehensiveenergyreviewandmanagementstrategy.

    Section2.2presentsEPAsrecommendedapproachtoenergymanagementforwastewaterutilities. On

    linetoolsandfinancingresourcesareavailabletoutilitiesinterestedindevelopinganenergy

    managementstrategyandaredescribedinSections2.3and2.4respectively.

    AsexplainedinChapter1,thescopeofthisdocumentisenergyconservationmeasures(ECMs)

    relatedtoequipmentupgradesandoperationsstrategies,withafocusoninnovativeandemerging

    technologies.Theseareonlyasubset,however,oftheECMsavailabletowastewaterutilities.Section

    2.5listsothertypesofECMs(mainlyconventional)andprovidesreferencesforadditionalinformation.

    2.2 RecommendedApproach

    Tooptimizeenergysavingsatawastewatertreatmentplant(WWTP)nowandinthefuture,

    ECMsshouldbeevaluatedandimplementedaspartofacomprehensiveenergymanagementprogram.

    Inordertoassistutilitiesindevelopingsuchaprogram,theEPAOfficeofWastewaterManagement

    developedaguidebookentitledEnsuringaSustainableFuture: AnEnergyManagementGuidebookfor

    WastewaterandWaterUtilities(USEPA,2008a)

    http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf,whichnotesthat:

    Moreandmoreutilitiesarerealizingthatasystematicapproachformanagingthefullrangeof

    energychallengestheyfaceisthebestwaytoensurethattheseissuesareaddressedonan

    ongoingbasisinordertoreduceclimateimpacts,savemoney,andremainsustainable(EPA

    2008,p.3).

    ThisEPAguidebookrecommendstheplandocheckactmanagementsystemapproachforenergy

    conservationandmanagementasshowninFigure2.1. Thisbasicapproachisapplicabletoallutility

    operationsandnotsolelytoenergymanagementactivities.However,theapproachhasbeenexpanded

    andtailoredtowaterandwastewaterutilitiesinasimple9stepapproachshowninthetextbox

    followingFigure2.1. Thesekeystepsforsuccessarebasedonexperienceofwaterandwastewater

    utilitiesthathavegonethroughtheprocessofidentifyingandimplementingECMs. Notethatinthe9

    stepapproach,identifyingECMsdoesnotcomeintoplayuntilStep6,DeviseaPlan.

    Chapter2covers:

    2.1 Introduction2.2 RecommendedApproach2.3 ToolsforEnergyManagement2.4 FinancingResources2.5 OtherECMsandResources2.6 References

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    18/222

    EvaluationofEnergyConservationMeasures 22 September2010

    Figure21.StepsinthePlanDoCheckActManagementSystemsApproach

    Source: USEPA2008b

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    19/222

    EvaluationofEnergyConservationMeasures 23 September2010

    Recommended9StepApproachtoEnergyManagement

    1. CreateanEnergySustainabilityTeam. Identifyanenergyprogrammanagementteamwithresponsibilityforimplementingtheimprovementprogramfromstarttofinish. Createacore

    teamwithrepresentativesfromallaspectsofoperations,maintenanceandmanagement.

    ConsiderappointinganEnergyManagerwhoseonlyresponsibilityisenergyconservation(andpossiblyrecovery)foryourfacility.

    2. GatherData. Gatherdataonenergyuse(e.g.,fromgas,fueloilandelectricitybills). Makethisdataavailabletotheteam.

    3. BenchmarkPerformance. Createabaselineofenergyperformanceagainstwhichyoucanmeasureimprovementsovertime. YoucandothisusingENERGYSTARsPortfolioManagerfor

    wastewatertreatmentplants,availableonlineat

    http://www.energystar.gov/index.cfm?c=water.wastewater_drinking_water.Portfolio

    Managerhasthebenefitofconvertingalltypesofenergyuse(e.g.,naturalgas,fueloil,and

    electricity)

    to

    a

    common

    unit

    so

    that

    they

    can

    be

    added

    together,

    and

    provides

    an

    estimate

    of

    greenhousegasemissions. Youmayalsobeabletocompareyourutilitysperformanceto

    similarutilitiesifyoumeetcertaincriteria.

    4. ConductanEnergyAudit. Determinetheenergyuseofvariousprocessesandidentifyopportunitiesforenergyusereduction.

    5. DevelopGoals. Identifyquantifiableenergyimprovementgoalsthatcomplementyourutilitysmission,goals,andstrategicdirection.

    6. DeviseaPlan. IdentifyEnergyConservationMeasures(ECMs)anddevelopaplanforimplementing

    them.

    Start

    with

    low

    hanging

    fruit

    and

    focus

    on

    energy

    intensive

    operations

    suchasaerationandpumping. Considerrenewableenergyoptionsandopportunitiesfor

    energygenerationusingalternativemethods. Determinecostsandpaybackperiodsfor

    variousoptions.

    7. ImplementImprovements. Assignresponsibilitiesandestablishdeadlines. Consideralternativefinancingapproaches. Fullyengageandtrainyouroperationsstaff.

    8. MonitorandMeasureResults. Trackperformance,reviewprogresstowardsenergygoals,anddevelopaplanformaintainingenergyefficientequipment. Reevaluateyourgoalsinlightof

    newinformationandpriorities,andmakechangestoyourprogramasnecessary.

    9. CommunicateSuccess. Communicatethesuccessesofyourenergymanagementprogramtoemployees,utilitymanagement,andyourcommunity.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    20/222

    EvaluationofEnergyConservationMeasures 24 September2010

    2.3 ToolsforEnergyManagement

    Anumberoftoolshavebeendevelopedtohelpwastewaterutilitiesimplementanenergy

    managementprogram. Datamanagementtoolsthatareavailableonlineinclude:

    The

    ENERGY

    STAR

    benchmarking

    tool

    Portfolio

    Manager

    provides

    a

    way

    for

    utilities

    to

    track

    theirenergyuseaswellascomparetheirperformancetoutilitieswithsimilarsizeand

    treatmentgoals.Itisavailablefreeonlineat

    http://www.energystar.gov/index.cfm?c=water.wastewater_drinking_water.See

    http://www.energystar.gov/index.cfm?c=business.bus_internet_presentationsfordetails

    regardingregularwebbasedtraining.

    Pumpandmotormanagementtools(seeChapter3formoreinformation):- ThePumpingSystemAssessmentTool(PSAT),developedbytheDepartmentofEnergy

    (DOE)andavailablefreeonlineat

    http://www1.eere.energy.gov/industry/bestpractices/software_psat.html

    can

    help

    users

    determinetheefficiencyoftheirexistingpumpingsystemsandcalculateenergyandcost

    savingsforupgrades.

    - MotorMaster+isamotorselectionandmanagementtool,availableforfreeonlineathttp://www.motorsmatter.org/.Itincludesinventorymanagementfeatures,maintenance

    logging,efficiencyanalysis,savingsevaluation,andenergyaccounting.Itincludesacatalog

    of17,000motorsfrom14manufacturers,includingNEMAPremiumefficiencymotors,and

    motorpurchasinginformation.

    2.4 FinancingResources

    Fundingenergyconservationprojectsisanimportantcomponentofanenergymanagement

    program,particularlyduetolimitedresourcesavailabletoutilitiesandtheneedtomeetmultiple

    environmentalobjectivesandregulatoryrequirements. Anumberoffundingoptions,however,are

    availabletoautility. TheCaliforniaEnergyCommission(CEC)notesthat:

    Ashortageofinternalfundsneednotbeabarriertoimplementingenergyefficiencyprojects.

    Thereareplentyoffinancingsources,programsandoptionsavailabletoserveyou.Realbarriers

    areduetothelackofawarenessorunderstandingofthe:

    1) manybenefitsofinvestinginenergyefficiencyprojects.Thesebenefitsincludeenergycostsavings,increasedrevenues,improvedworkercomfortandproductivity,

    reducedmaintenancecostofold,inefficientequipment,andreductionof

    environmentaldegradationand

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    21/222

    EvaluationofEnergyConservationMeasures 25 September2010

    2)manyprogramsforfinancingenergyefficiencyprojects(CEC2000)1.

    Capitalprojectsforpublicallyownedwastewaterutilitieshavehistoricallyreceivedfundingfrom

    grantsandloans;however,thirdpartyfinancing(e.g.,stateenergyoffices,energyservicescompanies)is

    becomingmorecommon.InmanypartsoftheU.S.,energyperformancecontracting(EPC)hasbeen

    usedtofinanceenergyefficiencyimprovements(Zobler2009).Properlystructuredperformance

    contractscanbeconsideredintheutilitysoperatingbudgetinsteadofasacapitalexpense.Examples

    includeenergyserviceproviderbasedfinancingandtaxexemptleasepurchaseagreements.

    Oneoptiontostreamlinetheaudit,financing,andimplementationstepsofanenergy

    managementprogramistohireanEnergyServicesCompany(ESCO).ESCOsusuallydevelopandmanage

    EPCs,manageawiderangeoftasks,andassumesomeormostofthetechnicalandperformancerisk

    associatedwiththeproject.SeetheNationalAssociationofEnergyServiceCompanies(NAESCO)

    websiteathttp://www.naesco.org/formoreinformationandalistofserviceprovidersinyourarea.

    AdditionalguidanceisavailableintheCECsHandbook,HowtoHireanEnergyServicesCompany(CEC

    2000),availableonlineathttp://www.energy.ca.gov/reports/efficiency_handbooks/40000001D.PDF.

    Inadditiontotheaboveresources,otherfreetoolsandresourcesareavailabletohelp

    wastewaterutilitiesfinanceECMs.Examplesareprovidedbelow.

    TheCleanWaterStateRevolvingFund(CWSRF),offeringlowinterestloans(average2.2percent)forwastewatertreatmentimprovements.Theprogramisadministeredbyindividual

    statesAlistofregionalandstatecontactsisavailableonlineat

    http://www.epa.gov/owm/cwfinance/cwsrf/contacts.htm.

    FinancingguidancefromENERGYSTAR,availableonlineathttp://www.energystar.gov/index.cfm?c=business.bus_financing.Includesaspreadsheetbased

    CashFlowOpportunity(CFO)Calculatorthatcanhelpplantmanagerscalculatesimplepayback

    aswellascostofdelay,whichisthelostopportunitycostiftheprojectisdelayed12monthsormore.

    DatabaseofStateIncentivesforRenewablesandEfficiency(DSIRE),availableonlineathttp://www.dsireusa.org/isacomprehensivesourceofinformationonstate,local,utility,and

    federalincentivesandpoliciesthatpromoterenewableenergyandenergyefficiency.

    Establishedin1995,DSIREisanongoingprojectoftheNorthCarolinaSolarCenterandthe

    InterstateRenewableEnergyCouncil,whichisfundedbytheU.S.DepartmentofEnergy(DOE).

    ReportbytheCECtitledHowtoFinancePublicSectorEnergyEfficiencyProjects(CEC2000),availableonlineathttp://www.energy.ca.gov/reports/efficiency_handbooks/40000001A.PDF.

    Includesadescriptionofcosteffectivenesscriteriaandoptionsforfinancingenergyefficiency

    projects.

    1Formoreinformation,seetheCECreport,HowtoFinancePublicSectorEnergyEfficiencyProjects.January2000.

    Availableonlineathttp://www.energy.ca.gov/reports/efficiency_handbooks/40000001A.PDF

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    22/222

    EvaluationofEnergyConservationMeasures 26 September2010

    2.5 OtherECMsandResources

    Althoughthefocusofthisdocumentistoreportoninnovativeandemergingequipmentand

    operationsrelatedECMs,otherECMs(bothinnovativeandconventional),havebeenusedsuccessfully

    atWWTPstosaveenergyandassociatedcosts,suchas:

    Lighting,HVAC,andotherbuildingimprovements. ReducingtheloadingtotheWWTPsby:

    - Collectionsystemimprovementstoreduceinfiltrationandinflowtoreducestormrelatedpeaks

    - Waterconservation- Useofequalizationbasinstoattenuatepeakflowsandloadings

    UseofSupervisoryControlandDataAcquisition(SCADA)softwareforprocessmonitoringandoperationalcontrol. SCADAhasmanyoperationalbenefits,including:

    - Itcanprovidedataforprocessmodelingandenergyuseoptimization- Itcanprovideimmediatedetectionofproblemsthroughdiagnosticdisplays,enabling

    quickinterventionforfastresolutions

    - Itcanallowoperatorstocompensateforseasonalflowandwetweatherbyautomaticallyadjustingsetpoints(USEPA2006).

    Implementingcogenerationtechnologytogenerateelectricityandrecoverableheatonsiteusingmethaneoffgasfromanaerobicdigesters.

    Implementingenergymanagementstrategiessuchas- Hiringanenergymanager- Realtimepowermonitoring- Peakelectricdemandreduction- Submeteringtoidentifythemostenergyintensiveprocesses

    OtherECMsthatcanoffermodestimprovementsandmaybeeasyforasystemtoimplementinclude

    pumpcoatingstoreducefrictionorinstallingavortexgritremovalsysteminsteadofonethatuses

    aeration.

    ECMsshouldalwaysbeconsideredwhenaplantisfacingamajor20or30yearupgrade. Atthis

    time,thereareopportunitiestoreconfiguretheplantforenergysavings. NotedinChapters3and4of

    thisdocumentbutworthreiteratingistheimportanceofproperlydesigningforenergyefficiency.

    Maximizingequipment(blowerandpump)turndowncapacityanddesigningforplantupgradesinstages

    (i.e.,rightsizing)cangoalongwaytomeetenergyefficiencygoals. Anotherimportantdesign

    conceptistousehydraulicheadwheneverpossibletoreducetheneedtopump. TheConsortiumfor

    EnergyEfficiency(CEE)hasrecentlyissuedguidanceonhowtoincludeenergyefficiencyinrequestsfor

    qualifications(RFQs)andRequestsforProposals(RFPs). Thisguidanceisavailablefreeonlineat

    http://www.cee1.org/ind/motsys/ww/rfp/index.php3.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    23/222

    EvaluationofEnergyConservationMeasures 27 September2010

    AppendixBofthisreportprovidesacomprehensivelistofwebreferencesforenergy

    conservation.OtherimportanttechnicalreferencesincludetheWaterEnvironmentFederation(WEF)

    ManualofPractice(MOP)No.32:EnergyConservationinWaterandWastewaterFacilities(WEF2009)

    andthereportbytheElectricPowerResearchInstitute(EPRI),QualityEnergyEfficiencyRetrofitsfor

    WastewaterSystems(EPRI1998).TheWEFMOP8,DesignofMunicipalWastewaterTreatmentPlants

    (WEFandASCE2010)providesguidanceondesigningenergyefficientwastewatertreatmentplant

    components.TheWERFreport,EnergyEfficiencyinWastewaterTreatmentinNorthAmerica:A

    CompendiumofBestPracticesandCaseStudiesofNovelApproaches,providesrecommendationson

    energyefficiencyimprovementsboththroughoptimizationofcurrentprocessesandthroughadoption

    ofnovelapproaches.ThereportisscheduledtobepublishedinJanuary2011.Lastly,theWERFreport,

    BestPracticesforSustainableWastewaterTreatment:InitialCaseStudyIncorporatingEuropean

    ExperienceandEvaluationToolConcept(2009),highlightsEuropeancasestudiesrelatedtoenergy

    efficiencyinwastewatertreatment.

    Additionalonlineresourcesforcomprehensiveenergymanagementinclude:

    EnsuringaSustainableFuture: AnEnergyManagementGuidebookforWastewaterandWaterUtilities(USEPA2008a). Thisdocumentprovidesastepbystepmethodforenergyconservation

    basedonthePlanDoCheckActmanagementapproach.Itisavailableonlineat:

    http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf

    EPAsWastewaterManagementFactSheet:EnergyConservation(USEPA2006),availableonlineat:http://www.epa.gov/owm/mtb/energycon_fasht_final.pdf. This7pagefactsheetdescribes

    possiblepracticesthatcanbeimplementedtoconserveenergyataWWTP.

    TheFlexYourPowerBestPracticesGuideforLocalGovernments,WastewaterSector,availableonlineat: http://www.fypower.org/bpg/module.html?b=institutional&m=Water_Use. This

    guidecontainsa4stepapproachtoreducingenergyuseataWWTPandincludeslinksto

    additionalonlineresources.

    WisconsinFocusonEnergysWaterandWastewaterEnergyBestPracticeGuidebook(FocusonEnergy2006),availableonlineat:

    http://www.werf.org/AM/Template.cfm?Section=Home&TEMPLATE=/CM/ContentDisplay.cfm&

    CONTENTID=10245. ThisguidebookcontainsbenchmarkingresultsfromselectedWisconsin

    wastewaterfacilities,bestpracticeapproachestoongoingmanagementofenergyuse,best

    practicefundingandfinancingopportunities,andreferencesforfurtheropportunitiesin

    water/wastewatersystemenergyefficiencyandpowerdemandreduction.

    2.6 References

    CaliforniaEnergyCommission(CEC).2000.HowtoFinancePublicSectorEnergyEfficiencyProjects.

    January2000.Availableonlineathttp://www.energy.ca.gov/reports/efficiency_handbooks/40000

    001A.PDF

    Cantwell,J.,J.Newton,T.Jenkins,P.Cavagnaro,andC.Kalwara.2009.RunninganEnergyEfficient

    WastewaterUtilityModificationsThatCanImproveYourBottomLine.WEFWebcast.June19,2009.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    24/222

    EvaluationofEnergyConservationMeasures 28 September2010

    EnergyStar.2010.EnergyStarGuidelinesforEnergyManagement.U.S.EnvironmentalProtection

    AgencyandtheU.S.DepartmentofEnergy.Accessed1March2010.

    http://www.energystar.gov/index.cfm?c=guidelines.guidelines_index

    EPRI.1998.QualityEnergyEfficiencyRetrofitsforWastewaterSystems.ElectricPowerResearch

    Institute.ProjectManager:KeithCarns.CR109081.

    FocusonEnergy.2006.WaterandWastewaterEnergyBestPracticeGuidebook.Reportpreparedby

    ScienceApplicationsInternationalCorporation.Availableonlineifrequestedat

    http://www.focusonenergy.com/Business/IndustrialBusiness/Guidebooks/

    Ishida,C.,E.Garvey,S.Dent,S.Deslauriers,andH.S.McDonald.2008.Optimo:AnInnovative

    WastewaterMasterPlanOptimizationModelThatImprovesSystemEfficiency,ReducesRisks,andSaves

    CapitalandO&MCosts.PresentedatUtilityandManagement2008.Tampa,FL.WEF.

    USDOE.2007. MotorMaster+:MotorDrivenSystems,version4.0.6.U.S.DepartmentofEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/software_motormaster.html

    USDOE.2008.PumpingSystemAssessmentTool(PSAT).U.S.DepartmentofEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/software_psat.html

    USEPA.2006.WastewaterManagementFactSheet:EnergyConservation.July2006.EPAOfficeofWater

    832F06024.Availableonline:http://www.epa.gov/owm/mtb/energycon_fasht_final.pdf

    USEPA.2008a.EnsuringaSustainableFuture:AnEnergyManagementGuidebookforWastewaterand

    WaterUtilities.January2008.Availableonline:

    http://www.epa.gov/waterinfrastructure/pdfs/guidebook_si_energymanagement.pdf

    USEPA.2008b.EPAEnvironmentalManagementSystems:BasicInformation. Lastupdated17June

    2008.Availableonline:http://www.peercenter.net/toolkit/

    WEFandASCE.2010.DesignofMunicipalWastewaterTreatmentPlantsWEFManualofPractice8and

    ASCEManualsandReportsonEngineeringPracticeNo.76,5thEd.WaterEnvironmentFederation,

    Alexandria,VA,andAmericanSocietyofCivilEngineersEnvironment&WaterResourcesInstitute,

    Reston,Va.

    WEF.2009.MOPNo.32:EnergyConservationinWaterandWastewaterFacilities.Preparedbythe

    EnergyConservationinWaterandWastewaterTreatmentFacilitiesTaskForceoftheWater

    EnvironmentFederation.McGrawHill,NewYork.

    WERF.2009.BestPracticesforSustainableWastewaterTreatment:InitialCaseStudyIncorporating

    EuropeanExperienceandEvaluationToolConcept.Alexandria,VA:WERF.Availableonline:http://www.werf.org/AM/Template.cfm?Section=Search&Template=/CustomSource/Research/Publicati

    onProfile.cfm&id=OWSO4R07a

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    25/222

    EvaluationofEnergyConservationMeasures 31 September2010

    3.EnergyConservationMeasuresforPumpingSystems

    3.1 Introduction

    Pumpingoperationscanbeasignificantenergydrawatwastewatertreatmentplants(WWTPs),

    inmanycasesaresecondonlytoaeration.Pumpsareusedformanyapplications. Attheplant

    headworks,theymaybeusedtoprovidehydraulicheadforthetreatmentprocesses.Withintheplant,

    theyareusedtorecycleandconveywasteflows,solids,andtreatedeffluenttoandfromavarietyof

    treatmentprocesses.Pumpsarealsofoundinremotelocationsinthecollectionsystemtohelpconvey

    wastewatertotheplant.

    Theoverallefficiencyofapumpingsystem,alsocalledthewiretowaterefficiency,isthe

    productoftheefficiencyofthepumpitself,themotor,andthedrivesystemormethodofflowcontrol

    employed.Pumpsloseefficiencyfromturbulence,friction,andrecirculationwithinthepump(WEF

    2009).Anotherlossisincurrediftheactualoperatingconditiondoesnotmatchthepumpsbest

    efficiencypoint(BEP).1 Thevariousmethodsforcontrollingflowratedecreasesystemefficiency.

    Throttlingvalvestoreducetheflowrateincreasesthepumpinghead,flowcontrolvalvesburnhead

    producedbythepump,recirculationexpendspowerwithnousefulwork,andVFDsproduceaminor

    amount

    of

    heat.

    Of

    these

    methods,

    VFDs

    are

    the

    most

    flexible

    and

    efficient

    means

    to

    control

    flow

    despitetheminorheatlossincurred.Table31summarizestypicalpumpsystemefficiencyvaluesnote

    thatinefficiencyinmorethanonecomponentcanaddupquickly,resultinginaveryinefficientpumping

    system.

    1BEPistheflowrate(typicallyingallonsperminuteorcubicmetersperday)andhead(infeetormeters)thatgivesthe

    maximumefficiencyonapumpcurve. Forbasicinformationonpumpsystemdesign,seetheWEFManualofPracticeNo.32,

    EnergyConservationinWaterandWastewaterFacilities(WEF2009),orthesixpartseries,UnderstandingPumpSystem

    FundamentalsforanEnergyEfficientWorld(PumpZone2008and2009),availableonlineathttp://www.pump

    zone.com/pumps/pumps/understandingpumpfundamentalsforanenergyefficientworld.html

    Chapter3covers:

    3.1 Introduction

    3.2 Pumping

    System

    Design

    3.3 Motors

    3.4 PowerFactor

    3.5 VariableFrequencyDrives(VFDs)

    3.6 References

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    26/222

    EvaluationofEnergyConservationMeasures 32 September2010

    Table31.PumpSystemEfficiency

    Pump SystemComponent

    Efficiency

    Range Low Avg High

    Pump 30 85 % 30 % 60 % 75 %1

    Flow Control2

    20 98 % 20 % 60 % 98 %Motor

    385 95 % 85 % 90 % 95 %

    Efficiency of System 5 % 32 % 80 %1. For pumping wastewater. Pump system efficiencies for clean water can be higher.2. Represents throttling, pump control valves, recirculation and VFDs.3. Represents nameplate efficiency and varies by horsepower. See Section 3.4 for more information

    Inefficienciesinpumpingoftencomefromamismatchbetweenthepumpandthesystemit

    servesduetoimproperpumpselection,changesinoperatingconditions,ortheexpectationthatthe

    pumpwilloperateoverawiderangeofconditions.Signsofaninefficientpumpingsysteminclude:

    Highly

    or

    frequently

    throttled

    control

    valves

    Bypassline(recirculation)flowcontrol

    Frequenton/offcycling

    Cavitationnoiseatthepumporelsewhereinthesystem

    Ahotrunningmotor

    Apumpsystemwithnomeansofmeasuringflow,pressure,orpowerconsumption

    Inabilitytoproducemaximumdesignflow

    Formoreinformation,refertothePumpSystemBasicAssessmentGuide(PumpSystemsMatterTM

    2010),availableonlineathttp://www.pumpsystemsmatter.org/content_detail.aspx?id=3334.

    The

    literature

    provides

    several

    examples

    of

    plants

    reducing

    pumping

    energy

    by

    as

    much

    as

    50

    percentthroughpumpsystemimprovements(FocusonEnergy2006).Energysavingsresultfrom

    loweringofpumpingcapacitytobettermatchsystemdemands,replacinginefficientpumps,selecting

    moreefficientmotors,andinstallingvariablespeedcontrollers.Generallyspeaking,energyconservation

    measures(ECMs)forpumpingareconventionalanddonotrepresentanareawhererecenttechnology

    innovationhasplayedapartinimprovingenergyconservationandefficiency.PumpingECMsare,

    however,stillextremelyimportanttoreducingandoptimizingenergyuseatwastewatertreatment

    plants.ThischapterprovidesanoverviewofconventionalECMsrelatedtopumpingdesign,variable

    frequencydrives(VFDs),andmotorsandrefersthereadertoindustrystandardsandweblinksfor

    additionalguidance.

    WastewaterutilitiesshouldconsiderimplementingpumpingECMsaspartofalongtermpump

    testingandmaintenanceprogram.Pumpsshouldbetestedeverytwotothreeyearstoensurethatthey

    areoperatingefficiently.Utilitiesshouldtestforflow,head,andpowerconsumptionandthencalculate

    efficiencyforeachpumpsystem.Ifoverallsystemefficiencyislow(lessthan60or70percentfor

    centrifugalwastewaterpumps,lessthan72percentforcleanwaterpumps2),amoredetailedevaluation

    iswarranted.Thistypeofprogramcangivetheplantearlywarningwhenpumpcomponentsarefailing

    andcanpreventcatastrophicfailures.Itisimportantthatallcomponentsbeevaluatedandaddressed

    2EmailcommunicationfromKenHenderson,September8,2010.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    27/222

    EvaluationofEnergyConservationMeasures 33 September2010

    holisticallysothattheentiresystemisenergyefficient.Stateandlocalrequirementsforredundancy

    (e.g.,thecommonrequirementthatapumpstationcanpumppeakflowswiththelargestpumpoutof

    service)andsafetyfactorsmaylimitavailableefficienciesinsomecases.

    Severaltoolsareavailablefreeonlinetoassistwastewaterutilitiesindevelopingapumptesting

    andmaintenanceprogram.PumpSystemsMatterTM,aneducationprogramconceivedbytheHydraulic

    Institute,providestechnicalreferences,downloadabletools,tipsheets,andwhitepapersontheir

    websiteathttp://www.pumpsystemsmatter.org/default.aspx.TheDepartmentofEnergy(DOE)has

    developedandsupportsthePumpSystemAssessmentTool(PSAT),availablefreeonlineat

    http://www1.eere.energy.gov/industry/bestpractices/software_psat.html,tohelpusersdeterminethe

    efficiencyoftheirexistingpumpingsystemsandcalculateenergyandcostsavingsforupgrades.The

    WaterEnvironmentFederation(WEF)providesguidanceonlifecyclecosting,operationand

    maintenancepractices,andmeasurementequipmentintheirMOPNo.32(WEF2009).

    3.2 PumpingSystemDesign

    Appropriatesizingofpumpsiskeytoefficientoperationofwastewatertreatmentplants.Pumps

    sizedforpeakflowconditionsthatoccurinfrequentlyor,worse,inthefuturetowardstheendofthe

    pumpsservicelifeoperatethemajorityofthetimeatareducedflowthatisbelowtheirBEP. Peakflow

    istypicallyseveraltimesgreaterthanaveragedailyflowandcanbeanorderofmagnitudedifferent

    thanminimumflow,especiallyforsmallsystemsorsystemswithsignificantinflowandinfiltration(I&I).

    Insomesystems,theseprojectedfutureflowsareneverreachedduringthedesignlifeofthepump.

    Forexistingtreatmentplants,utilitiesshouldevaluatetheoperationofexistingpumpsand

    identifyopportunitiesforenergyreduction.Agoodstartingpointistodeterminetheefficiencyof

    existingpumpingsystems,focusingfirstonpumpsthatoperateforthemosthoursandhavepotential

    problemsasidentifiedbythebulletlistinSection3.1(presenceofbypasslines,throttledvalves,etc.).

    Plantsshouldcollectperformanceinformationontheflowrate,pressure,anddeliveredpowertothe

    pumps.

    Field

    measurements

    may

    be

    necessary

    if

    the

    plant

    does

    not

    regularly

    record

    this

    information.

    Pumpandsystemcurvescanthenbeconstructedtodeterminetheactualoperatingpointsofthe

    existingsystem.Operatingpointsmorethan10percentdifferentthantheBEPsignalroomfor

    improvement.DetailedguidanceonpumpsystemassessmentisprovidedinthePumpSystemsMatter

    publication,PumpSystemBasicAssessmentGuide,availableonlineat

    http://www.pumpsystemsmatter.org/content_detail.aspx?id=3334

    Toimproveefficiency,utilitiesshouldconsiderreplacingoraugmentinglargecapacitypumps

    thatoperateintermittentlywithsmallercapacitypumpsthatwilloperateforlongerperiodsandcloser

    totheirBEP. Whenreplacingapumpwithasmallerunit,boththehorsepowerandefficiencychange. A

    quickwaytoestimatetheannualenergycostsavingsistoapproximatecostbeforeandafterthe

    improvementanddeterminethedifferenceusingthefollowingequation:

    AnnualEnergySavings($)=[hp1xL1x0.746xhrxE1xC][hp2xL2x0.746xhrxE2xC] Eq.31

    Where:

    hp1=horsepoweroutputforthelargercapacitypump

    hp2=horsepoweroutputforthesmallercapacitypump

    L1=loadfactoroflargercapacitypump(percentageoffullload/100 determinedfrompump

    curve)

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    28/222

    EvaluationofEnergyConservationMeasures 34 September2010

    L2=loadfactorofsmallercapacitypump(percentageoffullload/100 determinedfrompump

    curve)

    hr=annualoperatinghours

    C=energy(electricpower)rate($/kWh)

    E1=efficiencyofthelargercapacitypump

    E2=efficiencyofthesmallercapacitypump

    SeeExample31forhowtheTownofTrumbullwasabletosavemorethan$1,500peryearbyaddinga

    smallpumptooneofitsexistingsewagepumpingstations.Whenappliedcorrectly,replacementof

    standarddriveswithVFDscanalsoyieldsignificantimprovements(seeSection3.3foradditional

    discussion).

    Forgreenfieldplantsand/ornewpumpstations,utilitiesshouldconsiderandplanforstaging

    upgradesoftreatmentcapacityaspartofthedesignprocess.Forexample,multiplepumpscanbe

    specifiedtomeetafuturedesignflowinsteadofonelargepumpsothatindividualpumpscanbe

    installedasneeded,sayatyearzero,yearten,andyeartwenty.TheStateofWisconsinsFocuson

    Example31 TownofTrumbull,CT,ImprovesEfficiencyatReservoirAvenuePumpStation

    BACKGROUND:WastewaterfromtheTownofTrumbull,insouthwesternCT,iscollectedand

    conveyedtoaWWTPinBridgeportviatensewagepumpstations. Oneofthese,theReservoirAvenue

    Pumpstation,consistingoftwo40hpdirectdrivepumpsdesignedtohandleanaveragedailyflowof

    236gallonsperminute(gpm). Eachpumpwasoperatedatareducedspeedof1320rpmat50.3feet

    oftotaldynamichead(TDH)withadutypointofapproximately850gpm. Abubblertypelevelcontrol

    systemwasusedtoturnthepumpsoffandon. Onepumpcanhandletheentirepeakinflow(usually

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    29/222

    EvaluationofEnergyConservationMeasures 35 September2010

    Energybestpracticesguidebook(FocusonEnergy2006)estimatesthatstagingoftreatmentcapacity

    canresultinenergysavingsbetween10and30percentoftotalenergyconsumedbyaunitprocess.

    3.3 Motors

    Thecostofrunningelectricmotorscanbethelargestfractionofaplantstotaloperatingcosts.

    WEFestimatesthatelectricmotorsmakeup90percentoftheelectricenergyconsumptionofatypical

    wastewatertreatmentplant(WEF2009). Inefficientmotors,operationoutsideofoptimalloading

    conditions,andmechanicalorelectricalproblemswiththemotoritselfcanleadtowastedenergyatthe

    plantandareopportunitiesforsavings.

    Thepercentenergysavingsresultingfromreplacingoldermotorswithpremiummotorsis

    modest,typicallybetween4and8percent(NEMAStandardMG1.2006).Savingscanbehigherwhen

    energyauditsrevealthatexistingmotorsachieveverylowefficiencies,orwhenexistingmotorsare

    oversizedand/orunderloaded.Manyplantshavecoupledmotorreplacementswithupgradesfrom

    fixedspeedtovariablespeeddrivesforsignificantlyhigherenergysavings.

    Ingeneral,upgradingmotorsisaconventionalECMthathasbeenpracticedatwastewater

    treatmentplantsforsometime.Becausethemainfocusofthisreportisinnovativeratherthan

    conventionaltechnologies,thissectioncontainsonlyabriefoverviewofmaterial,anddirectsthereader

    tootherpublicallyavailablewebsitesandreferencesfordetailedinformation.Specifically,Section3.3.1

    describesmotorefficiencyandsummarizescurrentmotorefficiencystandards,andSection3.3.2

    provideslinkstomotormanagementtoolsandsoftware.Theexceptiontoconventionalpracticesisthe

    emergenceofnew,ultraefficiencymotors,whicharedescribedinSection3.3.3.

    Inadditiontotoolsandreferencesidentifiedinsubsequentsections,thereaderisreferredto

    thefollowingwebsitesfortechnicalinformationonmotors:

    TheU.S.DOEprovidesextensiveinformationaspartoftheirMotorChallengesProgram.Publicationsincludedownloadablebooks,tipsheets,andfactsheetsontechnicalandeconomic

    topicsrelatedtomotors.See

    http://www1.eere.energy.gov/industry/bestpractices/techpubs_motors.html foralistof

    publishedmaterialandrelevantweblinks.

    TheConsortiumforEnergyEfficiency(CEE)providestechnicalmaterial,links,andfactsheets

    underitsMotorsandMotorSystemsIndustrialProgram(http://www.cee1.org/ind/mot

    sys/mtrmsmain.php3).

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    30/222

    EvaluationofEnergyConservationMeasures 36 September2010

    3.3.1 MotorEfficiencyandEfficiencyStandards

    Motorefficiencyisameasureofmechanicalpoweroutputcomparedtoelectricalpowerinput,

    expressedasapercentage.

    Motorefficiency=Pm/Pe Eq.32

    Where:

    Pm=mechanicalpoweroutputofthemotorinWatts

    Pe=electricalpowerinputtothemotorinWatts(WEF2009)

    Nomotoris100percentefficientallmotorsexperiencesomepowerlossduetofriction,electrical

    resistancelosses,magneticcorelosses,andstrayloadlosses.Smallermotorsgenerallyexperience

    higherlossescomparedtolargermotors.

    TheUnitedStatesCongress,intheEnergyPolicyAct(EPACT)of1992,setminimumefficiency

    standardsforvarioustypesofelectricmotorsmanufacturedinorimportedtotheUnitedStates.

    Minimumnominal,fullloadefficienciestypicallyrangefrom80to95percentdependingonsize(i.e.,

    horsepower)andothercharacteristics.Motorsmanufacturedsince1997wererequiredtocomplywith

    EPACTstandardsandtobelabeledwithacertifiedefficiencyvalue.

    TheNationalElectricalManufacturersAssociation(NEMA)premiumefficiencystandardhas

    existedsince2001(NEMA2006)asavoluntaryindustrystandardandhasbeenwidelyadopteddueto

    itspower(andthuscost)savingsoverEPACT1992compliancestandards.The2007EnergyActraised

    efficiencystandardsofmotorstoNEMApremiumefficiencylevelsandsetnewstandardsformotorsnot

    coveredbypreviouslegislation.The2007act,whichcomesintoforceinDecember2010,issummarized

    onlineathttp://www.motorsmatter.org/resources/gen_legislation.html.

    Submersible

    motors

    are

    commonly

    used

    in

    wastewater

    treatment

    plants.

    They

    serve

    specialized

    applicationsinenvironmentsthatarenotsuitedforNEMAmotors. Thereiscurrentlynoefficiency

    standardforsubmersiblemotorsandtheirefficiencyislessthanNEMAmotors. Additionally,their

    powerfactorisusuallylower. Theirselectionisusuallydrivenbytheapplication,thoughsome

    applicationshavealternativesthatuseNEMAmotors. Efficiencyshouldbeconsideredintheevaluation

    ofalternativesintheseapplicationsasitaffectsthelifecyclecostusedintheselectionprocess.

    Operatingefficiencyinthefieldisusuallylessthanthenominal,fullloadefficiencyidentifiedby

    themotormanufacturer.Onereasonforthisistheoperatingload.Asaruleofthumb,mostmotorsare

    designedtooperateatbetween50and100percentoftheirratedload,withmaximumefficiency

    occurringatabout75percentofmaximumload.Forexample,amotorratedfor20horsepower(hp)

    shouldoperatebetween10and20hpandwouldhaveitsbestefficiencyaround15hp.Largermotors

    canoperatewithreasonableefficiencyatloadsdowntothe25percentrange(USDOE1996).Motors

    operatedoutsideoftheoptimalloadingloseefficiency.Otherfactorsthatreduceefficiencyinthefield

    includepowerquality(I.e.,propervoltage,amps,andfrequency)andtemperature.Motorsthathave

    beenrewoundtypicallyarelessefficientcomparedtotheoriginalmotor.

    Accuratelydeterminingtheefficiencyofmotorsinserviceataplantischallengingbecausethere

    isnoreliablefieldinstrumentformeasuringmechanicaloutputpower.Severalmethodsareavailable,

    however,toapproximatemotorefficiency.Forasummary,seetheU.S.DepartmentofEnergyfactsheet

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    31/222

    EvaluationofEnergyConservationMeasures 37 September2010

    onthesubject(USDOE2005),availableonlineat

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/estimate_motor_efficiency_motor_systemts

    2.pdf.OnemethodistousefieldmeasurementsandtechnicaldataintheMotorMaster+softwaretool

    toestimateefficiency.Section3.3.2providesadditionalinformationonthistool.

    3.3.2 MotorManagementPrograms

    Wastewaterutilitiesshouldconsiderpurchasingnewenergyefficientpremiummotorsinstead

    ofrewindingolderunitswhenreplacingequipmentandwhenmakingmajorimprovementsattheplant

    (seethetextboxinthissectionforadditionalrecommendations). Motorreplacementisbestdoneas

    partofaplantwidemotormanagementprogram.Afirststepinprogramdevelopmentistocreatean

    inventoryofallmotorsattheplant.Theinventoryshouldcontainasmuchinformationaspossible

    includingmanufacturersspecifications,nameplateinformation,andfieldmeasurementssuchas

    voltage,amperage,powerfactor,andoperatingspeedundertypicaloperatingconditions.Followingthe

    datagatheringphase,plantmanagersshouldconductamotorreplacementanalysistodeterminewhich

    motorstoreplacenowandwhicharereasonablyefficientandcanbereplacedinthefutureorattimeof

    failure.

    Akeyinputtoanymotorreplacementanalysisiseconomics.Asimpleapproachistocalculate

    theannualenergysavingsofthenewmotorcomparedtotheoldunitanddeterminethepaybackperiod

    inyears(inotherwords,whenwillthecumulativeenergysavingsexceedtheinitialcosts).Thefollowing

    simpleequationcanbeusedtodetermineannualenergysavings:

    AnnualEnergySavings($)=hpxLx0.746xhrxCx(Ep Ee) Eq.33

    Where:

    hp=horsepoweroutputofmotor

    L=loadfactor(percentageoffullload/100)

    0.746=conversionfromhorsepowertokWunits

    hr=annualoperatinghours

    C=energy(electricpower)rate($/kWh)

    Ee=existingmotorefficiencyasapercentage

    Ep=premiummotorefficiencyasapercentage

    WhenShouldPlantsConsiderBuyingNewEnergyEfficientMotors?

    Fornewinstallations

    Whenpurchasingnewequipmentpackages

    Whenmakingmajormodificationstotheplant

    Insteadofrewindingolder,standardefficiencyunits

    Toreplaceoversizedand/orunderloadedmotors

    Aspartofapreventivemaintenanceorenergyconservationprogram

    Source: MotorChallengeFactSheet:BuyinganEnergyEfficiencyElectricMotor. Availableonline

    athttp://www1.eere.energy.gov/industry/bestpractices/pdfs/mc0382.pdf

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    32/222

    EvaluationofEnergyConservationMeasures 38 September2010

    Simplepaybackinyearscanthenbecalculatedasthenewmotorcost(capitalplusinstallation)

    dividedbytheannualenergysavings.Whencomparingbuyingapremiummotorinsteadofrewinding

    anexistingone,thecostofrewindingtheexistingmotorshouldbesubtractedfromthemotorcost.Any

    cashrebatefromyourlocalelectricutilityorstateenergyagencyshouldalsobesubtractedfromthe

    costofthenewmotor. Whenreplacingpumps,motors,orcontrolsystems,upgradingtheelectrical

    service,wiring,transformers,andothercomponentsoftheelectricalsystemshouldbeconsideredin

    calculatingenergysavingsandlifecyclecosts. Utilitiesshouldalsoconsidertheimportanceofreliability

    andenvironmentalfactorswhenmakingmotorreplacementdecisions.Morerobusteconomicanalyses

    suchasnetpresentvaluelifecyclecostanalysisshouldbeconsidered,especiallyforlargeexpenditures.

    TheENERGYSTARCashFlowOpportunity(CFO)calculatorisaneasytousespreadsheettool

    thatcanhelpplantmanagerscalculatesimplepaybackaswellascostofdelay,whichisthelost

    opportunitycostiftheprojectisdelayedtwelvemonthsormore.Thelastsheetoftheworkbook

    providesasummarythatcanbegiventoseniormanagersanddecisionmakerstohelpconvincethemof

    thefinancialsoundnessofenergyefficiencyupgrades.TheCFOcalculatorandotherfinancialtoolsare

    availableforfreedownloadathttp://www.energystar.gov/index.cfm?c=assess_value.financial_tools.

    Thetaskofmotorinventorymanagementandreplacementanalysisismadesignificantlyeasier

    bypublicallyavailablesoftwaretools.DevelopedbytheDOEIndustrialTechnologiesProgram,

    MotorMaster+isamotorselectionandmanagementtool,availablefreeonlineat

    http://www.motorsmatter.org/.Itincludesinventorymanagementfeatures,maintenancelogging,

    efficiencyanalysis,savingsevaluation,andenergyaccounting.Itincludesacatalogof17,000motors

    from14manufacturers,includingNEMAPremiumefficiencymotors,andmotorpurchasing

    information.InadditiontoMotorMaster+software,thesponsorsoftheMotorDecisionsMatter

    campaigndevelopedaspreadsheettooltoassistplantmanagerswithmotorreplacement/repair

    decisionmaking.Thetoolistitledthe1*2*3ApproachtoMotorManagementandisavailableforfree

    downloadathttp://www.motorsmatter.org/tools/123approach.html.

    3.3.3

    Innovative

    and

    Emerging

    Technologies

    SiemensEnergyandAutomationincooperationwiththeCopperDevelopmentAssociationhas

    developedultraefficientcopperrotorsquirrelcagetypeinductionACmotors.Thesemotorsexceed

    NEMApremiumfullloadefficiencystandardsbyupto1.4percent;however,theyareonlycurrently

    availableinoutputsupto20hp.Inadditiontousinghighconductivitycopperrotorsinplaceof

    aluminum,thenewmotorshavethefollowingefficiencyimprovements:

    Optimizedrotorandstatordesign

    Lowfrictionbearings

    Improvedcoolingsystem

    Polyureabasedgrease

    Dynamicallybalancedrotors

    Precisionmachinedmatingsurfacesforreducedvibration

    ThemotorsinsulationisdesignedtobecompatiblewithVFDs(USDOE2008).

    TheU.S.DepartmentofEnergy(USDOE),incooperationwithBaldorElectricCompanyandother

    privatepartners,isdevelopinganewgradeofUltraEfficientandPowerDenseElectricMotors,withthe

    goalofa15percentreductioninmotorenergylossoverNEMApremiummotors.Forexample,ifa

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    33/222

    EvaluationofEnergyConservationMeasures 39 September2010

    NEMApremiummotorwithparticularcharacteristicsandoutputhorsepowerwas92percentefficient

    andthushad8percentloss,thisnewgradeofmotorwouldreducelossby0.15*8%=1.2percent,fora

    newoverallefficiencyof93.2percent.Thenewgradeofmotorwillalsobe30percentsmallerinvolume

    and30percentlowerinweight,leadingtodecreasedmotorcostduetolowermaterialscosts(USDOE

    2009).Formoreinformation,seeDOEswebsiteat

    http://www1.eere.energy.gov/industry/intensiveprocesses/pdfs/electric_motors.pdf.

    3.4 PowerFactor

    Powerfactorisimportantbecausecustomerswhoseloadshavelowpowerfactorrequire

    greatergenerationcapacitythanwhatisactuallymetered. Thisimposesacostontheelectricutility

    thatisnototherwiserecoveredbytheenergyanddemandcharges. Therearetwotypesofpowerthat

    makeupthetotalorapparentpowersuppliedbytheelectricutility. Theirrelationshipisshownin

    Figure31. Thefirstistheactivepower. MeasuredinkW,itisthepowerusedbytheequipmentto

    producework. Thesecondisthereactivepower. Thisisthepowerusedtocreatethemagneticfield

    necessaryforinductiondevicestooperate. ItismeasuredinkVARs.

    Figure31. VectorRelationshipofACPower

    Powerfactoristheratiooftheactivepowertotheapparentpower. Thepowerfactoroffully

    loadedinductionmotorsrangesfrom80to90percentdependingonthetypeofmotorandthemotors

    speed. Powerfactordeterioratesastheloadonthemotordecreases. Otherelectricaldevicessuchasspaceheatersandolderfluorescentorhighdischargelampsalsohavepoorpowerfactor. Treatment

    plantshaveseveralmotors,numerouslamps,andoftenelectricheaters,which,combined,lowersthe

    facilitysoverallpowerfactor.

    Powerfactormaybeleadingorlagging. Voltageandcurrentwaveformsareinphaseina

    resistiveACcircuit. However,reactiveloads,suchasinductionmotors,storeenergyintheirmagnetic

    fields. Whenthisenergygetsreleasedbacktothecircuititpushesthecurrentandvoltagewaveforms

    outofphase. Thecurrentwaveformthenlagsbehindthevoltagewaveform. Whentheloadis

    capacitive,theoppositeoccurs,andthecurrentwaveformleadsthevoltagewaveform.

    Improvingpowerfactorisbeneficialasitimprovesvoltage,decreasessystemlosses,frees

    capacitytothesystem,anddecreasespowercostswherefeesforpoorpowerfactorarebilled. Power

    factorcanbeimprovedbyreducingthereactivepowercomponentofthecircuit. Addingcapacitorsto

    aninductionmotorisperhapsthemostcosteffectivemeanstocorrectpowerfactorastheyprovide

    reactivepower. Synchronousmotorsareanalternativetocapacitorsforpowerfactorcorrection.

    Synchronousmotorscanberunatlagging,unity,orleadingpowerfactorbycontrollingtheirfield

    excitation. Whenthefieldexcitationvoltageisdecreased,themotorrunsinlaggingpowerfactor. This

    conditioniscalledunderexcitation. Whenthefieldexcitationvoltageismadeequaltotherated

    voltage,themotorrunsatunitypowerfactor. Themotorrunsatleadingpowerfactorwhenthefield

    Active Power,kW

    ReactivePower,kVAR

    ApparentPower,kVAR

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    34/222

    EvaluationofEnergyConservationMeasures 310 September2010

    excitationvoltageisincreasedabovetheratedvoltage. Thisconditioniscalledoverexcitation. When

    overexcited,theycanprovidesystempowerfactorcorrection. Synchronousmotorsabove300hpand

    below1200rpmareoftenlessexpensivethanacomparableinductionmotor(ThumannandDunning,

    2008).

    Thefeasibilityofaddingcapacitorsdependsonwhethertheelectricutilitychargesforlow

    powerfactor. Correctivemeasuresareinfrequentlyinstalledsincemanyelectricutilitiesdonotcharge

    smallcustomersforpoorpowerfactorbutratherpriceitintotheelectricalratesasacostofbusiness.A

    costevaluationisneededtodeterminethetypeofcorrectionequipmenttouse. Theevaluationshould

    includemotortype,motorstarter,exciter(forsynchronousmotors),capacitorsandswitchingdevicesif

    needed,efficiency,andpowerfactorfees(IEEE1990). Manufacturersshouldbeconsultedbefore

    installingcapacitorstoreducedvoltagesolidstatestartersandVFDsastherecanbeproblemsifthey

    arenotproperlylocatedandapplied.

    3.5 VariableFrequencyDrives(VFDs)

    VFDsareusedtovarythespeedofapumptomatchtheflowconditions. Theycontrolthe

    speedofamotorbyvaryingthefrequencyofthepowerdeliveredtothemotor. Theresultisaclose

    matchoftheelectricalpowerinputtothepumpwiththehydraulicpowerneededtopumpthewater.

    AsillustratedbytheredareasinFigure32,othermethodsusedtocontrolflowexpendmoreelectrical

    powerthanthehydraulicpowerneeded. Throttlingvalvesdecreaseflowbymovingtheoperatingpoint

    onthepumpscurvetotheleft.Thisisachievedbyartificiallyincreasingtheheadagainstwhichthe

    pumpworks. Bypasscontrolreturnsaportionofthewaterpumpedbacktothesuctionsideofthe

    pump,whichwastesaportionoftheenergyusedtorecirculatethewaterwithnousefulwork.

    Stop/startcontrolisindicativeofanoversizedpumpthatpulsestomatchflow. Whilethisachieves

    thesameamountofworkasasmallerpumpoperatingcontinuously,itdoessoatahigherpower(kW)

    demand. VFDsareaproventechnologythatismoreefficientthanthesecontrolmethodsandare

    ideallysuitedinsituationswheretheflowrateishighlyvariable.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    35/222

    EvaluationofEnergyConservationMeasures 311 September2010

    Figure32.WastedEnergyinAlternativeControlSchemesComparedtoVariableFrequencyDrives

    Source:providedcourtesyofPumpSystemsMatterandtheHydraulicInstitute,Parsippany,NJ

    www.PumpSystemsMatter.org

    3.5.1 EnergySavings

    VFDshavebeenusedbymanywastewaterutilitiestoconserveenergyandreducecosts.A

    literaturereviewfoundnumeroussuccessstorieswithenergysavingsrangingfrom70,000kWh/yrfor

    smallerWWTPs(i.e.averagedailyflowof710mgd)to2,800,000kWh/yrforlargerWWTPs(i.e.average

    dailyflowof80mgd)(EPRI1998;EfficiencyPartnership2009;USDOE2005c).VFDsarenowmore

    availableandaffordable,andpaybacksforVFDsrangefromsixmonthstofiveyearsdependingonthe

    existinglevelofcontrolandannualhoursofoperation(FocusonEnergy,2006).

    Toapproximatethepotentialenergysavings,utilitiesshoulddevelopacurveofactualflowin

    hourlyincrementsduringaday.Usingthecurve,energyconsumedbyaconstantspeedmotorand

    throttlingvalvecanbeestimatedandcomparedtoenergyconsumedbyaVFDsystemthatmatchthe

    hourlyflowratetopowerused.

    3.5.2 Applications

    VFDscanbeinstalledatremotecollectionsystempumpingstations,atliftstations,onblowers,

    andonoxidationditchaerationrotordrives.AcommonapplicationofVFDsisforpumpsthatexperience

    alargevariationindiurnalflow,suchasatwastewaterpumpingstations. However,ifVFDsarenot

    selectedandappliedcorrectly,theycanwasteenergy. Operatingbelow75%forfullload,VFDscanhave

    verylowefficiencies. InselectingaVFD,informationshouldbeobtainedfromtheVFDmanufacture

    showingtheefficiencyatdifferentturndownrates.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    36/222

    EvaluationofEnergyConservationMeasures 312 September2010

    VFDsarenotapplicableinallsituations.VFDsmaynotbeeffectivewhenalargestatichead

    mustbeovercomeorwherethereislittlevariationintheflowrate(WEF2009).Additionally,some

    motorsarenotsuitedforusewithVFDs.Whenthedrivereducesthefrequencytothemotorthevoltage

    decreases.However,theamperageincreaseswhichcangenerateheat.Morecommonly,voltagespikes

    thatdevelopfromthenonsinusoidalwaveformproducedbyVFDscandamagemotorinsulationifnot

    properlyfiltered.Conductorswithinthemotorshouldbeproperlyinsulatedandthemotorsshouldbe

    capableofdissipatingtheheat.

    3.5.3 VFDStrategiesforWastewaterPumpingStations

    VFDscanbecostlytoinstallinanexistingpumpstationandrequirespaceintheelectricalroom.

    Therangeofflow,numberofpumps,andhoursofoperationalsoneedtobeconsideredwhen

    evaluatingtheimplementationofVFDcontrol.AlthoughequippingallpumpswithVFDsprovides

    maximumoperationalflexibility,thiscanbecostlyand,inretrofitprojects,notalwaysfeasible.Often

    therewardsofhavingVFDscanbeachievedatlesscostwithhalforasfewasonepumpbeing

    equipped.

    OneVFDcanbefeasibleinsmallstationswheretwopumpsareruninduty/standbymode

    becausethedutypumprunsthemajorityofthetime,reapingthesavingswiththeVFD.Insituations

    wherebothpumpsareruninthelead/lagmodetocovertherangeofflowencountereditisusually

    beneficialtohavebothpumpsequippedwithVFDs.Thisallowsthepumpstoalternatetheleadposition,

    whichbalancestheirhours,anditsimplifiesthecontrolsasbothpumpscanbeoperatedinthesame

    manner.

    Inthecaseoflargerstationswiththreeormorepumpsofthesamesizeoperatedinlead/lag

    mode,thenumberofVFDsneededdependsontherangeofflowandthespaceavailable.Ifonepump

    runsthemajorityofthetimewithinfrequentassistancefromtheothers,thenoneVFDwouldlikely

    suffice.However,ifthesecondpumpoperatesfrequently,thenatleasttwoVFDsarerecommended.In

    thetwoVFDscenario,whenaninfrequentpeakflowisneeded,thethirdconstantspeedpumpcan

    providethebaseloadwhilebothVFDdrivenpumpsadjusttomeetthedemand.Dependingonthesize

    ofthepumps,itcouldbemorebeneficialtoinstallasmallerpumpinsteadandrunitwithaVFD.This

    maximizestheefficiencyofthesystembecausewhenthelargepumpsarerun,theyareneartheirBEP

    withouttheheatlossesgeneratedbyVFDs.

    Largestationswithmultiplepumpsofdifferentsizesneedtobeevaluatedonacasebycase

    basis.Typically,VFDsareplacedonthesmallerpumpssothattheycanbeusedtofillinthepeaks

    beforeanotherlargepumpisturnedon.Thecontrolsaresimpleandsequencingiseasytomaintain

    whenapumpisdownforservice.Additionally,thecostislowerassmallVFDsarelessexpensivethan

    largeones.

    Itisimportanttoruneachpumpperiodically. Bearingsinpumpsthatsittoolongcanbe

    damagedfrombrinnellingandstuffingboxescandryoutandleak. ItisbeneficialfromanO&M

    standpointtoexerciseequippedatintervalsrecommendedbytheequipmentmanufacturertoensure

    theirreliabilitywhencalledupon. Energywise,itisbesttodothisduringoffpeakelectrichourssuchas

    morningoronweekends.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    37/222

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    38/222

    EvaluationofEnergyConservationMeasures 314 September2010

    USDOE.1999.MotorChallengeProjectFactSheet.CityofMilfordPumpOptimizationProjectYields

    $96,000NetPresentValue.U.S.DepartmentofEnergy,OfficeofIndustrialTechnologiesEnergy

    EfficiencyandRenewableEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/milford.pdf

    USDOE.BuyinganEnergyEfficientElectricMotor.OfficeofIndustrialTechnologies,EnergyEfficiency

    andRenewableEnergy.DOE/GO10096314

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/mc0382.pdf

    USDOE.2000.PerformanceImprovementsatWastewaterTreatmentPlants.OfficeofIndustrial

    Technologies,EnergyEfficiencyandRenewableEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/fairf.pdf

    USDEO2005a.MotorSystemsTipSheet#2:EstimatingMotorEfficiencyintheField.Industrial

    TechnologiesProgram,EnergyEfficiencyandRenewableEnergy.DOE/GO1020052021.

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/estimate_motor_efficiency_motor_systemts

    2.pdf

    USDOE.2005b.CaseStudyTheChallenge:ImprovingSewagePumpSystemPerformance,Townof

    Trumbull.U.S.DepartmentofEnergy,EnergyEfficiencyandRenewableEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/case_study_sewage_pump.html

    USDOE.2005c.OnondagaCountyDepartmentofWaterEnvironmentProtection:ProcessOptimization

    SavesEnergyatMetropolitanSyracuseWastewaterTreatmentPlant.U.S.DepartmentOfEnergy,Energy

    EfficiencyandRenewableEnergy.

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/onondaga_county.pdf

    USDOE.2008.NewMotorTechnologiesBoostSystemEfficiency.UnitedStatesDepartmentofEnergy

    IndustrialTechnologiesProgram.PublishedintheSummer2008issueofEnergyMatters

    http://www1.eere.energy.gov/industry/bestpractices/energymatters/archives/summer2008.html#a284

    USDOE.2009.UltraEfficientandPowerDenseElectricMotors.UnitedStatesDepartmentofEnergy,

    EnergyEfficiencyandRenewableEnergyDivision.

    http://www1.eere.energy.gov/industry/intensiveprocesses/pdfs/electric_motors.pdf

    WashingtonStateUniversity(WSU)CooperativeExtensionEnergyProgram.2003.MotorMaster+

    Version4.0UserGuide. DevelopedfortheU.S.DepartmentofEnergy.Availableonlineat

    http://www1.eere.energy.gov/industry/bestpractices/pdfs/motormaster_user_manual.pdf

    WaterEnvironmentFederation(WEF),2009.ManualofPractice(MOP)No.32:EnergyConservationin

    WaterandWastewaterFacilities.PreparedbytheEnergyConservationinWaterandWastewater

    TreatmentFacilitiesTaskForceoftheWaterEnvironmentFederation.McGrawHill,NewYork.

  • 8/7/2019 832R10005 (Evaluation of Energy Conservation Measures for Wastewater Treatment Facilities)

    39/222

    Evaluation of Energy Conservation Measures 4-1 September 2010

    4. DesignandControlofAerationSystems

    4.1 IntroductionTheaerationprocesscanaccountforthelargestenergydemandofanyoperationatthefacility.

    Althoughthedemandissitespecificandcanvarywidelyfromplanttoplant,thefractionofenergyused

    foraerationrangesfrom25toasmuchas60percentoftotalplantenergyuse(WEF2009). Becauseof

    thehighenergyuseassociatedwithaeration,energysavingscanbegainedbydesigningandoperating

    aerationsystemstomatch,ascloselyaspossible,theactualoxygendemandsoftheprocess. Through

    improvedunderstandingoftheoxygendemandsofaparticularwastewaterandhowthosedemands

    fluctuatewithtimeofdayandseason,wastewatertreatmentplants(WWTPs)canbuildflexibilityinto

    theiraerationsystemssothatoperationcanaddressrealtimedemandsefficiently.

    Section4.2inthischapterdescribesenergyconservationmeasures(ECMs)foraerationsystems.

    Section4.3followswithadiscussionofaerationcontrol,includingconventionalcontrolbasedon

    dissolvedoxygen(DO)measurementsandinnovativecontrolstrategies. Innovativeandemerging

    technologiesforcontrolofbiologicalnitrogenremovalarediscussedinSection4.4. SeeChapter5for

    innovativeECMsrelatedtonewcommerciallyavailablebloweranddiffuserequipment.

    4.2 ECMsforAerationSystemsWastewaterisaeratedbyeitherbub