8 sheet and answers mechanical behavior ahmedawad

13
Ain Shams University Faculty of Engineering New Program 8 th assignment Presented to: Dr. Nahed Abd El-Salam Presented by: Ahmed Hassan Ibrahim Mostafa sherif Ibrahim S.MANF

Upload: ahmed-awad

Post on 09-Dec-2015

568 views

Category:

Documents


30 download

DESCRIPTION

Mechanical Behaviour

TRANSCRIPT

Page 1: 8 Sheet and Answers Mechanical Behavior Ahmedawad

Ain Shams University

Faculty of Engineering

New Program

8th assignment

Presented to: Dr. Nahed Abd El-Salam

Presented by: Ahmed Hassan Ibrahim

Mostafa sherif Ibrahim

S.MANF

Page 2: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.1 An engineering component is made of the silicon nitride (Si3N4) ceramic of Table 3.10. most severely stressed point is subjected to the following state of stress: Οƒx = 125, Οƒy = 15, 𝜏xy = -25, and Οƒz = 𝜏xz = 𝜏yz = 0 MPa. Determine the safely factor against fracture.

𝝈1 , 𝝈2 =𝝈π‘₯ + πˆπ‘¦

𝟐± √(

𝝈π‘₯ βˆ’ πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ =

125 + 15

2± √(

πŸπŸπŸ“ βˆ’ πŸπŸ“

𝟐)

𝟐

+ (βˆ’πŸπŸ“)𝟐 = 70 Β± 60.41522

𝝈1 = 130.4152299 π‘€π‘ƒπ‘Ž , 𝝈2 = 9.584770132 π‘€π‘ƒπ‘Ž

πœŽπ‘ = 𝑀𝐴𝑋(|𝝈1|, |𝝈2|, |𝝈3|) = 𝑀𝐴𝑋(130.4152299, 9.584770132,0) = 130.4152299π‘€π‘ƒπ‘Ž

𝑋 =πˆπ‘’

πœŽπ‘=

450 π‘€π‘ƒπ‘Ž

130.4152299 π‘€π‘ƒπ‘Ž= 3.450517

Ceramic Melting

Temp. Density Elastic

Modulus Typical Strength Uses

Tm 𝝆 E πˆπ‘’, MPa (ksi)

tension compression Silicon nitride.

Si3N4 1900 3.18 310 450 3450 fibers for

composites (hot pressed) (3450) (199) (45) (65) (500) cutting tool

inserts 7.2 In an engineering component made of gray cast iron, the most severely stressed

poi subjected to the following state of stress: Οƒx = 50, Οƒy = 80, 𝜏xy = 20 and Οƒz = 𝜏xz = 𝜏yz = 0 MPa, Determine the safety factor against fracture. The material has a tensile strength 214 MPa and a compressive strength of 770 MPa.

𝝈1 , 𝝈2 =𝝈π‘₯ + πˆπ‘¦

𝟐± √(

𝝈π‘₯ βˆ’ πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ =

50 + 80

2± √(

πŸ“πŸŽ βˆ’ πŸ–πŸŽ

𝟐)

𝟐

+ (𝟐𝟎)𝟐 = 65 ± 25

𝝈1 = 90 π‘€π‘ƒπ‘Ž , 𝝈2 = 40π‘€π‘ƒπ‘Ž

πœŽπ‘ = 𝑀𝐴𝑋(|𝝈1|, |𝝈2|, |𝝈3|) = 𝑀𝐴𝑋(90, 25,0) = 90 π‘€π‘ƒπ‘Ž

Safety factor against tension fracture :

𝑋 =πˆπ‘’

πœŽπ‘=

214 π‘€π‘ƒπ‘Ž

90 π‘€π‘ƒπ‘Ž= 2.377778

Safety factor against compression fracture :

𝑋 =πˆπ‘’

πœŽπ‘=

770 π‘€π‘ƒπ‘Ž

90 π‘€π‘ƒπ‘Ž= 8.5556

Page 3: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.5 A pipe 10 m long has closed ends, a wall thickness of 5 mm. and an inner diameter of 3 m, and it is filled with a gas at a pressure of 2MPa. Neglecting any localized effects of the end closure, what is the safety factor against yielding if the material is 18 Ni maraging steel (250 grade)? Employ (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion.

Material Elastic

Modulus E

0.2% yield Strength

Οƒo

Ultimate Strength

Οƒu

Elongation

100𝜺f

Reduction in area %RA

18 Ni maraging steel 250

GPa (103ksi)

MPa (ksi)

MPa (ksi) % %

186 (27)

1791 (260)

1860 (270) 8 56

πœŽβ„Ž =π‘π‘Ÿπ‘–

𝑑=

( 2 π‘€π‘ƒπ‘Ž )(3/2 π‘š)

0.005 π‘š= 600 π‘€π‘ƒπ‘Ž, πœŽβ„Ž =

π‘π‘Ÿπ‘–

2𝑑=

( 2 π‘€π‘ƒπ‘Ž )(3/2π‘š)

2(0.005 π‘š)= 300 π‘€π‘ƒπ‘Ž

πœŽπ‘Ÿ = βˆ’2 π‘€π‘ƒπ‘Ž 𝑖𝑛𝑠𝑖𝑑𝑒 , , π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ πœŽπ‘Ÿ = 0

inside

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|) = 𝑀𝐴𝑋(|600 βˆ’ 300|, |300 + 2|, |βˆ’2 βˆ’ 600|) = 602 π‘€π‘ƒπ‘Ž

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ =

1791 π‘€π‘ƒπ‘Ž

602 π‘€π‘ƒπ‘Ž= 2.975

outside

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|) = 𝑀𝐴𝑋(|600 βˆ’ 300|, |300 + 0|, |0 βˆ’ 600|) = 600 π‘€π‘ƒπ‘Ž

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ =

1791 π‘€π‘ƒπ‘Ž

600 π‘€π‘ƒπ‘Ž= 2.985

𝜎𝐻 =1

√2√(𝝈1 βˆ’ 𝝈2)2 + (𝝈2 βˆ’ 𝝈3)2 + (𝝈3 βˆ’ 𝝈1)2

Inside

𝜎𝐻 =1

√2√(600 βˆ’ 300)2 + (300 + 2)2 + (βˆ’2 βˆ’ 600)2 = 521.34 π‘€π‘ƒπ‘Ž

𝑋𝐻 =πˆπ‘¦

𝜎𝐻=

1791 π‘€π‘ƒπ‘Ž

521.34 π‘€π‘ƒπ‘Ž= 3.43532

Inside

𝜎𝐻 =1

√2√(600 βˆ’ 300)2 + (300 + 0)2 + (0 βˆ’ 600)2 = 519.615 π‘€π‘ƒπ‘Ž

𝑋𝐻 =πˆπ‘¦

𝜎𝐻=

1791 π‘€π‘ƒπ‘Ž

519.615 π‘€π‘ƒπ‘Ž= 3.4467

Page 4: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.6 In an engineering component made of AISI 1020 steel (as rolled), the most severely stressed point is subjected to the following state of stress: Οƒx = -100, Οƒy

= 40, 𝜏xy = -50 and Οƒz = 𝜏xz = 𝜏yz = 0 MPa. Determine the safely factor against yielding by (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion.

Material Elastic

Modulus E

0.2% yield Strength

Οƒo

Ultimate Strength

Οƒu

Elongation

100𝜺f

Reduction in area %RA

AISI 1020 steel

GPa (103ksi)

MPa (ksi)

MPa (ksi) % %

203 (29.4)

260 (37.7)

441 (64) 36 61

𝝈1, 𝝈2 =𝝈π‘₯ + πˆπ‘¦

𝟐± √(

𝝈π‘₯ βˆ’ πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ =

βˆ’100 + 40

2± √(

βˆ’πŸπŸŽπŸŽ βˆ’ πŸ’πŸŽ

𝟐)

𝟐

+ (βˆ’πŸ“πŸŽ)𝟐 = βˆ’30 Β± 86.023

𝝈1 = 56.02325 π‘€π‘ƒπ‘Ž , 𝝈2 = βˆ’116.0232 π‘€π‘ƒπ‘Ž

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|)= 𝑀𝐴𝑋(|56.02325 + 116.0232|, |βˆ’116.0232 + 0|, |0βˆ’ 56.02325|) = 172.04650 π‘€π‘ƒπ‘Ž

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ =

260 π‘€π‘ƒπ‘Ž

172.0465 π‘€π‘ƒπ‘Ž= 1.511219

𝜎𝐻 =1

√2√(𝝈π‘₯ βˆ’ πˆπ‘¦)

2+ (πˆπ‘¦ βˆ’ πˆπ‘§)

2+ (πˆπ‘§ βˆ’ 𝝈π‘₯)2 + 6(𝜏π‘₯𝑦

2 + πœπ‘¦π‘§2 + πœπ‘§π‘₯

2)

𝜎𝐻 =1

√2√(56.02325 + 116.0232 )2 + (βˆ’116.0232 βˆ’ 0)2 + (0 βˆ’ 56.02325)2 + 6((βˆ’50)2 + 0 + 0)

= 151.9868 π‘€π‘ƒπ‘Ž

𝑋𝐻 =πˆπ‘¦

𝜎𝐻=

260 π‘€π‘ƒπ‘Ž

151.9868 π‘€π‘ƒπ‘Ž= 1.7106744

Page 5: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.10 strain are measured on the surface of a part made from AISI 1020 steel as follows: ex = 190 x I0-6 ey = -760 x 10-6, and 𝛾xy = 300 x 10-6. Assume that no yielding has occurred, and also that no loading is applied directly to the surface,

so that Οƒz = 𝜏xz = 𝜏yz = 0. What is the safety factor against yielding?

𝜎π‘₯ =𝐸

1 βˆ’ 𝑣2(𝑒π‘₯ + 𝑣𝑒𝑦) =

203 Γ— 103 π‘€π‘ƒπ‘Ž

1 βˆ’ 0. 2932(0.00019 + 0.293 Γ— βˆ’0.00076) = βˆ’7.257 π‘€π‘ƒπ‘Ž

πœŽπ‘¦ =𝐸

1 βˆ’ 𝑣2(𝑒𝑦 + 𝑣𝑒π‘₯) =

203 Γ— 103 π‘€π‘ƒπ‘Ž

1 βˆ’ 0. 2932(0.00019 + 0.293 Γ— βˆ’0.00076) = βˆ’156.4063 π‘€π‘ƒπ‘Ž

πœπ‘¦π‘₯ = 𝐺𝛾𝑦π‘₯ ==𝐸

2(1 + 𝑣)𝛾𝑦π‘₯ =

203 Γ— 103 π‘€π‘ƒπ‘Ž

2(1 + 0.293)(0.0003) = 23.54988 π‘€π‘ƒπ‘Ž

𝝈1, 𝝈2 =𝝈π‘₯ + πˆπ‘¦

𝟐± √(

𝝈π‘₯ βˆ’ πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ =

βˆ’7.257 βˆ’ 156.4063

2± √(

βˆ’7.257 + 156.4063

𝟐)

𝟐

+ (23.54988)𝟐

= βˆ’80.83165 Β± 78.2047

𝝈1 = βˆ’2.626948 π‘€π‘ƒπ‘Ž , 𝝈2 = βˆ’159.0363511 π‘€π‘ƒπ‘Ž

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|) = 𝑀𝐴𝑋(|βˆ’2.626948 βˆ’ 159.0363511|, |βˆ’159.0363511 + 0|, |0 + 2.626948|)

= 161.6632991 π‘€π‘ƒπ‘Ž

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ =

260 π‘€π‘ƒπ‘Ž

161.6632991 π‘€π‘ƒπ‘Ž= 1.60828

𝜎𝐻 =1

√2√(𝝈π‘₯ βˆ’ πˆπ‘¦)

2+ (πˆπ‘¦ βˆ’ πˆπ‘§)

2+ (πˆπ‘§ βˆ’ 𝝈π‘₯)2 + 6(𝜏π‘₯𝑦

2 + πœπ‘¦π‘§2 + πœπ‘§π‘₯

2)

𝜎𝐻 =1

√2√(βˆ’7.257 βˆ’ 156.4063 )2 + (βˆ’156.4063 βˆ’ 0)2 + (0 βˆ’ 7.257 )2 + 6((23.54988)2 + 0 + 0)

= 165.277651 π‘€π‘ƒπ‘Ž

𝑋𝐻 =πˆπ‘¦

𝜎𝐻=

260 π‘€π‘ƒπ‘Ž

165.277651 π‘€π‘ƒπ‘Ž= 1.5731756

Page 6: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.11 A strain gage rosette, as in Ex. 6.9, is applied to the surface of a component made of 7075-T6 aluminum. Assume that no yielding has occurred, and also that no loading is applied directly to the surface, so that Οƒz = 𝜏xz = 𝜏yz = 0. Strains are measured as follows: ex = 1200 x 10-6 , ey = -650 x 10-6, and e45 = 1900 x 10 -6. What is the safety factor against yielding?

Material Elastic

Modulus E

0.2% yield Strength

Οƒo

Ultimate Strength

Οƒu

Elongation

100𝜺f

Reduction in area %RA

7075-T6 aluminum

GPa (103ksi)

MPa (ksi)

MPa (ksi) % %

71 (10.3)

469 (68)

578 (84) 11 33

Material Poisson ratio

Aluminum 0.345

𝑒45 =𝑒π‘₯ + 𝑒𝑦

2+

𝛾π‘₯𝑦

2 β†’ πœΈπ’™π’š = 2𝑒45 βˆ’ 𝑒π‘₯ βˆ’ 𝑒𝑦 = 2(0.0019) βˆ’ 0.0012 + 0.00065 = 0.00325

𝜎π‘₯ =𝐸

1 βˆ’ 𝑣2(𝑒π‘₯ + 𝑣𝑒𝑦) =

71 Γ— 103 π‘€π‘ƒπ‘Ž

1 βˆ’ 0. 3452(0.0012 + 0.345 Γ— βˆ’0.00065) = 78.638 π‘€π‘ƒπ‘Ž

πœŽπ‘¦ =𝐸

1 βˆ’ 𝑣2(𝑒𝑦 + 𝑣𝑒π‘₯) =

71 Γ— 103 π‘€π‘ƒπ‘Ž

1 βˆ’ 0. 3452(βˆ’0.00065 + 0.345 Γ— 0.0012) = βˆ’19.0198 π‘€π‘ƒπ‘Ž

πœπ‘¦π‘₯ = 𝐺𝛾𝑦π‘₯ ==𝐸

2(1 + 𝑣)𝛾𝑦π‘₯ =

71 Γ— 103 π‘€π‘ƒπ‘Ž

2(1 + 0.345)(0.00325) = 85.780669 π‘€π‘ƒπ‘Ž

𝝈1, 𝝈2 =𝝈π‘₯ + πˆπ‘¦

𝟐± √(

𝝈π‘₯ βˆ’ πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ =

78.638 βˆ’ 19.0198 2

± √(78.638 + 19.0198

𝟐)

𝟐

+ (85.780669)𝟐

= 29.8091 Β± 98.7045

𝝈1 = 129.51363 π‘€π‘ƒπ‘Ž , 𝝈2 = βˆ’68.8954 π‘€π‘ƒπ‘Ž

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|)

= 𝑀𝐴𝑋(|129.51363 + 68.8954 |, |βˆ’68.8954 + 0|, |0 + 129.51363|) = 198.40903 π‘€π‘ƒπ‘Ž

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ =

469 π‘€π‘ƒπ‘Ž

198.40903 π‘€π‘ƒπ‘Ž= 2.3638

𝜎𝐻 =1

√2√(𝝈π‘₯ βˆ’ πˆπ‘¦)

2+ (πˆπ‘¦ βˆ’ πˆπ‘§)

2+ (πˆπ‘§ βˆ’ 𝝈π‘₯)2 + 6(𝜏π‘₯𝑦

2 + πœπ‘¦π‘§2 + πœπ‘§π‘₯

2)

𝜎𝐻 =1

√2√(78.638 + 19.0198 )2 + (βˆ’19.0198 βˆ’ 0)2 + (0 βˆ’ 78.638 )2 + 6(85.7806692 + 0 + 0)

= 173.54087 π‘€π‘ƒπ‘Ž

𝑋𝐻 =πˆπ‘¦

𝜎𝐻=

469 π‘€π‘ƒπ‘Ž

173.54087 π‘€π‘ƒπ‘Ž= 2.7025

Page 7: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.12 A solid circular shaft subjected to pure torsion must be designed to avoid yielding, with a factor X . Find the required diameter as a function of the torque T and the yield strength πˆπ‘œ using (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion. How much do these two sizes differ?

𝜏 =π‘‡π‘Ÿ

𝐽=

𝑇𝑑2

𝐽, 𝐽 =

πœ‹π‘‘4

32, 𝜏 =

16𝑇

πœ‹π‘‘3

For maximum shear stress criterion

𝑋𝑠 =πˆπ‘¦

πœŽπ‘ , ,

πˆπ‘¦

𝑋𝑠= πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|) = 2𝜏

πˆπ‘¦

𝑋𝑠= 2 (

16𝑇

πœ‹π‘‘3 )

𝒅𝒔 = (πŸ‘πŸπ‘Ώπ’”π‘»

π…πœŽπ’š)

πŸπŸ‘β„

the octahedral shear stress criterion

𝜎𝐻 =πˆπ‘¦

𝑋𝐻

=1

√2√(𝝈1 βˆ’ 𝝈2)2 + (𝝈2 βˆ’ 𝝈3)2 + (𝝈3 βˆ’ 𝝈1)2 =

1

√2√(2𝜏)2 + 𝜏2 + 𝜏2 = 𝜏√3

πˆπ‘¦

𝑋𝐻= 𝜏√3 = √3 (

16𝑇

πœ‹π‘‘3)

𝒅𝑯 = (πŸπŸ”βˆšπŸ‘π‘Ώπ‘―

π…πœŽπ’š)

πŸπŸ‘β„

𝒅𝑯

𝒅𝒔=

(πŸπŸ”βˆšπŸ‘π‘Ώπ‘―

π…πœŽπ’š)

πŸπŸ‘β„

(πŸ‘πŸπ‘Ώπ’”π‘»

π…πœŽπ’š)

πŸπŸ‘β„

=πŸπŸ”βˆšπŸ‘

πŸ‘πŸ= 𝟎. πŸ–πŸ”πŸ”πŸ”

𝒅𝑯 = 𝟎. πŸ–πŸ”πŸ”πŸ”π’…π’”

Page 8: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.14 A pipe with closed ends has an outer diameter of 80 mm and a wall thickness of 3.0 mm. It is subjected to an internal pressure of 20MPa and a bending moment of 2.0 kN-m. Determine the safety factor against yielding if the material is 707S-T6 aluminum. Employ (a) me maximum shear stress criterion, and (b) the octahedral shear stress criterion

Page 9: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.19 A circular tube must support an axial load of 60 kN tension and a torque of 1.0 kN-m. It is made of 7075-T6 aluminum and has an inside diameter of 46.0 mm. (a) What is the safety factor against yielding if the wall thickness is 2.5 mm"? (b)For the situation of (a), what adjusted value of thickness with the same inside diameter is required to obtain a safety factor against yielding of 2.0?

𝜎π‘₯ =𝐹

𝐴=

𝐹

2πœ‹π‘Ÿ 𝑑=

60 kN

2πœ‹ (0.046π‘š

2 ) (0.0025π‘š)= 166.0747 π‘€π‘ƒπ‘Ž

𝜏π‘₯𝑦 =π‘‡π‘Ÿ

𝐽, 𝐽 =

πœ‹(π‘‘π‘œ4 βˆ’ 𝑑𝑖

4)

32=

πœ‹(0. 046π‘š4 βˆ’ 0. 0435π‘š4)

32= 8.8 Γ— 10βˆ’8π‘š4

Page 10: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.21 A thin-walled tube with closed ends has an inside radius ri = 50 mm and a wall thickens t = 2 mm. It is .subjected to an internal pressure p = 24MPa and a torque T = 8.0kN m. A safety factor against yielding of 2.2 is required. Select a material from Table 4.2 that would be suitable for this application.

πœŽβ„Ž =π‘π‘Ÿπ‘–

𝑑=

( 24 π‘€π‘ƒπ‘Ž )(0.05 π‘š)

0.002 π‘š= 600 π‘€π‘ƒπ‘Ž, πœŽβ„Ž =

π‘π‘Ÿπ‘–

2𝑑=

( 24 π‘€π‘ƒπ‘Ž )(0.05π‘š)

2(0.002 π‘š)= 300 π‘€π‘ƒπ‘Ž

𝜏π‘₯𝑦 =π‘‡π‘Ÿ

𝐽=

(8 π‘˜π‘π‘š)(0.026π‘š)πœ‹

64(0.0524 βˆ’ 0.0504)

Page 11: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.22 A piece of a ductile metal is confined on two sides by a rigid die. as shown in Fig. P7.22. A uniform compressive stress Οƒz is applied to the surface of the metal. Assume that there is no friction against the die, and also that the material behaves in an elastic, perfectly plastic manner with Uniaxial yield strength Οƒy Derive an equation for the value of Οƒz necessary to cause yielding in terms of Οƒy and the elastic constants of the material. Is the value of Οƒz that causes yielding affected significantly by Poisson's ratio? Employ (a) the maximum shear stress criterion, and (b) the octahedral shear stress criterion, (c) What stress Οƒz is expected to cause yielding if the material is A1SI 1020 steel (as rolled)?

Page 12: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.23 Repeat Prob. 7.22(a). (b), and (c) for the case where the die confines the material on all four sidesβ€”that is, in both the x- and y-directions, as shown in Fig. P7.23.

Page 13: 8 Sheet and Answers Mechanical Behavior Ahmedawad

7.26 A block of AISI 1020 steel (as rolled) is subjected to a stress Οƒz = -l20MPa, along with a shear stress 𝜏xy. as shown in Pig. P7.26. (a) What is the largest value of = 𝜏xy that can be applied if the safety factor against yield must be 2.0? (b)Is there a large effect of Οƒz on the 𝜏xy required to cause yielding? Briefly discus effect of Οƒz as to whether the effect is large, small, or absent, and explain why.

𝝈1, 𝝈2 =𝝈π‘₯+πˆπ‘¦

𝟐± √(

𝝈π‘₯βˆ’πˆπ‘¦

𝟐)

2

+ π‰π’™π’šπŸ = Β±π‰π’™π’š

, 𝝈3 = πˆπ‘§ = βˆ’120 π‘€π‘ƒπ‘Ž

Based on maximum shear stress criterion

πœŽπ‘  = 𝑀𝐴𝑋(|𝝈1 βˆ’ 𝝈2|, |𝝈2 βˆ’ 𝝈3|, |𝝈3 βˆ’ 𝝈1|) = 𝑀𝐴𝑋(|π‰π’™π’š + π‰π’™π’š|, |βˆ’π‰π’™π’š + 120|, |βˆ’120 βˆ’ π‰π’™π’š|)

πœŽπ‘  = 2π‰π’™π’š 𝒐𝒓 = π‰π’™π’š + 𝟏𝟐𝟎

Material Elastic

Modulus E

0.2% yield Strength

Οƒo

Ultimate Strength

Οƒu

Elongation

100𝜺f

Reduction in area %RA

AISI 1020 steel

GPa (103ksi)

MPa (ksi)

MPa (ksi) % %

203 (29.4) 260

(37.7) 441 (64) 36 61

𝑋𝑠 =πˆπ‘¦

πœŽπ‘  , πœŽπ‘  =

πˆπ‘¦

𝑋𝑠=

260

2= 130 π‘€π‘ƒπ‘Ž

𝑖𝑓 πœŽπ‘  = π‰π’™π’š + 𝟏𝟐𝟎, πœŽπ‘  = 130 π‘€π‘ƒπ‘Ž , π‰π’™π’š = 130 βˆ’ 120 = 10 π‘€π‘ƒπ‘Ž

If πœŽπ‘  = 2π‰π’™π’š , , πœŽπ‘  = 130 π‘€π‘ƒπ‘Ž , π‰π’™π’š =130 π‘€π‘ƒπ‘Ž

2= 65 π‘€π‘ƒπ‘Ž

- in the first case π‰π’™π’š = 65 π‘€π‘ƒπ‘Ž the result is vary with Οƒz

Based on octahedral shear stress criterion

𝜎𝐻 =1

√2√(𝝈1 βˆ’ 𝝈2)2 + (𝝈2 βˆ’ 𝝈3)2 + (𝝈3 βˆ’ 𝝈1)2 =

1

√2√(π‰π’™π’š+π‰π’™π’š)

2+ (– π‰π’™π’š + 120)

2+ (βˆ’120 βˆ’ π‰π’™π’š)

2

=1

√2√4π‰π’™π’š

𝟐 + π‰π’™π’šπŸ βˆ’ πŸπŸ’πŸŽπ‰π’™π’š + πŸπŸ’πŸ’πŸŽπŸŽ + πŸπŸ’πŸ’πŸŽπŸŽ + πŸπŸ’πŸŽπ‰π’™π’š + π‰π’™π’š

𝟐 =1

√2√6π‰π’™π’š

𝟐 + 𝟐(𝟏𝟐𝟎𝟐) = √3π‰π’™π’šπŸ + (𝟏𝟐𝟎𝟐)

𝜎𝐻 =πˆπ‘¦

𝑋𝐻=

260

2= √3π‰π’™π’š

𝟐 + (𝟏𝟐𝟎𝟐) , 2602 = 4 (3π‰π’™π’šπŸ + (𝟏𝟐𝟎𝟐)) , π‰π’™π’š = 28.86 π‘€π‘ƒπ‘Ž