8 references - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf ·...

21
TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 10:29–35. Acevedo-Aguilar FJ, Espino-Saldaña AE, León-Rodríguez IL et al., 2006. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Can J of Microbiol 52:809–815 Adriano DC., 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, pp 99. Ahonen-Jonnarth U, Finlay RD., 2001. Effect of elevated nickel and cadmium on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 128–138. Aksu, Z., Sag, Y., Kutsal, T., 1992. The biosorption of Cu (II) by C. Vulgaris and Z. ramigera. Environmental Technology 13, 579-586. Alexander M. 1977. Introduction to Soil Microbiology. New York: Wiley and Sons. Ali, I., Gupta,V.K., 2007. Advances in Water Treatment by Adsorption Technology. Nature Protocols, 1, 2661 – 2667. Al-Saraj M, Abdel-Latif MS, El-Nahal I, Baraka R., 1999. Bioaccumulation of some hazardous metals by sol–gel entrapped microorganisms. J Non-Cryst Solids 248:137–140 American Public Health Association, 1995. Standard methods for the examination of water and wastewater, ninetieth ed. APHA, Washington, D.C. Apte, A.D., Verma, S., Tare, V., Bose, P., 2005. Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. J. Hazard. Mater. 121, 215-222. Arriagada CA, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA., 2009. Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globules. Bioresour Technol 100:6250–6257. 8

Upload: others

Post on 09-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 190

References

Abdalla ME, Abdel-Fattah GM., 2000. Influence of the endomycorrhizal fungus Glomus

mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 10:29–35.

Acevedo-Aguilar FJ, Espino-Saldaña AE, León-Rodríguez IL et al., 2006. Hexavalent chromium

removal in vitro and from industrial wastes, using chromate-resistant strains of

filamentous fungi indigenous to contaminated wastes. Can J of Microbiol 52:809–815

Adriano DC., 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York,

Berlin, Heidelberg, Tokyo, pp 99.

Ahonen-Jonnarth U, Finlay RD., 2001. Effect of elevated nickel and cadmium on growth and

nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil

236: 128–138.

Aksu, Z., Sag, Y., Kutsal, T., 1992. The biosorption of Cu (II) by C. Vulgaris and Z. ramigera.

Environmental Technology 13, 579-586.

Alexander M. 1977. Introduction to Soil Microbiology. New York: Wiley and Sons.

Ali, I., Gupta,V.K., 2007. Advances in Water Treatment by Adsorption Technology. Nature Protocols, 1, 2661 – 2667.

Al-Saraj M, Abdel-Latif MS, El-Nahal I, Baraka R., 1999. Bioaccumulation of some hazardous

metals by sol–gel entrapped microorganisms. J Non-Cryst Solids 248:137–140

American Public Health Association, 1995. Standard methods for the examination of water and

wastewater, ninetieth ed. APHA, Washington, D.C.

Apte, A.D., Verma, S., Tare, V., Bose, P., 2005. Oxidation of Cr(III) in tannery sludge to Cr(VI):

Field observations and theoretical assessment. J. Hazard. Mater. 121, 215-222.

Arriagada CA, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA., 2009. Contribution of the

saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular

mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of

Eucalyptus globules. Bioresour Technol 100:6250–6257.

8

Page 2: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 191

Arriagada CA, Herrera MA, Borie F, Ocampo JA., 2007. Contribution of arbuscular mycorrhizal

and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil

Pollut 182: 383–394.

Arriagada CA, Herrera MA, García-Romera I, Ocampo JA., 2004. Tolerance to Cd of soybean

(Glycine max) and eucalyptus (Eucalyptus globulus) inoculated with arbuscular

mycorrhizal and saprobe fungi. Symbiosis 36:285–301.

Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili

NY, Tabatadze LV, Asanishvili LL, Holman H., 2004. Effect of chromium (VI) action on

Arthrobacter oxydans. Current Microbiol 49:321–326.

Asubel FM, Brent R, Kingston RE, Moore DD, Seidman JA, Smith JG, Struhl K., 1997. Current

protocols in molecular Bacbiology.Unit 24. John Wiley & Sons, New York

Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, R.Naidu 2006.

Chemistry of Chromium in Soils with Emphasis on Tannery Waste Sites. Reviews of

Environmental Contamination and Toxicology 178:53-91

Baral, A., Engelken, R.D., 2002. Chromium-based regulations and greening in metal finishing

industries in the USA. Environ Sci. Policy 5, 121–133.

Barcelo J, Poschenrieder C, Vazquez MD, Gunse B, Vernet JP. Beneficial and toxic effects of

chromium in plants: solution culture, pot and field studies. Studies in Environmental

Science No. 55, Paper Presented at the 5th International Conference on Environmental

Contamination,

Barcelo J, Poschenriender C, Ruano A, Gunse B., 1985. Leaf water potential in Cr(VI) treated

bean plants (Phaseolus vulgaris L). Plant Physiol Suppl 77:163–164.

Barnhart J., 1997. Chromium chemistry and implications for environmental fate and toxicity. J

Soil Contam 6:561–568

Basu M, Bhattacharya S, Paul AK., 1997. Isolation and characterization of chromium-resistant

bacteria from tannery effluents. Bull Environ Contam Toxicol 58:535–542

Baudet, C., Sprott, G.D., Patel, G.B., 1988. Adsorption and nickel uptake in Methanothrix

concilii. Arch. Microbiol. 150, 338–342.

Becquer T, Quantin C, Sicot M, Boudot JP., 2003. Chromium availability in ultramafic soils

from New Caledonia. Sci Total Environ 301: 251– 61.

Page 3: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 192

Beszedits, S., 1988. Chromium removal from industrial wastewaters. In: Nriagu, J.O., Nieboer, E., (Eds.), Chromium in the natural and human environments, John Wiley, New York, pp. 232–263.

Beveridge, T.J., 1989. The role of cellular design in bacterial metal accumulation and mineralization. Annual Review of Microbiology 43, 147–171.

Beveridge, T.J., Forsberg, C.W., Doyle, R.J., 1982. Major sites of metal binding in Bacillus licheniformis walls. Journal of Bacteriology 150(3), 1438–1448.

Biermann B, Linderman RG., 1981. Quantifying vesicular-arbuscular mycorrhizae: proposed

method towards standardization. New Phytol 87:63–67.

Bolan NS., 1991. A critical review of the role of mycorrhizal fungi in the uptake of phosphorus

by plants. Plant Soil 134:189–208.

Bopp LH, Ehrlich HL., 1988. Chromate resistance and reduction in Pseudomonas fluorescens

strain LB 300. Arch Microbiol 150:426–431

Borowitzka MA., 1988 .Algal media and sources of algal cultures. In: Borowitzka MA,

Borowitzka LJ, editors. Micro-algal technology. Cambridge: Cambridge university press;

p. 456–65.

Calvet C, Barea J M, and Pera J., 1992. In vitro interactions between the vesicular-arbuscular

mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic

substrates. Soil Biology and Biochemistry. 24: 775–780.

Camargo FAO, Okeke BC, Bento FM, Frankenberger WT., 2003. In vitro reduction of

hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+.

Appl Microbiol Biotechnol 62:569–573.

Campbell, R., Martin, M.H., 1990. Continuous flow fermentation to purify waste water by

removal of cadmium. Water, Air and Soil Pollution 50, 397-408.

Campos J, Martinez-Pacheco M, Cervantes C., 1995. Hexavalent-chromium reduction by a

chromate-resistant Bacillus sp. strain. Anton Van Leeuwen 68:203–208

Cárdenas-González, J.F., Acosta-Rodríguez, I., 2010. Hexavalent chromium removal by a

Paecilomyces sp. fungal strain isolated from environment. Bioinorg. Chem. Appl. 2010,

1-6.

Carlos Cervantes and Simon Silver, 1992. plasmid chromate resistance and chromate reduction.

Plasmid 27:65-71.

Page 4: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 193

Cary EE, Allaway WH, Olsen OE. Control of chromium concentration in food plants: I

Absorption and translocation of chromium by plants. J Agric Food Chem 1977b;25:300–

4.

Cary EE, Allaway WH, Olsen OE. Control of chromium concentrations in food plants: 2

Chemistry of chromium in soils and its availability to plants. J Agric Food Chem

1977a;25:305–9.

Celaya RJ, Noriega JA, Yeomans JH, Ortega LJ, Ruiz-Manriquez A. Biosorption of Zn by

Thiobacillus ferrooxidans. Bioprocess Eng 2000;22:539–42.

Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-

Guzman, J.C., Moreno-Sanchez, R., 2001. Interactions of chromium with microorganisms

and plants. FEMS Microbiology Reviews 25, 335-347.

Chandra P, Sinha S, Rai UN (1997) Bioremediation of Cr from water and soil by vascular

aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and

water contaminants. ACS Symposium Series, vol. 664. American Chemical Society,

Washington, DC, p 274–82

Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and

growth of host plants under a sand culture experiment. Chemosphere 60:665–671.

Chen XC,Wang YP, Lin Q, Shi JY,Wu WX, Chen YX. Biosorption of copper(II) and zinc(II)

from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces

2005;46:101–7.

Chen, J.M., Hao, O.J., 1998. Microbial chromium (VI) reduction. Crit. Rev. Env. Sci. Tech. 28,

219–225.

Cheung KH, Gu JD (2003) Reduction of chromate (CrO42−) by an enrichment consortium and an

isolate of marine sulphate-reducing bacteria. Chemosphere 52:1523–1529

Cheung KH, Gu JD (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from

marine sediments. World J Microbiol Biotechnol 21:213–219

Cheung KH, Lai HY, Gu JD (2006) Membrane-associated hexavalent chromium reductase of

Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–

862

Page 5: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 194

Cheung, K.H., Gu, Ji-D., 2007. Mechanism of hexavalent chromium detoxification by

microorganisms and bioremediation application potential: A review. Int. Biodeter.

Biodegr. 59, 8-15.

Chun, J.L, Jung, J.H., Kim, Y., Kim, M., Kim, S., B.K. & Y.W., Lim (2007). EzTaxon: a web-

based tool for the identification of prokaryotes based on 16S ribosomal RNA gene

sequences. Int J Sys Evol Microbiol

Clark DP (1994) Chromate reductase activity of Enterobacter aero-genes is induced by nitrite.

FEMS Microbiol Lett 122:233–238

Collins, C.H., Patricia, M.L., 1984. Microbial methods. Butterworth, London, pp 93–106.

Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., Thamaraiselvi, K., 2007. Biosorption of

chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard.

Mater. 146, 270–277.

Coreño-Alonso A, Acevedo-Aguilar FJ, Georgina E et al (2009) Cr(VI) reduction by an

Aspergillus tubingensis strain: role of carboxylic acids and implications for natural

attenuation and biotreatment of Cr(VI) contamination. Chemosphere 76:43-47.

Crist, R.H., Oberholser, K., Shank, N., Nguyen, M., 1981. Nature of bonding between metallic

ions and algal cell walls. Environmental Science and Technology 15, 1212–1217.

Cunningham S D and Berti W R. 2000. Phytoextraction and phytostabilization: technical,

economic, and regulatory considerations of the soil-lead issue. In Phytoremediation of

Contaminated Soils and Water, edited by N Terry and G Ba˜nuelos. Boca Raton, Florida:

CRC Press. pp. 359–376.

Cunningham S D and Berti W R. 2000. Phytoextraction and phytostabilization: technical,

economic, and regulatory considerations of the soil-lead issue. In Phytoremediation of

Contaminated Soils and Water, edited by N Terry and G Ba˜nuelos. Boca Raton, Florida:

CRC Press. pp. 359–376.

Daughney CJ, Fein JB. The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+ and

Cu2+ by Bacillus subtilis and Bacillus licheniformis: a surface complexation model. J

Colloid Interface Sci 1998;198:53–77.

Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase

chromium uptake by sunflower plants: influence on tissue mineral concentration, growth,

and gas exchange. J Plant Nutr 25:2389– 407.

Page 6: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 195

Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS. Mycorrhizal fungi enhance

accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant

Physiol 2001;158:777– 86.

Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus

populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723.

Desjardin, V., Bayard, R., Lejeune, P., Gourdon, R., 2003. Utilisation of supernatants of pure

cultures of Streptomyces thermocarboxydus to reduce chromium toxicity and mobility in

contaminated soils. Water, Air Soil Pollut. 3, 153–160.

Dhillion S S. 1992. Dual inoculation of pretransplant stage Oryyza sativa L. plants with

indigenous vesicular-arbuscular mycorrhizal fungi and uorescent Pseudomonas spp.

Biology and Fertility of Soils 13: 147–151.

Dmitrenko, G.N., Konovalova, V.V., Shum, O.A., 2003. The reduction of Cr(VI) by bacteria of

the genus Pseudomonas. Microbiology 72, 327–330.

Dönmez G, Aksu Z. Removal of chromium(VI) from saline wastewaters by Dunaliella species.

Process Biochem 2002;38:751–62.

Dursun, A.Y., Uslu, G., Tepe, O., Cuci, Y., Ekiz, H.I.A., 2003. A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochemical Engineering Journal 15, 87–92.

Ellis J J. 1979 Preserving fungus strains in sterile water Mycologia 71: 1072-1075

Esposito A, Pagnanelli F, Vegliò F. pH-related equilibria models for biosorption in single metal

systems. Chem Eng Sci 2002;57:307–13.

Figueira, M.M.F., Volesky, B., Ciminelli, V.S.T., 2000. Biosorption of metals in brown seaweed biomass. Water Research 34, 196–204.

Foxall-Vanaken S, Brown JA, Young W, Salmeen I., McClure T, Naiper JR, Olsen H (1986)

Common components of industrial metal-working fluids as sources of carbon for

bacterial growth. Appl Environ Microbiol 51:1165–1169

Fracchia S, Mujica M T, García-Romera I, García-Garrido J M, Martìn J, Ocampo J A, Godeas

A. 1998. Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-

associated saprophytic fungi. Plant and Soil 200: 131–137.

Page 7: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 196

Francisco, J.A., Manuel, A., Felix L., Aurora Lopez-Delgado, 2008. Uphill permeation of Cr(VI)

using Hostarex A327 as ionophore by membrane-solvent extraction processing.

Chemosphere 72, 684-689.

Francisco, R., Alpoim, M.C., Morais, P.V., 2002. Diversity in chromium-resistant and reducing

bacteria in a chromium- contaminated activated sludge. J. Appl. Microbiol. 92, 837–843.

Fredrickson, J.K., Kostandarithes, H.M., Li, S.W., Plymale, A.E., Daly, M.J., 2000. Reduction of

Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ.

Microb. 66, 2006–2011.

Fude, L., Harris, B., Urrutia, M.M., Beveridge, T.J., 1994. Reduction of Cr(VI) by a consortium

of sulfate-reducing bacteria (SRBIII). Appl. Environ. Microbiol. 60, 1525–1531.

Fukuda T, Ishino Y, Ogawa A, Tsutsumi K, Morita H (2008) Cr(VI) reduction from

contaminated soils by Aspergillus SP. N2 and Pencillium SP. N3 isolated from chromium

deposits. J Gen Appl Microbiol 54:295–303

Gadd GM, White C (1993) Microbial treatment of metal pollution, a working biotechnology?

Trends Biotechnol 11:353−359

Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas

aeruginosa A2Chr in industrial effluents. Lett Appl Microbiol 60:1525–1531

Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by

chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol

Biotechnol 58: 416–420

Garbisu C, Alkorta I., Llama M J, Serra JL (1998) Aerobic chromate reduction by Bacillus

subtilis. Biodegradation 9:133–141

García-Romera I, García-Garrido J M, Martín J, Fracchia S, Mujica M T, Godeas A, Ocampo J

A. 1998. Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas

of soybean plants. Symbiosis 24: 235–246.

Gaur A, Mukherji KG, Adholeya A (1998) Influence of inoculation of Capsicum and Polianthes

with various inoculants of VAM fungi in a marginal soil amended with organic matter.

Mycorrhiza 7:307–312.

Gouda, M.K., 2000. Studies on chromate reduction by three Aspergillus species. Fresen.

Environ. Bull. 9, 799–808.

Page 8: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 197

Greenberg, A.D., Connors, J.J., Jenkins, D., Franson, M.A., 1981. Standard methods for the

examination of water and wastewater. 15th ed. American Public Health Association,

Washington, D.C.

Guha, H., Jayachandran, K., Maurrasse, F., 2003. Microbiological reduction of chromium (VI) in

presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in

laboratory column experiments. Chemosphere 52, 175–183.

Gupta VK, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid treated green

alga Oedogonium hatei from aqueous solutions, J Hazard Mater 163: 396 402.

Gupta, A., Kumar, M., Goel, R., 2004. Bioaccumulation properties of nickel, cadmium and

chromium-resistant mutants of pseudomonas aeruginosa NBRI 4014 at alkaline pH.

Biological Trace Element Research 9, 269-277.

Gupta, V.K ., Rastogi, A., Nayak, A., 2010. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science 342, 135-141.

Gupta, V.K., Carrott, P.J.M., Carrott, M.M.L.R., Suhas, 2009. Low cost adsorbents: Growing approach to wastewater treatment - A review. Critical Reviews in Environmental Science and Technology 39, 783-842.

Gupta, V.K., Gupta, M., Sharma, S., 2001a. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminum industry waste. Water Research 35, 1125-1134.

Gupta, V.K., Mohan, D., Sharma, S., Park, K.T., 1999. Removal of Chromium (VI) from Electroplating Industry Wastewater Using Bagasse fly ash - A sugar Industry waste material. The Environmentalist 19, 129-136.

Gupta, V.K., Mohan, D., Sharma, S., Park, K.T., 1999. Removal of Chromium (VI) from

Electroplating Industry Wastewater Using Bagasse fly ash - A sugar Industry waste

material. The Environmentalist 19, 129–136.

Gupta, V.K., Rastogi, A., 2008. Sorption and desorption studies of chromium (VI) from

nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154, 347–354.

Gupta, V.K., Rastogi, A., 2009. Biosorption of hexavalent chromium by raw and acid-treated

green alga Oedogonium hatei from aqueous solutions. J. Hazard. Mater. 163, 396–402.

Page 9: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 198

Gupta, V.K., Rastogi, A., Nayak, A., 2010. Adsorption studies on the removal of hexavalent

chromium from aqueous solution using a low cost fertilizer industry waste material. J.

Colloid Interf. Sci. 342, 135–141.

Gupta, V.K., Srivastava, A.K., Jain, N., 2001b.Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Research 35, 4079-4085.

Gupta,V.K., Srivastava, S.K., Mohan, D., Sharma, S., 1997. Design Parameters for fixed bed reactors of activated carbon developed from fertilizer waste material for the removal of some heavy metal ions. Waste Management 17, 517-522.

Hafez, A.I., El-Manharawy, M.S., Khedr, M.A., 2002. RO membrane removal of unreacted

chromium from spent tanning effluent. A pilotscale study, part 2. Desalination 14, 237-

242.

Hanway JJ, Heidel (1952) Soil analysis method as used in Iowa State College Soil Testing

Laboratory. Iowa Agriculture 57:1–31.

Hintermeyer, B.H., Lacour, N.A., Padilla A.P., Tavani, E.L., 2008. Separation of the chromium

(III) present in a tanning waste water by means of precipitation, reverse osmosis and

Adsorption. Lat. Am. Appl. Res. 38, 63-71.

Huang J W and Cunningham S D. 1996. Lead phytoextraction: Species variation in lead uptake

and traslocation. New Phytologist 134: 75–84.

Huang Y, Chen YJ, Tao C (2002) Uptake and distribution of Cu, Zn, Pb and Cd in maize related

to metals speciation change in rhizosphere. Chin. J. Appl. Ecol. 13:860–862.

Huang, Q., Chen, W., Xu, L., 2005. Adsorption of copper and cadmium by Cu- and Cd-resistant

bacteria and their composites with soil colloids and kaolinite. Geomicrobiology Journal

22, 227–236.

Humphries, A.C., Macaskie, L.E., 2002. Reduction of Cr (VI) by Desulfovibrio vulgaris and

Microbacterium sp. Biotechnol. Lett. 24, 1261–1267.

Ilhan, S., Nourbakhsh, N.M., Kilicarslan, S., Ozdag, H., 2004. Removal of chromium, lead and

copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish

Electronic Journal of Biotechnology 2, 50-57.

Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl

Environ Microbiol 56:2268–2270

Jackson ML (1971) Soil chemical analysis. New Delhi: Prentice Hall.

Page 10: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 199

Jackson ML (1973) Soil chemical analysis. Prentice-Hall, Englewood Cliffs, N.J., USA.

Jakobsen I, Gazey C, Abbott LK (2001) Phosphate transport by communities of arbuscular

mycorrhizal fungi in intact soil cores. New Phytol 149:95–103.

Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Fritz E, Gogala N,

Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and

mycorrhizaes. J Plant Physiol 153:97–104.

Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of

operating parameters under laboratory conditions. J Hazard Mater B118: 113–120.

Jin-Hong Q, Zayed QA, YongLiang Zhu, Mei Yu, Terry N, Qian JH et al (1999)

Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of

ten trace elements by twelve plant species. J Environ Qual 28:1448– 1455.

Joner EJ, Leyval C (1997) Uptake of 109 Cd by roots and hyphae of a Glomus

mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low

concentrations of cadmium. New Phytol 135:353–360.

Kader, J., Sannasi, P., Othman, O., Ismail, l.B.S., Salmijah, 1.S., 2007. Removal of Cr(VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Global Journal of Environmental Research 1, 12–17.

Kalra YP, Maynard DG, Radford FG (1989) Microwave digestion of tree foliage for multi

element analysis. Can J Res 19:981–985.

Kapoor, A., Viraraghavan, T., Roy, C.D., 1999. Removal of heavy metals using the fungus

Aspergillus niger. Bioresour. Technol. 70, 95–104.

Kasan, H.C., Baecker, A.A.W., 1989. Activated sludge treatment of coal-gasification effluent in

a petrochemical plant–II. Metal accumulation by heterotrophic bacteria. Water Science

and Technology. 21(4/5), 297–303.

Katarzyna, C., 2007. Bioaccumulation of Cr(III) ions by blue-green alga Spirulina sp. Part I. A

comparison with biosorption. Am. J. Agril. & Biol. Sci. 2, 218–223.

Katz, S.A., Salem, H., 1994. The Biological and Environmental Chemistryof Chromium. VCH,

New York.

Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizalcolonization improves fruit yield and

water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well watered

and water-stressed conditions. Plant Soil 253:287–292.

Page 11: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 200

Khade SW, Adholeya A (2009) Arbuscular Mycorrhizal Association in Plants Growing on

Metal-Contaminated and Noncontaminated Soils Adjoining Kanpur Tanneries, Uttar

Pradesh, India. Water Air Soil Pollut 202:45–56.

Khan AG (2001) Relationships between chromium bio magnification ratio, accumulation factor,

and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–

423.

Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and

phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–

207.

Khanafari, A., Eshghdoost, S., Mashinchian, A., 2008. Removal of lead and chromium from

aqueous solution by Bacillus circulans biofilm. Iranian Journal of Environmental. Health

Science and Engineering 5 (3), 195-200.

Ko, Chun-H., Chen, Pin-J., Chen, Shu-H., Chang, Fang-C., Lin, Far-C., Chen, Ke-K., 2010.

Extraction of chromium, copper, and arsenic from CCA-treated wood using

biodegradable chelating agents. Bioresour. Technol. 101, 1528-1531.

Kocik K, Ilavsky J. Effect of Sr and Cr on the quantity and quality of the biomass of field crops.

Production and utilization of agricultural and forest biomass for energy: Proceedings of a

seminar held at Zvolen, Slovakia, p. 168– 78.

Kratochvil, D., Pimentel, P., Volesky, B., 1998. Removal of trivalent and hexavalent chromium

by seaweed biosorbent. Environmental Science and Technology 32, 2693–2698.

Krumholz, L.R., Elias, D.A., Suflita, J.M., 2003. Immobilization of cobalt by sulfate-reducing

bacteria in subsurface sediments. Geomicrobiology Journal 20, 61–72.

Kumar, P., Prasad, B., Mishra, I.M., Chand, S., 2008. Decolorization and COD reduction of

dyeing wastewater from a cotton textile mill using thermolysis and coagulation. J.

Hazard. Mater. 153, 635–645.

Laxman, R.S., More, S., 2002. Reduction of hexavalent chromium by Streptomyces griseus.

Miner. Eng. 15, 831–837.

Lee, D.C., Park, C.J., Yang, J.E., Jeong, Y.H., Rhee, H.I., 2000. Screening of hexavalent

chromium biosorbent from marine algae. Appl. Microbiol. Biot. 54, 445–448.

Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular

mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915..

Page 12: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 201

Liu H-L, Chen B-Y, Lan Y-W, Cheng YC. Biosorption of Zn(II) and Cu(II) by the indigenous

Thiobacillus thiooxidans. Chem Eng J 2004;97: 195–201.

Lo, W., Chua, H., Lam, K.H., Bi, S.P., 1999. A comparative investigation on the biosorption of

lead by filamentous fungal biomass. Chemosphere 39 (15), 2723–2736.

Losi ME, Amrhein C, Frankenberger WT (1994) Environmental biochemistry of chromium. Rev

Environ Contam Toxicol 36:91–121

Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3

cytochrome. Appli and Environ Microbiol 60(2):726–728

Lovley, D.R., 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263–290.

Luef, E., Prey, T., and Kubicek, C.P., 1991. Biosorption of zinc by fungal mycelial wastes.

Applied Microbiology and Biotechnology 34, 688-692.

Madrid F, De La Rubia T, and Martinez J. 1996. Effect of Phanerochaete flavido-alba on

aromatic acids in olive oil mill waste waters. Technological Environmental Chemistry 51:

161–168.

Malekzadeh, F., Farazmand, A., Ghafourtian, H., Shahamat, M., Levin, M., Colwell, R.R., 2002.

Uranium accumulation by a bacterium isolated from electroplating effluent. World

Journal of Microbiology and Biotechnology 18, 295-302.

Malik, A., 2004. Metal bioremediation through growing cells. Environ. Int. 30, 261–278.

MameriN, BoudriesN, Addour L, BelhocineD, LouniciH,Grib H, PaussA.Batch zinc biosorption

by a bacterial nonliving Streptomyces rimosus biomass.Water Res 1999;33:1347–54.

Matsunaga, T., Takeyama, H., Nakao, T., Yamazawa, A., 1999. Screening of microalgae for bioremediation of cadmium polluted seawater. Journal of Biotechnology 70, 33–38.

McAllister C B, García-Garrido J M, García-Romera I, Godeas A, and Ocampo J A. 1996.

Interactions between Alternaria alternata, Fusarium equiseti and Glomus mosseae. I.

Endophyte-saprophyte interactions in vitro. Symbiosis 20: 163–174.

McGrath S P, Zhao F J, and Lombi E. 2002. Phytoremediation of metals, metalloids, and

radionuclides. Advances in Agronomy 75: 1–56.

McLean J, Beveridge T J (2001) Chromate reduction by a Pseudomonad isolated from a site

contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084.

Mergeay, M., 1995. Heavy metal resistances in microbial ecosystems. In: Akkermans, A.D.L., van Elsas, J.D., De Bruijn, F.J., (Eds.), Molecular microbial ecology manual, Kluwer Academic Press, Dordrecht, Netherlands, pp. 1–17.

Page 13: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 202

Mergeay, M., 1995. Heavy metal resistances in microbial ecosystems, In: Akkermans, A.D.L.,

van Elsas, J.D., De Bruijn, F.J. (Eds.), Molecular microbial ecology manual, Kluwer

Academic Press, Dordrecht, Netherlands, pp. 1–17.

Middleton, S.S., Latmani, R.B., Mackey, M.R., Ellisman, M.H., Tebo, B.M., Criddle, C.S., 2003.

Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell associated

reduced chromium and inhibits growth. Biotechnol. Bioeng. 83, 627–637.

Mitani, T., Misic, D.M., 1991. Copper accumulation by Penicillium sp. isolated from soil. Soil

Science and Plant Nutrition 37(2), 347-349.

Mondaca MA, Campos V, Moraga R, Zaror CA (2002) Chromate reduction in Serratia

marcescens isolated from tannery effluent and potential application for bioremediation of

chromate pollution. Sci World J 2:972–977

Moral R, Gomez I, Pedreno JN, Mataix J (1996) Absorption of Cr and effects on micronutrient

content in tomato plant (Lycopersicum esculentum M). Agrochimica 40:132–138.

Morales-Barrera L, Cristiani-Urbina E (2008) Hexavalent chromium removal by a Trichoderma

inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut 187:327–

336

Morges, Switzerland; 1993.

Muhammad F, Hasnain S (2004) Microbial conversion of Cr (VI) in to Cr (III) in industrial

effluent. Afr J Biotechnol 3:610-617.

Mullen, M.D., Wolf, D.C., Beveridge, T.J., Bailey, G.W., 1992. Sorption of heavy metals by soil

fungi Aspergillus niger and Mucor rouxii. Soil Biology and Biochemistry 24, 129–135.

Mungasavalli, D.P., Viraraghavan, T., Jin, Yee-C., 2007. Biosorption of chromium from aqueous

solutions by pretreated Aspergillus niger: Batch and column studies. Colloid Surface A

301, 214-223.

Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is

associated with the cytoplasmic membrane of anaerobically grown Shewanella

putrefaciens MR-1. J Appl Microbiol 88:98–106

Nakajima A, Tsuruta T. Competitive biosorption of thorium and uranium by Micrococcus luteus.

J Radioanal Nucl Chem 2004;260:13–8.

Nepple BB, Kessi J, Bachofen R (2002) Chromate reduction by Rhodobacter sphaeroides. J Ind

Microbiol Biotechnol 25:198–203

Page 14: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 203

Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhizal protect an annual grass

from root pathogenic fungi in the field. J Ecol 83:991–1000.

Nikki, L.M., Lisa J.B., 2003. Trivalent chromium alters gene expression in the Mummichog

(Fundulus heteroclitus). Environmental Toxicology and Chemistry 23, 626–631.

Nourbakhsh, N. M., Kilicarslan, S., Ilhan, S., and Ozdag, H., 2002. Biosorption of Cr+6, Pb+2 and

Cu+2 ions in industrial waste water on Bacillus sp. Chemical engineering journal 85, 351-

355.

Nouri, S.M., Nasseri, S., Mazaheri, A.M., Yaghmaian, K., 2005. Chromium bioremoval from

tannery industries effluent by Aspergillus oryzae. Iran J. of Environ. Healt. 2, 273–279.

Ohtake H, Fujii E, Toda K (1990) Reduction of toxic chromate in an industrial effluent by use of

a chromate-reducing strain of Enterobacter cloacae. Environ Technol 11: 663–668

Oleson SR, Cole CV, Watanabe FS, Dean LA (1945) Estimation of available phosphorus in soils

by extraction with sodium carbonate. Cir. US. Dep. Agric. 939.

Onyancha, D., Ward, M., Catherine, N,J., Peter, O., Joseph, C., 2008. Studies of chromium

removal from tannery waste waters by algae biosorbents, Spirogyra condensate and

Rhizoclonium hieroglyphicum. J. Hazard. Mater. 158, 605–614.

Ottabbong E. Chemistry of Cr in some Swedish soil: IV. Influence of CrO2 and KHPO4 on

uptake and translocation of Mn, Cu, Zn, Fe and Al by rye grass (Lolium perenne). Acta

Agric Scand 1989c;39:149–57.

Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of

Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

Pal A, Paul AK (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from

serpentine soil. Microbiol Res 159:347–354

Pal, N., 1997. Reduction of hexavalent chromium to trivalent chromium by Phanerochaete

chrysosporium. In: Alleman, B.C., Leeson, A. (Eds.), In situ and on-site bioremediation,

Vol. 1, Batelle Press, Ohio, pp. 511–517.

Pardo R, Herguedas M, Barrado E, Vega M. Biosorption of cadmium, copper, lead and zinc by

inactive biomass of Pseudomonas putida. Anal Bioanal Chem 2003;376:26–32.

Park D, Yun YS, Park JM (2005) Use of dead fungal biomass for the detoxification of

hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

Page 15: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 204

Park, D., Yun, Y.S., Park, J.M., 2005. Use of dead fungal biomass for the detoxification of

hexavalent chromium: screening and kinetics. Process Biochem. 40, 2559–2565.

Pattanapipitpaisal P, Brown NL, Macaskie LF, 2001. Chromate reduction and 16S rRNA

identification of bacteria isolated from a Cr (VI)-contaminated site. Appl Microbiol

Biotechnol 57:257–261.

Patterson, J.W., 1985. Industrial wastewater treatment technology. Butter Worths, Boston.

Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, et al. (2001)

Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa

(Medicago sativa) L. B Environ Contam Toxicol 66:727– 34.

Perez-Rama, M., Torres, E., Suarez, C., Herrero, C., Abalde, J., 2010. Sorption isotherm studies

of Cd(II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin)

Butch. J. Environ. Manage. 91, 2045-2050.

Philip L, Iyengar L, Venkobachar C (1998) Cr (VI) reduction by Bacillus coagulans isolated

from contaminated soils. J Environ Eng 124:1165–1170

Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining of

mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161.

Pillichshammer, M., Pumple, T., Eller, K., Klima, J., Schinner, F., 1995. Biosorption of

chromium to fungi. Biometals 8, 117–121.

Pinior A, Wyss U, Piche Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further

root colonization by AM fungi through altered root exudation. Can. J. Bot. 77: 891–89.

Plaper, A., Jenko-Brinovec, S., Premzl, A., Kos, J., Raspor, P., 2002. Genotoxicity of trivalent

chromium in bacterial cells. Possible effects on DNA topology. Chemical Research in

Toxicology 15, 943–949.

Pongratz, R., Klaus, G., 1999. Production of methylated mercury, lead, and cadmium by marine

bacteria as a significant natural source for atmospheric heavy metals in Polar Regions.

Chemosphere 39, 89-102.

Prigione, V., Zerlottin, M., Refosco, D., Tigini, V., Anastasi, A., Varese, G.C., 2009. Chromium

removal from a real tanning effluent by autochthonous and allochthonous fungi.

Bioresour. Technol. 100, 2770–2776.

Puranik PR, Paknikar KM. Biosorption of lead and zinc from solutions using Streptoverticillium

cinnamoneum waste biomass. J Biotechnol 1997;55: 113–24.

Page 16: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 205

Quintelas C, Fernandes B, Castro J et al (2008) Biosorption of Cr(VI) by a Bacillus coagulans

biofilm supported on granular activated carbon (GAC). Chem Eng J 136:195–203

Quintelas C, Fonseca B, Silva B et al (2009) Treatment of chromium(VI) solutions in a pilot-

scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Biores

Technol 100:220–226

Rajamani S, Suthantharajan R, Ravindranath E (1995) Treatment of tannery wastewater and

biomass generation using UASB reactor. J Indian Association for Environ Manage 22:

240–243

Ramteke, P.W., Awasthi, S., Srinath, T., Joseph, B., 2010. Efficiency assessment of Common

Effluent Treatment Plant (CETP) treating tannery effluents. Environ. Monit. and Assess.

169, 125–131.

Raspor, P., Batic, M., Jamnik, P., Josic, D.J., Milacic, R., Pas, M., Recek, M., Rezic-Dereani,

V., Skrt, M., 2000. The influence of chromium compounds on yeast physiology. Acta

Microbiologica et Immunologica Hungarica 47, 143-173.

Redon PO, Beguiristain T, Leyval C (2008) Influence of Glomus intraradices on Cd partitioning

in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol

Biochem 40: 2710–2712.

Rege MA, Petersen JN, Johnstone DL, Turick CE, Yonge DR, Apel WA (1997) Bacterial

reduction of hexavalent chromium by Enterobacter cloacae strain H01 grown on sucrose.

Biotechnol Lett 19:691–694

Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can

alleviate droughtinduced nodule senescence in soybean plants. New Phytol 151:493–502.

Sağ Y, Atacoglu I, Kutsal T. Equilibrium parameters for the single- and multicomponent

biosorption of Cr(VI) and Fe(III) ions on R. arrhizus in a packed column.

Hydrometallurgy 2000;55:165–79.

Sahu SK, Meshram P, Pandey BD, Kumar V,. Mankhand TR (2009) Removal of chromium(III)

by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 99:

170-174

Sandau, E., Sandau, P., Pulz, O., 1996. Heavy metal sorption by microalgae. Acta Biotechnol.

16, 227–235.

Page 17: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 206

Sani, R.K., Peyton, B.M., Smith, W.A., Apel, W.A., Petersen, J.N., 2002. Dissimilatory

reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl. Microbiol. Biot.

60, 192–199.

Schmieman, E.A., Yonge, D.R., Rege, M.A., Petersen, J.N., Turick, C.E., Johnstone, D.L., Apel,

W.A., 1998. Comparative kinetics of bacterial reduction of chromium. J Environ. Eng.

124 (5), 449–455.

Schüepp H, Dehn B, and Sticher H. 1987. Interaktionen zwischen VA-mykorrhizen und

Schwermetallbelastungen. Angewandte Botanik 61: 85–95

Shahandeh H, Hossner LR (2000) Enhancement of Cr(III) phytoaccumulation. Int J Phytoremed

2:269– 86.

Shanker AK, Ravichandran V, Pathmanabhan G (2005) Phytoaccumulation of chromium by

some multi purpose tree seedlings. Agrofor Syst 64: 83–87.

Sharma S, Adholeya A (2010) Filamentous saprobe fungi: An important component of

mycorrhizosphere for growth and heavy metal resistance in AM-plants. Mycorrhiza

News, 22(1): 21-25.

Sharma S, Adholeya A (2011a) Detoxification and accumulation of chromium from tannery

effluent and spent chrome effluent by Paecilomyces lilacinus fungi. International

Biodeterioration and Biodegradation, 65: 309-317.

Sharma S, Adholeya A (2011b) Phytoremediation of Crcontaminated soil using Aloe vera and

Chrysopogon zizanioides along with AM fungi and filamentous saprobe fungi: a research

study towards possible practical application. Mycorrhiza News, 22(4):16-20.

Sharma S, Adholeya A (2011c); Green technology of chromium removal from tannery industry

effluent using novel fungal isolate: An alternative for chemical methods. Terragreen,

4(2):8-9.

Shen H, Wang YT (1994) Biological reduction of chromium by E. coli. J Environ Eng 120:560–

570.

Shirdam, R., Khanafari, A., Tabatabaee, A., 2006. Cadmium, Nickel and Vanadium

accumulation by three strains of marine bacteria. Iranian Journal of Biotechnology 4 (3),

180-187.

Singh AK (2001) Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L).

Environ Ecol 19:807–10.

Page 18: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 207

Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern.

(cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf

62:118-127.

Sisti, F., Allegretti, P., Donati, E., 1996. Reduction of dichromate by Thiobacillus ferroxidans.

Biotechnol. Lett. 18, 1477–1480. Underwood, A., 2006. The nature of nutrients.

Newsweek Int. 147 (4), 38–45.

Skeffington RA, Shewry PR, Petersen PJ. Chromium uptake and transport in barley seedlings

Hordeum vulgare. Planta 1976;132:209– 14.

Smith, W.A., Apel, W.A., Petersen, J.N., Peyton, B.M., 2002. Effect of carbon and energy

source on bacterial chromate reduction. Bioremed. J. 6, 205–215.

Smylla A and Mroczkowska-Badner E. 1991. Influence of cadmium ions on Streptomyces L.

strains. Acta Microbiologica Polonica 40: 51–58.

Srinath, T., Verma, T., Ramteke, P.W., Garg, S.K., 2002. Chromium (VI) biosorption and

bioaccumulation by chromate resistant bacteria. Chemosphere 48, 427–435.

Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp.

for removal of chromium from tannery effluent. Biores Technol 97:1167–1173

Srivastava, S.K., Gupta, V.K., Mohan, D., 1996. Parameters for the removal of lead and

chromium from wastewater using activated Carbon developed from Fertilizer waste

material. Environ. Model. Assess. 1, 281–290.

Srivastava, S.K., Gupta, V.K., Mohan, D., 1997. Removal of lead and chromium by activated slag - A blast-furnace waste. Journal of Environmental Engineering (ASCE) 123, 461-468.

Stasinakis, A.S., Thomaidis, N.S., Mamais, D., Lekkas, T.D., 2004. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere 57, 1069–1077.

Stasinakis, A.S., Thomaidis, N.S., Mamais, D., Lekkas, T.D., 2004. Investigation of Cr(VI)

reduction in continuous-flow activated sludge systems. Chemosphere 57, 1069–1077.

Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK. Biosorptive removal and recovery of

cobalt from aqueous systems. Process Biochem 1999;34:239–47. Suzuki M, Misic DM.

5th CHISA Congress, J3-1, Prague; 1973.

Sujatha P, Gupta A (1996) Tannery effluent characteristics and its effects on agriculture. J

Ecotoxicol Environ Monit 6:45–8.

Page 19: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 208

Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-

dependent chromium(VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate

is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

Thacker U, Parikh R, Shouche Y, Datta M (2007) Reduction of chromate by cell-free extract of

Brucella sp. isolated from Cr(VI) contaminated sites Biores Technol 98:81541–811547

Thanikaivelan P, Rao JR, Nair BU, Ramasami T (2005) Recent trends in leather making:

processes, problems, and pathways. Crit Rev Environ Sci Technol 35(1):37–79

Thingstrup I, Kahiluoto H, Jakoben I (2000) Phosphate transport by hyphae of field communities

of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant Soil 221:181–187.

Tobin, J.M., Roux, J.C., 1998. Mucor biosorbent for chromium removal from tanning effluent.

Water Res. 32, 1407–1416.

Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhizal of Berkheya codii and other

Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa.

Mycorrhiza 13:185–190.

United States Environmental Protection Agency (1989) Method 3050, acid digestion of

sediments, sludges and soils, SW 846. Washington, DC.

United States Environmental Protection Agency (1996) Method 3060A, Revision 1: Alkaline

digestion for hexavalent chromium, Washington, DC.

United States Environmental Protection Agency 1998. Method 3015A, Revision 1: Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, SW-846. EPA, Washington, DC.

United States Environmental Protection Agency, 1998. Method 3015A, Revision 1: Microwave

assisted acid digestion of aqueous samples and extracts, SW-846. EPA, Washington,

D.C.

Valls, M., Atrian, S., de Lorenzo, V., Fernandez, L.A. 2000. Engineering a mouse

metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of

heavy metals in soil. Nat. Biotechnol. 18, 661–665.

Van Hullebusch, E.D., Zandvoort, M.H., Lens P.N.L., 2003. Metal immobilization by biofilms:

mechanisms and analytical tools. Reviews in Environmental science and Biotechnology

2, 9–33.

Vecchio, A., Finoli, C., Simine, D.D., Andreoni, V., 1998. Heavy metal biosorption by bacterial

cells. Fresenius. Journal of Analytical Chemistry 361, 338–342.

Page 20: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 209

Vegliò F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy

1997;44:301–16.

Viamajala, S., Peyton, B.M., Sani, R.K., Apel, W.A., Petersen, J.N., 2004. Toxic effects of

chromium (VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1.

Biotechnol. Progr. 20, 87–95.

Vijayaraghavan K, Yun YS. Chemical modification and immobilization of Corynebacterium

glutamicum for biosorption of Reactive black 5 from aqueous solution. Ind Eng Chem

Res 2007a;46:608–17.

Vijayaraghavan, K., Yeoung-Sang, Y., 2008. Bacterial biosorbents and biosorption. Biotechnol.

Adv. 26, 266–291.

Vinita, V.P., Radhanath, P.D., 1992. Biorecovery of zinc from industrial effluent using native

microflora. International Journal of Environmental studies 44, 251-257.

Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular

mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the

vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242.

Voice, T.C., Davis, L.M., Johnson, G.B., Sturgess, L.L. 1988. Evaluation of chromium recovery opportunities in a leather tannery. Hazardous waste and Hazardous materials 5, 343-352.

Volesky, 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59, 203–216.

Volesky, B., May-Phillips, H.A., 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 42, 797–806.

Wainwright M. 1992. The impact of fungi on environmental biogeochemistry. In The Fungal

Community, edited by G C Carrol and D T Wicklow. New York: Marcel Dekker. pp.

601–618.

Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration

method. Soil Science 37:29–38.

Wallace A, Soufi SM, Cha JW, Romney EM (1976) some effects of chromium toxicity on bush

bean plants grown in soil. Plant Soil 44: 471–473.

Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from

Enterobacter cloacae. J Bacteriol 172:1670–1672

Page 21: 8 References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/6280/15/15_chapter 8.pdf · TERI University--Ph.D. Thesis, 2012 190 References Abdalla ME, Abdel-Fattah GM., 2000

TERI University--Ph.D. Thesis, 2012 210

Wang Y, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of

bacteria. Water Res 29:2467–2474

Wang YT, Shen H (1997) Modelling Cr (VI) reduction by pure bacterial cultures. Water Res 31:

727–732

Wang, Y., 2000. Microbial reduction of chromate. In: Lovley, D.R., (Ed.), Environmental

Microbe – Metal Interactions, American Society for Microbiology Press, Washington, pp.

225–235.

Weissenhorn I, Leyval C, and Berthelin J. 1993. Cd-tolerant arbuscular mycorrhizal (AM) fungi

from heavy metal polluted soils. Plant and Soil 157: 247–256.

White C, Gadd GM (1995) Determination of metals and metal fluxes in algae and fungi. Sci

Total Environ 176: 107−115

White, T.J., Bruns, T., Lee, S., Taylor, J.W., 1990. Amplification and direct sequencing of fungal

ribosomal RNA genes for phylogenetics. In: lnnis, M.A.D.H., Gelfand, J.J., Sninsky, J.,

White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications, Academic

Press, San Diego, pp. 315–322.

Wilde, E.W., Benemann, J.R., 1993. Bioremoval of heavy metals by the use of microalgae.

Biotechnol. Adv. 11, 781–812.

Yang J, Volesky B. Modeling the uranium-proton ion exchange in biosorption. Environ Sci

Technol 1999b;33:4079–85.

Zaccheo P, Cocucci M, Cocucci S. Effects of Cr on proton extrusion, potassium uptake and

transmembrane electric potential in maize root segments. Plant Cell Environ 1985;8:721–

6.

Zayed A, Lytle CM, Jin-Hong Q, Terry N, Qian JH (1998) Chromium accumulation,

translocation and chemical speciation in vegetable crops. Planta 206:293–9.

Zetic, V.G., Thomas, V.S., Grba, S., Lutilsky, L., Kozlek, D., 2001. Chromium uptake by

Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. J.

Biosci. 26, 217–223.

Zouboulis, A.I., Loukidou, M.X., Matis, K.A., 2004. Biosorption of toxic metals from aqueous

solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry 39,

909–916.

Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel,

chromium and cadmium pollution. Water Air Soil Pollut 127: 373-378.