8 . references 1) billinton 143 , no .2 , march 1996

16
8. REFERENCES 1) Billinton R. and Satish J.: 'Effect of rotational load shedding on overall power system adequacy indices', lEE Proc-Gener. Transm. Distrib. Vol 143, No .2, March 1996. 2) Wong K.P. and Lau B.S. : 'Algorithm for load shedding operations in reduced generation periods', lEE Proceedings-c. =Vol 139, No.6, November 1992. 1 3) Billinton R. and Wang P. : 'Optimum load shedding technique to reduce the total customer interruption cost in distribution system', lEE Proc- Gener. Transm. Distrib. Vol 147, No.1 , January, 2000. 4) Harrison P. : 'Considerations when planning a Load Shedding Programme', Brown Bovery Rev. 67 1980(10) 593-599 . .... 5) Berthold Vienna R. and Narayan V. : 'Load Shedding and Decoupling Power Systems', Brown Bovery Rev. 6/7 1981 . 6) Relays and Protection Schemes, : 'Load Shedding to Influence Frequency during Overload Condi'tion', BBC, Brown Bovery. 7) Udren E.A.,(Rivised by ; Elmore W.A.) : 'Load Shedding and Frequency Relaying', Protective Relaying Theory and Applications,ABB Power T&D Co. Inc., Relay division, Coral Springs, Florida. 8) Lewis Blackburn J.; 'Stability, Reclosing and Load shedding', Protective Relaying Principles and Applications. 9) Daniel S. Kischen : 'Power System Security', Power Engineering Journal, October,2002. DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORI THM 50

Upload: others

Post on 21-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

8. REFERENCES

1) Billinton R. and Satish J.: 'Effect of rotational load shedding on overall

power system adequacy indices', lEE Proc-Gener. Transm. Distrib. Vol

143, No.2, March 1996.

2) Wong K.P. and Lau B.S. : 'Algorithm for load shedding operations in

reduced generation periods', lEE Proceedings-c. =Vol 139, No.6,

November 1992. 1

3) Billinton R. and Wang P. : 'Optimum load shedding technique to reduce

the total customer interruption cost in distribution system', lEE Proc­

Gener. Transm. Distrib. Vol 147, No.1 , January, 2000.

4) Harrison P. : 'Considerations when planning a Load Shedding

Programme', Brown Bovery Rev. 67 1980(10) 593-599 .

.... 5) Berthold Vienna R. and Narayan V. : 'Load Shedding and Decoupling

Power Systems', Brown Bovery Rev. 6/7 1981 .

6) Relays and Protection Schemes, : 'Load Shedding to Influence

Frequency during Overload Condi'tion', BBC, Brown Bovery.

7) Udren E.A.,(Rivised by ; Elmore W.A.) : 'Load Shedding and

Frequency Relaying', Protective Relaying Theory and Applications,ABB

Power T&D Co. Inc., Relay division, Coral Springs, Florida.

8) Lewis Blackburn J.; 'Stability, Reclosing and Load shedding',

Protective Relaying Principles and Applications.

9) Daniel S. Kischen : 'Power System Security', Power Engineering

Journal, October,2002.

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 50 llG<Nml ~

'

& w. ......... ~~.it-

10) Wehenkel L.: 'Emergency control and its strategies', Web:

http://www.montefiore.ulq.ac.be

11) Intelligent Shedding Scheme for Distribution and Industrial Networks :

ABB Network Partner AG.

12) Long Term Transmission Development Plan, 2002-2011 , CEB

13) Protective Relays Application Guide; GEC ALSTHOM Ltd.

14) Micom P940 Series Relay Catalog, ALSTOM T&D Protection &

Control Ltd, UK. .I

15) SIPROTEC 7RW600 V1 Relay Catalog, SEIMENS AG, Germany.

16) Mathlab I Simulink Help Manuel

17) ECAR Document No.12: 'Automatic Load Shedding practices and

special protection systems', July 1998

18) Grid Code, Operating Code 5 ; 'Demand Control', Commission for

Electricity Regulation , January,2000.

19) NEMMCO's advice to the Reliability Panel, Version 1, July 2001

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 51

0 ~ ..., 3:::

m

~ 0 ..., ~ c z 0 m

;o

..., ~ c ~ < ~ ~ ~

0 z C) ~ i 3:::

Vl

N

Tab

le 4

.1 :

Exi

stin

g L

oad

Sh

edd

ing

Sch

eme

Set

ting

Pan

nipi

ti IS

apug

ask

IMat

huga

IThu

lhiri

ya

(Hz

,s)

ya G

SS

a

nd

a G

SS

m

a G

SS

G

SS

48.7

5 F1

I

IF4

IF4

100

ms

F3

F6

F5

........

........

........

........

........

.......

48.7

5 50

0 m

s --

----

-·--

·--·

-····

······

·····

48.7

5 F2

1

s ....

........

........

........

........

........

......

48.7

5 F4

, ..... ~

-~----

·--f_?

_,f~--

----·-

------

-·····

·-----

------

--48

.75

3s

---·4a

:s··---

------

---·--·

·rF-6

________

_

1 s

I•-

• • 4€3

."5" • •

• • • • • •

• • • • •

• • • • • •

4

s ....

........

........

........

........

........

.......

48.5

10

s

, ____ 4i

f25 __

______

______

____ _

4 s

1•••

•····

······

----

---·

······

·· 4

75

M

AT

1&2

250

ms

RA

T 1 &

2

Rat

hmal

G

alle

I

ana

IKot

ugod

a IK

ollo

nna

1 S

ub-E

G

SS

G

SS

G

SS

w

a G

SS

FB

F6

S b

-F

I Bol

awat

IHab

aran

a u

te G

SS

G

SS

------------

--·---·-----

-----·~-1)

~~--__[~~~

;_:_~~1~~

-~~l~~-·

------------

PU

T 1&

2

<0 . ~ >

"'0

"'0

m

z c - >< ~

-i

D) C" - (t) ~ . ~

U)

• :t> " " m z c - ('") m

en

9o2o APPENDIX 2; MATLAB/Simulink blocks

a) Transmission Line model

(:l unhlled o 1!11!1 £1 (:]Lonk: unhtled/loroHl o 1!1~ 13

fie ~dl Y.- ,SIIT'dobon Forma!

Tgola -----D j ~liiiB .lt~ft i !2

8 TC

c

Uno1

h.

Eie Eli Y.- .SmAaOOr!

Ready 75~

Dialog box for Transmission line model

ode.(5

Block Parameters: linel f3

Three·phase transmission line pi-section (mask) (link) . 1 hi-s block implement-s a lhtee·pha-se PI section line to represent a

three-phase transmis1on line. Thi-s block represents only one PI section.

To Implements more that one PI section. you simply need to connect

copies of this block in series.

Pt!lrameters ----------------------

Frequency used for A L C specification (Hz}:

50

Positive· and zero-sequence resistances (R1 (Ohms/km) RO

lr o.o1273 o.3B64J __ _

Positive· and zero-sequence inductances ( L 1(H/km) LO (H/km)):

jr 0.9337e-3 4.1264e·3J

Positive· end zero· sequence cepacitances ( C1 (F /km) CO(F /km)) :

I [12. 7 4e·9 7. 751 e·9]

Line section length [km) :

J5o

Cancel j I c:::::::ae.!i?.::·· .. ·:::u Apply

DEVELOPMENT OF~ UNDER FREQUENCY LOAD SHEDDING ALGORITHM

A

53

b) Load Model

r:1 untilled • 1!!1~ EJ [':1 ccc019/1 0 MW2 l!!llil £i

file f.dit ~ew ~imulation

Forma! T Qols

file .f,d1t Y:iew ~imulation Forma! Tgol$

D ~ lill «t l J(. ~ ~ 1 D Cii: liil ~

l-wr-\~1 P~r~\1 11\ RLC Lo~d 1

10 MW2

P•r•ll ll l RLC Load 2

1100~

Parall•l RLC Lo ad 3

I 100~

Dialog box for Load model

Block Parameters: 83 MW M\113 13 3-phase parallel RLC load (mask) (link) •

This block implements a three-phase parallel RLC load connected in Y configureation. with the neutral connected to the grcwnd. Each phase consist of one parallel RLC load block connected between the phase input and the ground.

Parameters----Nominal phase-phase voltage (Vrms):

~ Nominal frequency (Hz):

50

Three-phase active power P (W]:

fa3e6 Three-phase inductive reactive power Ql [var)

0

Three-phase capacitive reacive power Qc (var) :

0

OK Cancel Help ~PI=

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM

.....,

A

54 ~ ~~~il

c) Transformer Model

~untitled '" BI!J Ef l:]Link: untilled/210MVA 13.8kV ... 1!!!1~13

file fdtt Y~ew ~imulation Forma!

T.Qols

file fdit l!iew ~IITlUiahon Forma.! T .Qols

li D

A2 I ' ' llr<P TI'----I 811> As2 11

C1 C2

2 10MVA 13.8kV : 230kV transformer ~ I .. J II

T2

= 1 [100~ .a C1

.__________.,~ ~

Dialog box for Transformer model ....

Block. Parameters: lOOOMVA 13. 8k.V : 220k.V transformer 13 Delta I Y linear tranformer (mask) (link)---

Thts block implements a three-phase linear transformer by using three mono-phase finear transformers. Winding one is connected in Delta configuration. Winding two is connected in Y configuration with neutral connected to the ground.

Parameters-- -(Three-phase rated power(VA) Frequency (Hz))

JIIIIIIJI@iiilll

Winding 1 (Delta)· (Ph-Ph Voltage(Vrms) R(pu) X(pu)]:

(1 13.8e3 0.0027 0.08) __ _

Winding 2 (Yg) (Ph-Ph voltage(Vrms) A(pu) X(pu)]:

J [ 220e3 0. 0027 0. 08]

Magnetizing branch: [Rm(pu) Xm(pu]):

J I 500 500 J

OK Cancel .!:!elp

DEVElOPMENT OF N1 UNDER FREQUENCY LOAD SHEDDING ALGORITHM

"::"

ode ,a

55

d) Generator Model

This block implements a 3-phase synchronous machine modeled in the dq

rotor reference frame. Stator windings are connected in wye to an internal

neutral point.

f:l unhtle d • 111!1~ EJ f ile ~dit ~iew .S.Jm!.Jetion Form.& T Qalr

D ~ liiil a . ~ ~ e Ji !2 ·~

I ~o;

mJu_SI

Synchronous M •ch ln e 1

I 100% l A]

Dialog box for Generator model

Bloc k P arame t e rs : S ync hronous Machine l 13 Synchronous Machine (m<!!tk) (link)

Implements a 3-phese synchronous m<!!chine modell~d in the dq rotor reference frame. Stator windings are connected in w.ve to an internal neutral point Press help for inputs <l!lnd outputs descnption

Parameters---Nom. power. L·L volt and freq. [ Pn(VA) Vn(Vrms) ln(Hz) ):

:300E t· 1 :::::00 ')(I

Reactences [ Xd Xd' Xd" Xq Xq" XI) (pu);

fr 1.3o5. o .296. o.252. o.474. o.243. o .18 1

Time constants [ Td' Td" Tqo"] (s)

Jr, .m . o.o53. o., 1

Stator resistance Rs(pu):

J2.8544e-3

Coeff. of inertia. friction factor and pe1rs of poles [ H(s) F(pu) p() ):

lr 3.2 o 321

lnit. cond. ( dw(%) th(deg) ie.ib.ic(pu) phe.phb.phc(deg) Vf[pu) ]:

Jro -74.1899 o .604649 o.6D4649 o.6D4649 -1.929 -121 .929 11 e.

r Simulate saturation

S<!!turetion perl!lmeters [ ild1 .ifd2 •. . (p u) ; vt1 .vt2 •.. . (p.u.) ]:

J [D. 64D4 .D. 71 27 .D. 8441 .0 . 921 4 .D 9956 .1 082.1 . 1 9.1 . 31 6.1 . 457 ;D

r::- Display Vfd which produces nom1nal Vt

OK Cancel tlelp

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 56 00

The first line of this dialog box is where you specify the nominal parameters: • Total three-phase apparent power Pn, in VA

• RMS line-to-line voltage Vn, in Vrms

• Electrical frequency fn, in Hz

Machine's reactance are specified on the second line (all in pu):

• d axis synchronous reactance Xd

• d axis transient reactance Xd'

• d axis sub transient reactance Xd"

• q axis synchronous reactance Xq

• q axis sub transient reactance Xq" I

• Leakage reactance XI

The third line contains the machine's time constants (all ins):

• d axis transient short-circuit time constant Td'

• d axis sub transient short-circuit time constant Td"

• q axis sub transient open-circuit time constant Tqo"

The fourth line is where you enter the stator resistance Rs, in pu and the fifth

line contains the mechanical parameters, but expressed in pu.

Inertia constant H, in seconds, where H is the ratio of energy stored in the

rotor at nominal speed over the nor;'inal power of the machine. Viscous

friction coefficient F, in pu, and Number of pairs of poles p.

The sixth line contains the initial conditions, and the initial line currents and

field voltage are expressed in pu , and the last line is where you specify the

Saturation parameters.

The parameters must be entered in per unit using the nominal field current,

multiplied by the d axis mutual inductance, and nominal rms line-to-line

voltage as base values for the field current, and terminal voltage, respectively.

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 57

Inputs and Outputs

The first input is the mechanical power at the machine's shaft. In the

generating mode, this input can be a positive constant or function or the

output of a prime mover block (see the Hydraulic Turbine and Governor

block}. In the motoring mode, this input is usually a negative constant or

function.

The second input of the block is the field voltage, which can be supplied by a

voltage regulator in the generating mode and is usually a constant in the

motoring mode. I

The first three outputs are the electrical terminals of the stator. The last output

of the block is a vector containing 16 variables. They are, in order:

1-3: Stator currents (flowing out of machine) isa, isb and isc

4-5: q and daxis stator currents (flowing out of machine) iq, id

6-8: Field and damper winding currents (flowing into machine) ifd, ikq and

ikd

9-1 0: q and d axis mutual fluxes

11-12:q and d axis stator voltages vq,vd

13: Rotor electrical angle

14: Rotor speed

15: Electrical power Pe

16: Rotor speed deviation dw

e) Hydraulic Turbine and Governor

...

The Hydraulic Turbine and Governor implement a hydraulic turbine model, a

PID governor system, and a servomotor. The static gain of the governor is

equal to the inverse of the permanent droop Rp in the feedback loop. The

input to this feedback loop can be selected to be the gate position or the

electrical power deviation by setting the droop reference parameter in the

dialog box to one or zero, respectively.

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 58 f7l 1~1

5 ~--------------------~

Pe

The hydraulic turbine is modeled by a nonlinear system with a water starting

time Tw.

/

beta

The PID regulator has a proportional gain Kp, an integral gain Ki and a

derivative gain Kd. The high frequency gain of the PID is limited by a first-.. order low-pass filter with time constant Td.

The gate servomotor is modeled by a second-order system with gain Ka and

time constant Ta. The gate's opening fs limited between gmin and gmax and

its speed is limited between vgmin and vgmax.

The last entry of the dialog box is used to specify the initial output power. This

value, which is used to initialize all the states of the model, allows you to start

the simulation in steady state.

0 regulator '3

output

servo­motor

~ ~ ~peed po~ition limit limit

·rn ·~ ·rn 1 ·CD gate opening

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 59 Ubml

£ ~1---1111 ~~-=

Dialog Box

· Block Parameters: HTG

- Hydraulic Turbine and Governor (rrask) (link) -

lrrplerrents a hydraulic turbine corrbined to a PID governor system.

1st input desired speed (p.u.);

2nd input des1red rrechanic:al power (p.u.);

.3rd input synchronous rrachine's actual speed (p.u., rreasurerrent

; oulput 14 of SM block); 1

: 4th input: synchronous rrachine's actual electrical power (p.u.,

rreasurerrent oulput 15 of SM block);

5th input synchronous rrachine's actual speed deviation with

respect to nominal (p.u., rreasurerrent oulput 16 of SM block),

1stou1put: rrechanical power to be applied to the Synchronous Machine

block's 1st input (p.u.);

2nd oulput: gate opening (p u .).

r Para rrete m

Servo-rrotor [ KaQ Ta(sec) ):

I' I 1! 1 Of3 0.07]

Ga:te opentng limits [gmin,grrax(pu) vgmin,vgmax(puAs) ]:

[ 0.01 o.g7518 -0.1 0.1 ]

Perrranent droop and regulator [ ApQ KpQ KiQ KdQ Td(s) ):

lr 0 .05 1 .163 0.105 0 0.01 )

I Hydraulic turbine (betaQ Tw(sec) ):

' lr 0 2.67 ] -

Droop reference (O...powererror, 1..gate opening):

Ia ! I Initial power (pu) :

....

L@£ __ _ ·~ OK J l Cancel J L _Hel~ .t. ··;r• l· .• J

-~ ~· ,"'

~

J

I

J

J

I

l

I"

~

Inputs and Outputs

The first two inputs are the desired speed and mechanical power. The third

and fourth inputs are the machine's actual speed and electrical power. The

fifth input is the speed deviation. Inputs 2 and 4 can be left unconnected if you

want to use the gate position as input to the feedback loop instead of the

power deviation. All inputs are in pu. The outputs of the block are mechanical

power Pm for the Synchronous Machine block and gate opening (both in pu).

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 60

f) Excitation System

This model provides an excitation system for the synchronous machine and

regulates its terminal voltage in generating mode.

The basic elements that form the Excitation System block are the voltage

regulator and the exciter. The voltage regulator consists of a main regulator

with gain Ka and time constant Ta and a lead-lag compensator with time

constants Tb and T c. A derivate feedback is also provided with gain Kf and

time constant Tf. The limits Efmin and Efmax are imposed to the output of the

voltage regulator. The upper limit can be constant and eq~al to Efmax or .

variable and equal to the rectified stator terminal v_9Jtage Vtf times a

proportional gain Kp. If Kp is set to zero, the former will apply. If Kp is set to a

positive value, the latter will apply. The stator terminal voltage transducer is

represented by a first-order low-pass filter with time constant Tr.

vref

vo!Jb

oq1(u(l )"2. 11(2)"2)

Poorllw 5eqora IA:>Itoge

Dlml>ng kf.tl(lf_. •I)

The exciter is represented by the following transfer function between the

exciter voltage Vfd and the regulator's output ef:

vfd - 1 ef - Ke + sTe + S(Vfd)

Where S(Vfd) is a nonlinear function that represents the magnetic saturation

of the exciter. This saturation function is given by:

S(Vfd) = AeBVfd

The last entry of the dialog box is used to specify the initial values of the

terminal voltage and field voltage. The values used to initialize all states of the

model allow you to start the simulation in steady state.

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 61 f7l l~d~

Dialog Box

I

Block Parameters: EMcitatio n System

Excitation System (JTBsk) (link) ----------..,.,---------.

II'T'plements an IEEE type 1 synchronous JTBchine voltage regulator corrbined to an exciter. This block uses the dq COI'T'ponents of terminal

voltage (Synchronous Machine block, measurement ouputs 9 and 1 0) .

1st 1nput: desired stator terminal vol1age (p .u.); 2nd input: vd COI'T'pOnent of the terminal voltage (p.u.); 3rd input vq COI'T'ponentofthe terminal voltage (p.u.); 4th input: stabilization voltage from user-<Supplied

power e:oystemstabilizer (p.u.);

output. field voltage vfd to be applied to the _ Synchronous Machine block's 2nd input (p.u.).

Parameters - ---

Low-pass filter time constant Tr(s): --------~~----------------------~--~ 20e - 3

Regulator gain and time constant [ KaQ Ta(s) ]: - -- --~~--------------------~~ [ 300, 0 .001 ]

Exc1ter [ KeO Te(s) ]:

[ 1 , 0]

Transient gain reduction [ Tb(s) Tc(s) ]:

[ 0, 0]

Dai'T'plng fii1Br gain and time constant [ KfQ Tf(s) ] ·

[ 0 0 0 1 , 0 .1 ]

Field saturation pararre1Brs [A, 8 ]:

[ 0, 0]

Regulator output limits and gain [ Efmin, EfJTBx (p.u.), KpQ ]: ....;_,;...__ __________ ..., [ -1 1 .5 , 11 .5 , 0 ]

ln1t1al values of terminal voltage and field voltage [ VtO (pu) VfO(pu)] :

-[1 .0 1 .28]

OK Cancel Help-. -J -. -~·.p i:-.- - ~ ~

Inputs and Outputs

The first input of the block is the desired value of the stator terminal voltage.

The following two inputs are the vq and vd components of the terminal

voltage. The fourth input can be used to provide additional stabilization of

power system oscillations. All inputs are in pu. The output of the block is the

field voltage Vf for the Synchronous Machine block (p.u).

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING AlGORITHM 62

g) Generator and Transformer Sub System

l:] G en_ T r ansmdl !I Iii f.3 file ~dit ~iew ,S.imulation Forma! T .Qols

o I ~ Piil ~ I ~ ~. ~ 1: .!2 c 1= ~ •

I Library Browsed

Pill tfrLA A1 1\Z

\WL,' r---+--..---~ ·~t> k2 " I .. ,V't C :

I ~MHJ lutJid

111 14-------------' Y-----t---1Pe

5pttd¢lC)

dw

su Utau~tmut Dtmu

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM

...

< • () I IS UI/U

ode45 M

63 [iJ

9.3. APPENDIX 3 ; Actual Frequency variations

i 1 & I

!

·20

02

01

.01

c. .02

g .03

.QC

.OS

-06 -20

·10

I"

~ ~ ~1

-tO

502

50

498

Frequency Gra ph for 97 MW Generotion loss

10 20

Time (o)

System dfldt vs Time Graph for 97 MW Generation loss ....

N1 11. ~ r11 I 1JI 1 lllll MBfl

l. ~JlW 1\IIIU ...u

ff1 ' I 1l rn\' Jlj¥1 .

I

I I

tO 20

Tlme(o)

DEVELOPMENT OF AN UNDER FREQUENCY lOAD SHEDDING AlGORITHM

;I

30 40

.L

I plY f ~ ~~ ,.,

""( Ulll

~..,. (Y> ~~xrs Major Grichi 1

30 40

50

50

64 ~ ~~1.

Frequency Y5. Time Gnaph for 16G MW Gene radon Lou

N

~

l ...

I I I TTT '-~ f\ I 11 T r ', I ~~~~~~ "-"- Jj T1ITIJ I . \ r- ~~ FFF~

I \ I ,__._.,_

~ I i \ I I I I lA I, / 1 I I t~ \~ IY 'IT T II t--

-- ~~--- • I \ 1/ IT I I

lJ I 1 JI -~- Vj 1 ll il . .J l ll [I Jil1 --1 ;,C:Q -Jj__ _Jj JJJ J 11

·4 ·2 Plot Ar"o.. I 10 12 14

Time (1)

dffdt v• time Gnaph for 16G MW Generlltion lou

06

04 ~. fllnru, 11{')1 I V II"

02 V\ "-"tf""l 'h

IIV tl/1 111

I\ I v

~ 0 JVV~I'\ r•

~

~ · 0 2 r

·0 4 uJ' n;u

"1.11_

·06 w '1 ~ ~ , liN\

·--u

· 4 ·2 10 12 14

Time (1)

DEVELOPMENT OF AN UNDER FREQUENCY LOAD SHEDDING ALGORITHM 65