8-ch7(struktur atom).ppt

Upload: mia-yukimura

Post on 08-Aug-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/22/2019 8-Ch7(struktur atom).ppt

    1/91

    1

    ATOMIC STRUCTURE

    All Bold Numbered Problems

  • 8/22/2019 8-Ch7(struktur atom).ppt

    2/91

    2

    Chapter 7 Outline

    Events leading to Quantum Mechanics

    Newton

    Planck

    Einstein

    Bohr

    de Broglie

    Schrdinger

    Heisenberg

    Using Quantum Numbers

  • 8/22/2019 8-Ch7(struktur atom).ppt

    3/91

    ATOMIC STRUCTURE

    From the ERA of

    Newtonian Physics to

    Quantum Physics

  • 8/22/2019 8-Ch7(struktur atom).ppt

    4/91

    4

    ELECTROMAGNETICRADIATION

  • 8/22/2019 8-Ch7(struktur atom).ppt

    5/91

    5

    Electromagnetic Radiation

    Most subatomic particles behave asPARTICLES and obey the physics ofwaves.

    Define properties of waves

    Figure 7.1 and7.2.

    Wavelength, Node

    Amplitude

  • 8/22/2019 8-Ch7(struktur atom).ppt

    6/91

    6

    Figures 7.1

    Electromagnetic Frequency

  • 8/22/2019 8-Ch7(struktur atom).ppt

    7/917

    Electromagnetic Radiation

    wavelength Visible light

    Wavelength ()Ultraviolet radiation

    Amplitude

    Node

    There are

    noLIMITS

    to ...there are

    an .

  • 8/22/2019 8-Ch7(struktur atom).ppt

    8/918

    Electromagnetic Radiation

    Node in a

    standing wave

    wavelengt

    hVisible light

    wavelengt

    hUltaviolet radiation

    Amplitude

    Nod

    e

  • 8/22/2019 8-Ch7(struktur atom).ppt

    9/919

    Electromagnetic Radiation

    Waves have a frequency

    Use the Greek letter nu, , for frequency,and units are cycles per sec

    All radiation: = cwhere c = velocity of light = 3.00x108 m/sec

    Long wavelength ----> small frequency

    Short wavelength ----> high frequency

  • 8/22/2019 8-Ch7(struktur atom).ppt

    10/9110

    increasing

    wavelength

    increasing

    frequency

    Electromagnetic Radiation

    Long wavelength -----> small frequency

    Short wavelength -----> high frequency

    See Figure 7.3

  • 8/22/2019 8-Ch7(struktur atom).ppt

    11/9111

    Figure 7.3

    Long wavelength -----> small frequency

    Short wavelength -----> high frequency

  • 8/22/2019 8-Ch7(struktur atom).ppt

    12/9112

    Electromagnetic Radiation

    Red light has = 700. nm.Calculate the frequency.

    Freq =3.00 x 10

    8m/s

    7.00 x 10-7

    m= 4.29 x 1014 sec-1

    700nm 1 x 10-9 m

    1 nm= 7.00 x 10-7 m

    Examples

  • 8/22/2019 8-Ch7(struktur atom).ppt

    13/9113

    StandingWaves

    See Figure 7.4

    1st vibration

    2nd vibration

    1st vibration = 2nd vibration = 2()3rd vibration = 3()

  • 8/22/2019 8-Ch7(struktur atom).ppt

    14/9114

    Newtonian Physics Breakdown-Quantization of Energy-

    Max Planck

    (1858-1947)Solved the

    ultraviolet

    catastrophe

    It was believed that like wave theory,

    energy was also continuous.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    15/91

    15

    Figure 7.5

    Objects can gain or

    lose energy by

    absorbing or

    emitting radiant

    energy in QUANTA.

    Intensity should

    Increase withDecreasing . As youadd more energy,

    atoms should vibrate

    with a higher energy,

    in a continuous

    fashion.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    16/91

    16

    Energy of a vibrating system (electro-magnetic radiation) is proportional to

    frequency.

    Ep = h h = Plancks constant = 6.6262 x 10-34Js

    Quantization of Energy

    We now MUST abandon the idea that

    Energy acts as a continuous wave!

  • 8/22/2019 8-Ch7(struktur atom).ppt

    17/91

    17

    From Planck on to Einstein

  • 8/22/2019 8-Ch7(struktur atom).ppt

    18/91

    18

    Photoelectric Effect

    A. Einstein (1879-1955) Experiment demonstrates the particle

    nature of light. (Figure 7.6)

    Classical theory said that E of ejectedelectron should increase with increasein light intensitynot observed!

    No e- observed until light of a certain

    minimum E is used & Number of e- ejected depends on light

    intensity.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    19/91

    19

    Photoelectric Effect

    Experimental observations says that light

    consists of particles called PHOTONShaving discrete energy.

    It takes a high energy particle to bump

    into an atom to knock its electron out,

    hence the use of a mv

    2

    term. It would take some minimum energy i.e.

    critical energy to knock that electron

    away from its atom.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    20/91

    20

    Energy of Radiation

    PROBLEM: Calculate the energy of1.00 mole of photons of red light.

    = 700. nm ( c = ) = 4.29 x 1014 sec-1Ep = h

    = (6.63 x 10-34Js)(4.29 x 1014 sec-1)

    = 2.85 x 10-19 J/photon

    Notice Einstein's use of Planck's formula.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    21/91

    21

    Energy of Radiation

    Energy of 1.00 mol of photons of red light.Ep = h

    = (6.63 x 10-34Js)(4.29 x 1014 sec-1)

    = 2.85 x 10-19 J per photon

    E per mol =

    (2.85 x 10-19 J/ph)(6.02 x 1023 ph/mol)

    = 171.6 kJ/mol

    This is in the range of energies that can break

    bonds.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    22/91

    22

    A minimum frequency is required to cause any current

    flow. Above that frequency, the current is related tothe intensity of the light used. The ejected electrons(since we are talking about collisions between photonsand electrons) also have more kinetic energy when

    higher frequencies are used.

    EK = 1/2 meve2 = Einput - Eminimum

    Einstein finds:

    Ep = h = 1/2 meve2, evidence that photons have bothwave/particle properties

    Photoelectric Effect

  • 8/22/2019 8-Ch7(struktur atom).ppt

    23/91

    23

    Light is used to eject an electronfrom a metal. Calculate the velocity

    of the ejected electron if the photon

    used to eject the electron has awavelength of 2.35 x 10 -7 m and the

    minimum frequency required to

    eject an electron is 8.45 x 10 14 s-1.

    Photoelectric Effect

    Step by step!!

  • 8/22/2019 8-Ch7(struktur atom).ppt

    24/91

    24

    The Final Crack in Classical,Newtonian Physics

    MONUMENTAL Edifice Planck---Energy is NOT Continuous like

    waves

    Einstein---Energy comes in packets or isQuantized and energy also has some

    wave and particle behavior

    Bohr---Applies Quantized idea to atomicparticles.the H1Atom to explain..

  • 8/22/2019 8-Ch7(struktur atom).ppt

    25/91

    25

    Atomic Line Spectra andNiels Bohr

    Bohrs greatest contribution toscience was BUILDING a

    SIMPLE MODEL of the ATOM.

    It was based on an

    understanding of the LINESPECTRA of excited atomsand its relationship toquantized energy.

    Niels Bohr

    (1885-1962)

  • 8/22/2019 8-Ch7(struktur atom).ppt

    26/91

    26

    Line Spectraof Excited Atoms

    Excited atoms emit light of only certainwavelengths (Planck).

    The wavelengths of emitted light depend on the

    element.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    27/91

    27

    Figure 7.7

  • 8/22/2019 8-Ch7(struktur atom).ppt

    28/91

    28

    Figure 7.8

  • 8/22/2019 8-Ch7(struktur atom).ppt

    29/91

    29

    Figure 7.9

  • 8/22/2019 8-Ch7(struktur atom).ppt

    30/91

    30

    Visible lines in H atom spectrum arecalled the BALMER series.

    High E

    Short High

    Low E

    Long Low

    Line Spectra

    of Excited Atoms

  • 8/22/2019 8-Ch7(struktur atom).ppt

    31/91

    31

    Shells or Levels!!

    Why??

  • 8/22/2019 8-Ch7(struktur atom).ppt

    32/91

    32

    Figure7.12

  • 8/22/2019 8-Ch7(struktur atom).ppt

    33/91

    33

    Excited Atoms Emit Light

  • 8/22/2019 8-Ch7(struktur atom).ppt

    34/91

    34

    Atomic Spectra and Bohr

    1. Any orbit (like a wave-see slide 3) should bepossible and so should any energy.

    2. But a charged particle would always be accelerating

    from the nucleus (vector velocity is alwayschanging) and since it is moving in an electric fieldwould continuously emit energy.

    End result should be destruction since the energymentioned in the previous step is finite!

    +

    Electron

    Orbit

    One view of atomic structure in early 20thcentury was that an electron (e-) traveled aboutthe nucleus in an orbit.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    35/91

    35

    Atomic Spectra and Bohr

    Bohr said classical (Newtonian) view is wrong!!!.

    Need a new theory now called QUANTUM orWAVE MECHANICS.

    e- can only exist in certain discrete orbits called stationary states.

    e- is restricted to QUANTIZED energy states.

    Energy of state, En = - C/n2where n = quantum no. = 1, 2, 3, 4, ....

    this describes the potential energy of an electron

  • 8/22/2019 8-Ch7(struktur atom).ppt

    36/91

    36

    Atomic Spectra and Bohr

    Only orbits where n = integralnumbers are permitted.

    Radius of allowed orbitals, Rn,Rn= n

    2 R0 with Ro = 0.0529 nm

    Note the same equations comefrom modern wave mechanics

    approach. Results can be used to explain

    atomic spectra.

    Energy of quantized state, En = - C/n2

  • 8/22/2019 8-Ch7(struktur atom).ppt

    37/91

    37

    Atomic Spectra and Bohr

    If e-s are in quantized energystates, then DE of states canhave only certain values. This

    explain sharp line spectra.

    n = 1

    n = 2E = -C ( 1/2

    2)

    E = -C ( 1/12)

  • 8/22/2019 8-Ch7(struktur atom).ppt

    38/91

    38

    Atomic

    Spectraand Bohr

    Calculate DE for e-

    falling from high energylevel (n = 2) to low energy level (n = 1).

    DE = Efinal - Einitial = - C [ (1/1)2 - (1/2)2 ]DE = - (3/4) CNote that the process is exothermic!

    n=1

    n=2E= -C(1/22)

    E= -C(1/12)

    E

    N

    E

    RG

    Y

  • 8/22/2019 8-Ch7(struktur atom).ppt

    39/91

    39

    AtomicSpectra

    and Bohr

    DE = - (3/4)CC has been found from experiment and isproportional to RH, the Rydberg constant.

    RHhc = C = 1312 kJ/mole. of emitted light = (3/4)C = 2.47 x 1015 sec-1and = c/ = 121.6 nmThis is exactly in agreement with experiment!

    n=1

    n=2E= -C(1/22)

    E= -C(1/12)

    E

    N

    E

    RG

    Y

  • 8/22/2019 8-Ch7(struktur atom).ppt

    40/91

    40

    DE = Efinal - Einitial = - RHhc [ (1/nfinal2) - (1/ninitial2)]

    A photon of light with frequency 8.02 x 1013 s-1

    is emitted from a hydrogen atom when it de-

    excites from the n = 8 level to the n = ? level.

    Calculate the final quantum number state of

    the electron.

    Line Spectraof Excited Atoms

  • 8/22/2019 8-Ch7(struktur atom).ppt

    41/91

    41

    Atomic Line Spectra andNiels Bohr

    Bohrs theory was a greataccomplishment.

    Recd Nobel Prize, 1922

    Problems with theory theory only successful for H and

    only 1e- systems He+, Li2+.

    introduced quantum idea

    artificially. However, Bohrs model does not

    explain many e-systems.So, wego on to QUANTUM orWAVEMECHANICS

    Niels Bohr

    (1885-1962)

  • 8/22/2019 8-Ch7(struktur atom).ppt

    42/91

    Quantum or Wave Mechanics

    de Broglie (1924) proposed

    that all moving objects

    have wave properties.

    For light: E = mc2

    E = h = hc / Therefore, mc = h / and for particles

    (mass)(velocity) = h / ,the wave-nature of matter.

    L. de Broglie

    (1892-1987)

    = hmv

  • 8/22/2019 8-Ch7(struktur atom).ppt

    43/91

    43

    Quantum or Wave

    MechanicsBaseball (115 g) at 100 mph

    = 1.3 x 10-32 cme- with velocity =1.9 x 108 cm/sec

    = 0.388 nmExperimental proofof wave properties

    of electrons

  • 8/22/2019 8-Ch7(struktur atom).ppt

    44/91

    44

    Schrdinger appliedidea of e- behaving asa wave to the problemof electrons in atoms.

    He developed the

    WAVE EQUATION.E. Schrdinger1887-1961

    Quantum or Wave Mechanics

  • 8/22/2019 8-Ch7(struktur atom).ppt

    45/91

    45

    Solution of the waveequation give a set ofmathematicalexpressions called

    WAVE FUNCTIONS, .Each describes anallowed energy state ofan e-.

    Quantization isintroduced naturally.

    E. Schrodinger1887-1961

    Quantum or Wave Mechanics

  • 8/22/2019 8-Ch7(struktur atom).ppt

    46/91

    46

    WAVE FUNCTIONS, is a function of distance and two angles.Each corresponds to an ORBITAL the region of

    space within which an electron is found.

    does NOT describe the exact location of theelectron.

    2 is proportional to the probability of finding an e- ata given point.

    U t i t P i i l

  • 8/22/2019 8-Ch7(struktur atom).ppt

    47/91

    47

    Uncertainty Principle

    Problem of defining natureof electrons in atomssolved by W. Heisenberg.

    Cannot simultaneously

    define the position andmomentum (= mv) of anelectron.

    We define e-energy exactly

    but accept limitation thatwe do not know exactposition.

    W. Heisenberg

    1901-1976

    QUANTUM NUMBERS

  • 8/22/2019 8-Ch7(struktur atom).ppt

    48/91

    48

    QUANTUM NUMBERS

    Each orbital is a function of 3 quantumnumbers:

    n, l, and ml

    Electrons are arranged in shells(levels)and subshells(sublevels).

    n --> shell

    l --> subshell

    ml

    --> designates an orbital within a subshell

  • 8/22/2019 8-Ch7(struktur atom).ppt

    49/91

    49

    Symbol Values Description

    n (major) 1, 2, 3, .. Orbital sizeand energy

    where E = - RH

    hc(1/n2)

    l(angular) 0, 1, 2, .. n-1 Orbital shape

    or type

    (subshell)

    ml(magnetic) - l..0..+ l Orbital

    orientation

    # of orbitals in subshell = 2 l+ 1

    QUANTUM NUMBERS

  • 8/22/2019 8-Ch7(struktur atom).ppt

    50/91

    50

    All 4 Quantum Numbers

    Principle quantum number (n)

    Azimuthal quantum number (l)

    Magnetic quantum number (m)

    Spin quantum number (s)

    Atomic Orbitals the result of

  • 8/22/2019 8-Ch7(struktur atom).ppt

    51/91

    51

    Atomic Orbitals the result ofQuantum Mechanics Calculations

    Shells and Subshells

  • 8/22/2019 8-Ch7(struktur atom).ppt

    52/91

    52

    Shells and Subshells

    When n = 1, thenl

    = 0 and ml= 0 .Therefore, if n = 1, there is 1 type of

    subshell and that subshell has a

    single orbital.(m

    lhas a single value ---> 1 orbital)

    This subshell is labeled s

    Each shell has 1 orbital labeled s, and it

    is SPHERICALin shape.

    1 O bit l

  • 8/22/2019 8-Ch7(struktur atom).ppt

    53/91

    53

    1s Orbital

    2s Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    54/91

    54

    2s Orbital

    3s Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    55/91

    55

    3s Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    56/91

    56

    Atomic Orbitals the result of

  • 8/22/2019 8-Ch7(struktur atom).ppt

    57/91

    57

    Atomic Orbitals the result ofQuantum Mechanics Calculations

    p Orbitals

  • 8/22/2019 8-Ch7(struktur atom).ppt

    58/91

    58

    p OrbitalsWhen n = 2, then l= 0 and 1

    Therefore, in the n = 2 shellthere are 2 types oforbitals 2 subshells

    Forl= 0 ml= 0

    this is anssubshellForl= 1 m

    l= -1, 0, +1

    this is a p subshellwith 3 orbitals

    planar node

    Typical p orbital

    See Figure 7.16

    When l= 1, there is

    a

    PLANAR NODE

    thruthe nucleus.

  • 8/22/2019 8-Ch7(struktur atom).ppt

    59/91

    59

    O bit l

  • 8/22/2019 8-Ch7(struktur atom).ppt

    60/91

    60

    p Orbitals

    A p orbital

    The three porbitals lie 90o

    apart in space

    2p Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    61/91

    61

    2px Orbital

    2p Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    62/91

    62

    2py Orbital

    2 O bit l

  • 8/22/2019 8-Ch7(struktur atom).ppt

    63/91

    63

    2pz Orbital

    3p Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    64/91

    64

    3px Orbital

    3p Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    65/91

    65

    3py Orbital

    3p Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    66/91

    66

    3pz Orbital

    d Orbitals

  • 8/22/2019 8-Ch7(struktur atom).ppt

    67/91

    67

    d OrbitalsWhen n = 3, what are the values ofl?

    l= 0, 1, 2and so there are 3 subshells in the shell.

    Forl= 0, ml= 0

    ---> s subshell with a single orbitalForl= 1, m

    l= -1, 0, +1

    ---> p subshell with 3 orbitals

    Forl= 2, ml= -2, -1, 0, +1, +2

    ---> d subshell with 5 orbitals

  • 8/22/2019 8-Ch7(struktur atom).ppt

    68/91

    68

    d Orbitals

    s orbitals have no planarnode (l= 0) and so arespherical.

    p orbitals have l= 1, andhave 1 planar node,and so are dumbbellshaped.

    This means d orbitals,( l= 2) have2 planar nodes

    typical d orbital

    planar node

    planar node

    See Figure 7.16

    3d Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    69/91

    69

    3dxy Orbital

    3d O bit l

  • 8/22/2019 8-Ch7(struktur atom).ppt

    70/91

    70

    3dxz Orbital

    3d Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    71/91

    71

    3dyz Orbital

    3d 2 Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    72/91

    72

    3dz Orbital

    3d 2 2 Orbital

  • 8/22/2019 8-Ch7(struktur atom).ppt

    73/91

    73

    3dx - y Orbital

    f Orbitals

  • 8/22/2019 8-Ch7(struktur atom).ppt

    74/91

    74

    When n = 4, l= 0, 1, 2, 3 so there are 4subshells in the shell.

    Forl= 0, ml= 0

    ---> s subshell with single orbital

    Forl= 1, ml= -1, 0, +1

    ---> p subshell with 3 orbitals

    Forl= 2, ml

    = -2, -1, 0, +1, +2

    ---> d subshell with 5 orbitalsForl= 3, m

    l= -3, -2, -1, 0, +1, +2, +3

    ---> fsubshell with 7 orbitals

    Orbitals and Quantum Numbers

  • 8/22/2019 8-Ch7(struktur atom).ppt

    75/91

    75

    Orbitals and Quantum Numbers

    n l ml

    1 0 0 1s

    2 0 0 2s

    2 1 1

    2 1 02 1 -1

    2p

    Orbitals and Quantum Numbers

  • 8/22/2019 8-Ch7(struktur atom).ppt

    76/91

    76

    Orbitals and Quantum Numbers

    n l ml

    3 0 0 3s

    3 1 1

    3 1 0

    3 1 -1

    3p

    3d

    3 2 2

    3 2 1

    3 2 03 2 -1

    3 2 -2

    Sample Problems

  • 8/22/2019 8-Ch7(struktur atom).ppt

    77/91

    77

    Sample Problems

    1. Is it possible to have a d orbital in level 1?

    2. Is it possible to have a 6s subshell?

    3. How many orbitals are in a 7s sublevel?

    4. How many orbitals are possible if n = 3?

    5. What type of orbital has the quantumnumbers

    a) n = 5, l= 2, ml= 1

    b) n = 3, l= 2, ml=-1c) n = 6, l= 3, m

    l= -3

    No

    Yes

    One

    9

    5d

    3d6f

    Practice Problems

  • 8/22/2019 8-Ch7(struktur atom).ppt

    78/91

    78

    1. Calculate the wavelength of a photon

    having an energy of 2.58 x 10-18

    J.2. In the hydrogen atom, which transition,

    3 --> 2 or 2 --> 1, has the longerwavelength?

    3. Calculate the wavelength of anobject (mass = 545 lbs) with a speed of45 miles/hour.

    4. Give all possible sets of quantum

    numbers for 4p, 3d, and 5s.

    5. How many orbitals are in the

    a. the third level? b. l= 3 sublevel?

    Practice Problems Answers

  • 8/22/2019 8-Ch7(struktur atom).ppt

    79/91

    79

    Practice Problems Answers

    1. 7.71 x 10-8 2. 3 --> 2

    3. 1.3 x 10-37 m 5. a) 9 b) 7

    4. 4p nl

    ml4 1 1

    4 1 0

    4 1 -1

    Problem 4 continued on next slide.

    Practice Problems Answers

  • 8/22/2019 8-Ch7(struktur atom).ppt

    80/91

    80

    Practice Problems Answers

    3d n l ml

    3 2 2

    3 2 1

    3 2 0

    3 2 -1

    3 2 -2

    5s 5 0 0

    Sample Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    81/91

    81

    Sample Problem1. Calculate the frequency of light having a

    wavelength of 1 x 10-7

    m.

    = c

    1 x 10-7m . = 3.00 x 108 m/s = 3 x 1015/s

    Sample Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    82/91

    82

    Sample Problem2. Calculate the wavelength of light having a

    frequency of 1.5 x 108

    hz.

    = c.1.5 x 108 /s = 3.00 x 108 m/s

    = 2.0 m

    Sample Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    83/91

    83

    Sample Problem3. Calculate the frequency of light having a

    wavelength of 1 x 103

    nm.

    = c

    1 x 10-6m . = 3.00 x 108 m/s = 3 x 1014/s

    Practice Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    84/91

    84

    Practice Problem1. Calculate the energy of a photon having a

    frequency of 3 x 1015

    /s.

    Ep

    = hEp = 6.63 x 10

    -34 Js 3 x 1015/s

    = 2 x 10-18 J

    Practice Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    85/91

    85

    Practice Problem2. Calculate the frequency of light having an

    energy of 2.0 x 105

    J/mole.

    Ep = h

    3.3 x 10-19

    J = 6.63 x 10-34

    Js

    = 5.0 x 1014 /s

    2.0 X 105

    J molemole 6.02 x 1023 photon

    Practice Problem

  • 8/22/2019 8-Ch7(struktur atom).ppt

    86/91

    86

    Practice Problem3. Calculate the energy of a photon with a

    wavelength of 575 nm. = c

    5.75 x 10-7m = 3.00 x 108 m/s = 5.22 x 1014/s

    Ep = hEp = 6.63 x 10-34 Js 5.22 x 1014/s

    = 3.46 x 10-19 J

    Calculate the energy of the photon:

  • 8/22/2019 8-Ch7(struktur atom).ppt

    87/91

    87

    gy p

    Photon wavelength = 2.35 x 10 -7 m

    = c

    2.35 x 10-7m = 3.00 x 108 m/s = 1.28 x 1015/s

    Ep = hEp = 6.63 x 10-34 Js 1.28 x 1015/s

    = 8.49 x 10-19 J

    Calculate the min. energy to eject an electron:

  • 8/22/2019 8-Ch7(struktur atom).ppt

    88/91

    88

    gy j

    Min. = 8.45 x 10 14 s-1.

    Ep = hEp = 6.63 x 10

    -34 Js 8.45 x 1014/s

    = 5.60 x 10-19 J

    Calculate the extra energy of the electron:

  • 8/22/2019 8-Ch7(struktur atom).ppt

    89/91

    89

    gy

    8.49 x 10-19 J - 5.60 x 10-19 J = 2.89 x 10-19 J

    Calculate the velocity of the electron:

    E = 1/2 m v2

    2.89 x 10-19 J = (1/2) 9.11 x 10-31 kg v2

    = 7.96 x 105 m/s

    Calculate the energy of the photon:

  • 8/22/2019 8-Ch7(struktur atom).ppt

    90/91

    90

    C cu e e e e gy o e p o o

    Ep = h

    = 3.20 x 104 J = 32.0 kJ

    5.32 X 10-20

    J 6.02 x 1023

    photonphoton mole

    Ep = 6.63 x 10-34 Js 8.02 x 1013/s

    Calculate the level number :

  • 8/22/2019 8-Ch7(struktur atom).ppt

    91/91

    Ep = hDE = -C [(1/n)2 - (1/n)2]-32. kJ = -1312 kJ [(1/n)2 - (1/8)2]

    n = 5