7/18/2020 chapter 7

21
7/18/2020 Chapter 7. INTRODUCTION TO TRIGNOMETRY A project of: www.notespk.com Contact or Suggest Us: [email protected] MATHEMATICS Science Group 10 th

Upload: others

Post on 29-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 7/18/2020 Chapter 7

7/18/2020 Chapter 7. INTRODUCTION TO

TRIGNOMETRY

A project of: www.notespk.com Contact or Suggest Us: [email protected]

MATHEMATICS Science Group 10th

Page 2: 7/18/2020 Chapter 7

Contents Exercise 7.1 .............................................................. 1

Exercise 7.2 .............................................................. 4

Exercise 7.3 .............................................................. 9

Exercise 7.4 ............................................................ 13

Exercise 7.5 ............................................................ 16

Page 3: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

1 | P a g e

Radian:

The angle subtended at the Centre of the circle by an

arc, whose length is equal to the radius of the circle is

called one radian.

Relationship between radians and degree:

Things to know:

So,

1 π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› = 2πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› = 3600

2πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› = 3600 π‘‘π‘œ 𝑔𝑒𝑑 1 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑦 2πœ‹

1 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› =3600

2πœ‹

1 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› =1800

πœ‹

To get 1 degree divide by 360 2πœ‹

360π‘Ÿπ‘Žπ‘‘ = 10

10 =πœ‹

180π‘Ÿπ‘Žπ‘‘

Remember that:

1 radian=180

3.1416= 57.295795π‘œ β‰ˆ 57π‘œ17β€²45β€²β€²

1π‘œ =3.14516

180= 0.0175 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

Exercise 7.1 Q.1: Locate the following angles:

i. 300

ii. 221

2

0

iii. 1350

iv. βˆ’2250

v. βˆ’600

vi. βˆ’1200

vii. βˆ’1500

Page 4: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

2 | P a g e

viii. βˆ’2250

Q.2:

Express the following sexagesiml measures of angles

in decimal form.

i. 450 30β€² Solution:

= 45π‘œ +300

600

= 45π‘œ + 0.50

= 45.5π‘œ

ii. 60030β€²30β€²β€² Solution:

= 600 +30π‘œ

600+

30π‘œ

60π‘œ Γ— 60π‘œ

= 60π‘œ + 0.5π‘œ + 0.0080

= 60.5080

iii. 125π‘œ22β€²50β€²β€²

Solution:

= 125π‘œ +22π‘œ

60π‘œ+

50π‘œ

60π‘œ Γ— 60π‘œ

= 1250 + 0.3670 + 0.0139π‘œ

= 125.38080

Q.3: Express the following in π·π‘œπ‘€β€²π‘†β€²β€²:

i. 47.360 Solution:

= 470 + 0.360

= 470 + (0.36 Γ— 60)β€²

= 470 + 21β€² + (0.6 Γ— 60)β€²β€²

= 470 + 21β€² + 36β€²β€²

= 47021β€²36β€²β€²

ii. 125.45π‘œ Solution:

= 1250 + 0.450

= 1250 + (0.45 Γ— 60)β€²

= 2250 + 27β€²

225027β€²0β€²β€²

iii. 225.75π‘œ Solution:

= 225π‘œ + π‘œ. 75π‘œ

= 125π‘œ + (0.75 Γ— 60)β€²

= 1250 + 45β€² = 225π‘œ45β€²0β€²β€²

iv. βˆ’22.50

Solution:

= βˆ’[220 + 0.50]

= βˆ’[220 + (0.5 Γ— 60)β€²] = βˆ’[22π‘œ + 30β€²]

= βˆ’22030β€²

v. βˆ’67.580 Solution:

βˆ’(67π‘œ + 0.580)

= βˆ’[670 + (0.58 Γ— 60)β€²]

= βˆ’[670 + 34β€² + 0.8β€²]

= [670 + 34β€² + (0.8 Γ— 60)β€²β€²]

= βˆ’[670 + 34β€² + 48β€²β€²] = βˆ’67π‘œ34β€²48β€²β€²

vi. 315.180 = 315π‘œ + 0.18π‘œ

= 3150 + (0.18 Γ— 60)β€² = 315 + 10.8β€²

= 315π‘œ + 10β€² + (0.8 Γ— 60)β€²β€²

= 3150 + 10β€² + 48β€²β€² = 315π‘œ10β€²48β€²β€²

Q.4: Express the following angles into radians.

i. 300

= 30πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 30πœ‹

30 Γ— 6π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=πœ‹

6 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

ii. 600

= 60 Γ—πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

= 60πœ‹

60 Γ— 3π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=πœ‹

3π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

iii. 135π‘œ Solution:

2250

= 225 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 45 Γ— 3πœ‹

45 Γ— 4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=3πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

iv. 2250

Solution:225π‘œ

= 225 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 45 Γ— 5πœ‹

45 Γ— 4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=5πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

v. βˆ’1500 Solution:

βˆ’1500

Page 5: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

3 | P a g e

= βˆ’150 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= βˆ’5 Γ— 30πœ‹

30 Γ— 6π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=βˆ’5πœ‹

6π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

vi. βˆ’2250

Solution:

= βˆ’225 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= βˆ’5 Γ— 45πœ‹

45 Γ— 4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=βˆ’5πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

vii. 3000 Solution:

= 300 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 60 Γ— 5πœ‹

60 Γ— 3π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=5πœ‹

3π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

viii. 3150 Solution:

= 315 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 45 Γ— 7πœ‹

45 Γ— 4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=7πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

Q.5: Convert each of the following to degrees.

i. 3πœ‹

4

Solution: 3πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=3πœ‹

4 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=3πœ‹

4

180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

= 3 Γ— 45 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 135π‘œ

ii. 5πœ‹

6

Solution: 5πœ‹

6π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=5πœ‹

6 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=5πœ‹

6

180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

= 5 Γ— 30 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 150π‘œ

iii. 7πœ‹

8

Solution: 7πœ‹

8π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=7πœ‹

8 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

= 7 Γ— 180

8 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=1260

8 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 157.5π‘œ

iv. 13πœ‹

16

Solution: 13πœ‹

16π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

=13πœ‹

16 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

= 13 Γ— 180

16 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=2340

16 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 146.25π‘œ

v. 3 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  Solution:

3 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 3 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=540

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 171.887π‘œ

vi. 4.5

Solution:

4.5 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= 4.5 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=810

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 257.8310

vii. βˆ’7πœ‹

8

Solution:

βˆ’7πœ‹

8 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= βˆ’7πœ‹

8 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=βˆ’1260

8 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 157.5π‘œ

viii. βˆ’13

16πœ‹

Solution:

βˆ’13πœ‹

16 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ 

= βˆ’13πœ‹

16 180

πœ‹ π‘‘π‘’π‘”π‘Ÿπ‘’π‘’

=βˆ’2340

16 π‘‘π‘’π‘”π‘Ÿπ‘’π‘’π‘ 

= 146.25π‘œ

Page 6: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

4 | P a g e

Sector of a Circle:

i. Arc of a circle:

A part of the circumference of a circle is called

an arc.

ii. Segment of a circle:

A part of the circular region bounded by an arc

and a chord is called segment of a circle:

iii. Sector of a circle:

A part of a circular region bounded by the two

radii and an arc is called sector of the circle.

Area of the Circular sector:

Consider a circle of radius and an arc of length

units, subtended an angle πœƒ π‘Žπ‘‘ 𝑂.

Exercise 7.2 Question No.1 Find 𝜽 π’˜π’‰π’†π’ ∢

i. 𝑰 = πŸπ’„π’Ž, 𝒓 = πŸ‘. πŸ“π’„π’Ž Solution: using rule

𝐼 = π‘Ÿπœƒ

2 = 3.5πœƒ 2

3.5= πœƒ

πœƒ = 0.57 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

ii. 𝑰 = πŸ’. πŸ“π’Ž , 𝒓 = 𝟐. πŸ“ π’Ž Solution: π’–π’”π’Šπ’π’ˆ 𝒓𝒖𝒍𝒆

𝐼 = π‘Ÿπœƒ

𝐼

π‘Ÿ= πœƒ

4.5

2.5= πœƒ

πœƒ = 1.8π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Question No.2 find 𝑰 π’˜π’‰π’†π’

i. 𝜽 = πŸπŸ–πŸŽπŸŽ, 𝒓 = πŸ’. πŸ—π’„π’Ž

Solution:

𝐴𝑠 πœƒ π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 𝑖𝑛 π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘ π‘œ

πœƒ = 1800

= 180 πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

= πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Using rule 𝐼 = π‘Ÿπœƒ

= 4.9π‘π‘š Γ— πœ‹

= 15.4π‘π‘š

ii. 𝜽 = πŸ”πŸŽπ’ πŸ‘πŸŽβ€², 𝒓 = πŸπŸ“π’Žπ’Ž

Solution:

𝐴𝑠 πœƒ π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 𝑖𝑛 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›, π‘ π‘œ

πœƒ = 60π‘œ 30β€²

= 600 +300

60π‘œ

= 60.5π‘œ

= 60.5 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

πœƒ = 1.056 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

πœƒ = 1.056 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

𝑒𝑠𝑖𝑛𝑔 π‘Ÿπ‘’π‘™π‘’ 𝐼 = π‘Ÿπœƒ

= 15π‘šπ‘š Γ— 1.056

= 15.84π‘šπ‘š

Questions No.3 find π‘Ÿ, π‘€β„Žπ‘’π‘›

i. 𝐼 = 4π‘π‘š, πœƒ =1

4 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Solution:

π‘ˆπ‘ π‘–π‘›π‘” 𝑅𝑒𝑙𝑒 𝐼 = π‘Ÿ πœƒ

4π‘π‘š = π‘Ÿ1

4

4π‘π‘š Γ— 4 = π‘Ÿ

π‘Ÿ = 16π‘π‘š

ii. 𝐼 = 52π‘π‘š , πœƒ = 45π‘œ

Solution:𝐴𝑠 πœƒ π‘ β„Žπ‘œπ‘’π‘™π‘‘ 𝑏𝑒 𝑖𝑛 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘ .

πœƒ = 45π‘œ

= 45πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Page 7: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

5 | P a g e

=πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Now using rule 𝐼 = π‘Ÿπœƒ

52π‘π‘š = π‘Ÿπœ‹

4

52π‘π‘š Γ— 4

πœ‹= π‘Ÿ

π‘Ÿ = 66.21 π‘π‘š

Question No.4 In a circle of radius 12cm, find the

length of an arc which subtends a

Central angle 𝜽 = 𝟏. πŸ“ π’“π’‚π’…π’Šπ’‚π’

Solution:

π‘…π‘Žπ‘‘π‘–π‘’π‘  = π‘Ÿ = 12π‘π‘š

π΄π‘Ÿπ‘ π‘™π‘’π‘›π‘”π‘‘β„Ž =?

πΆπ‘’π‘›π‘‘π‘Ÿπ‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ = πœƒ = 1.5 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Using rule 𝐼 = π‘Ÿπœƒ

𝐼 = 12π‘š Γ— 1.5

𝐼 = 18π‘š

Question No.5 In a circle of radius 10m, find the

distance travelled by a point moving on this circle if

the point makes 3.5 revolution.

Solution:

π‘…π‘Žπ‘‘π‘–π‘’π‘  = π‘Ÿ = 10π‘š

π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  = 3.5

𝐴𝑛𝑔𝑙𝑒 π‘œπ‘“ π‘œπ‘›π‘’ π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› = 2πœ‹

𝐴𝑛𝑔𝑙𝑒 π‘œπ‘“ 3.5 π‘Ÿπ‘’π‘£π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› = πœƒ

= 3.5 Γ— 2 πœ‹π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

πœƒ = 7πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Distance travelled= 𝐼 =?

π‘ˆπ‘ π‘–π‘›π‘” π‘Ÿπ‘’π‘™π‘’ 𝐼 = π‘Ÿπœƒ

𝐼 = 10π‘š Γ— 7πœ‹

𝐼 = 220π‘š

Question No.6 What is the circular measure of the

angle between the hands of the watch at 3 O’ clock?

Solution:

At 3 𝑂′ clock the minute hand will be at 12 and hour

hand will be at 3 i.e the angle between the hands of

watch will be one quarter of the central angle of full

circle.

𝑖. 𝑒 =1

4 π‘œπ‘“ 360π‘œ

1

4Γ— 360π‘œ

= 90π‘œ

= 90πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=πœ‹

2π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Question No.7 What is the length of arc APB?

Solution:

From the figure we see that

π‘…π‘Žπ‘‘π‘–π‘’π‘  = π‘Ÿ = 8π‘π‘š

πΆπ‘’π‘›π‘‘π‘Ÿπ‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ = πœƒ

= 900

=πœ‹

2π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Arc length 𝐼 =?

By rule 𝐼 = π‘Ÿπœƒ

𝐼 = 8π‘π‘š Γ—πœ‹

2

𝐼 = 4π‘π‘š Γ— πœ‹

𝐼 = 12.57 π‘π‘š

So, length of arc APB is 12.57 cm

Question No.8 In a circle 12cm, how long an arc

subtended a central angle of πŸ–πŸ’πŸŽ?

Solution:

Radius = π‘Ÿ = 12π‘π‘š

π΄π‘Ÿπ‘ π‘™π‘’π‘›π‘”π‘‘β„Ž = 𝐼 =?

πΆπ‘’π‘›π‘‘π‘Ÿπ‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ = πœƒ = 840

= 84πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

= 1.466 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Page 8: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

6 | P a g e

Now by rule 𝐼 = π‘Ÿπœƒ

12π‘π‘š Γ— 1.466

= πŸπŸ•. πŸ” π’„π’Ž

Question No.9 Find the area of sector OPR

(a)

Radius= π‘Ÿ = 6π‘π‘š

Central angle = πœƒ = 60π‘œ

= 60πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=πœ‹

3π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Area of sector =?

As area of sector =1

2π‘Ÿ2πœƒ

=1

2Γ— (6π‘π‘š)2 Γ—

πœ‹

3

=1

6Γ— 36π‘π‘š2 Γ— πœ‹

= 6πœ‹ π‘π‘š2

= 18.85π‘π‘š2

(b)

Radius = π‘Ÿ = 20π‘π‘š

πΆπ‘’π‘›π‘‘π‘Ÿπ‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ = πœƒ = 450

= 45πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=πœ‹

4π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Area of sector =?

Area of Sector =1

2π‘Ÿ2πœƒ

=1

2(20π‘π‘š)2 Γ—

πœ‹

4

=400π‘π‘š2

8Γ— πœ‹

= 50πœ‹π‘π‘š2

= 157.1 π‘π‘š2

Question No.10 Find area of sector inside a central

angle of 𝟐𝟎𝟎 π’Šπ’ 𝒂 π’„π’Šπ’“π’„π’π’† 𝒐𝒇 π’“π’‚π’…π’Šπ’–π’” πŸ•π’Ž.

Solution:

Area of sector =?

π‘…π‘Žπ‘‘π‘–π‘’π‘  = π‘Ÿ = 7π‘š

Central angle= πœƒ = 20π‘œ

= 20πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=πœ‹

9π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =1

2π‘Ÿ2πœƒ

=1

2Γ— (7π‘š)2 Γ—

πœ‹

9

=49πœ‹

18π‘š2

= 8.55π‘š2

Question No.11 Sehar is making skirt. Each panel of

this skirt is of the shape shown shaded in the

diagram. How much material (cloth) is required for

each panel?

Solution:

Central angle = πœƒ = 800

= 80 πœ‹

180π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

=4πœ‹

9 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Radius of bigger sector = 𝑅 = (65 + 10)π‘π‘š

𝑅 = 66π‘π‘š

Radius of smaller sector= π‘Ÿ = 10π‘π‘š

π‘†β„Žπ‘Žπ‘‘π‘’π‘‘ π‘Žπ‘Ÿπ‘’π‘Ž =?

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘”π‘”π‘’π‘Ÿ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =1

2𝑅2πœƒ

=1

2Γ— (66π‘π‘š)2 Γ—

4πœ‹

9

Page 9: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

7 | P a g e

= 4356π‘π‘š2 Γ—2πœ‹

9

968πœ‹π‘π‘š2

Area of smaller π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =1

2 π‘Ÿ2πœƒ

=1

2π‘Ÿ2πœƒ

=1

2(10π‘π‘š)2 Γ—

4πœ‹

9

=200

9πœ‹π‘π‘š2

Shaded area 968πœ‹ βˆ’200

9πœ‹

=8712πœ‹ βˆ’ 200πœ‹

9

=8512

9πœ‹π‘π‘š2

= 2971.25π‘π‘š2 Question No.12 Find the area of a sector with central

angle of 𝝅

πŸ“ radian in a circle of radius 10cm.

Solution:

Area of sector =?

πΆπ‘’π‘›π‘‘π‘Ÿπ‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ = πœƒ =πœ‹

5 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

π‘…π‘Žπ‘‘π‘–π‘’π‘  = π‘Ÿ = 10π‘π‘š

Area of sector =1

2π‘Ÿ2πœƒ

=1

2(10π‘π‘š)2 Γ—

πœ‹

5

=1

10Γ— 100π‘π‘š2 Γ— πœ‹

=1

10Γ— 100π‘π‘š2 Γ— πœ‹

= 10πœ‹π‘π‘š2

= 31.43 π‘π‘š2 Question No.13 The area of sector with central angle

𝜽 in circle of radius 2m is 10 square meter. Find

𝜽 π’Šπ’ π’“π’‚π’…π’Šπ’–π’”

Solution:

Area of sector = 10π‘š2

Radius= π‘Ÿ = 2π‘š

Central angle= πœƒ =?

As π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ =1

2π‘Ÿ2πœƒ

10π‘š2 =1

2(2π‘š)2πœƒ

10π‘š2 =1

2(4π‘š2)πœƒ

10π‘š2 = 20π‘š2

πœƒ =10π‘š2

2π‘š2

πœƒ = 5 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

Angle in Standard position:

A general angle is said to be in standard position if its

vertex is at the origin and its initial side is directed

along the positive direction of the π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 of a

rectangular coordinates system.

The position of the terminal side of a angle in

standard position remains the same if measure of an

angle is increased or decreased by a multiple of 2πœ‹

Some Standard angles are shown in the following

figures.

The Quadrants and Quadrantal Angles:

The π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 and 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 divides the plane in four

regions. Called quadrants, When they intersect each

other at right angle. The point of intersection is called

origin and is denoted by O.

Angle between π‘‚π‘œand 90π‘œ are in the first

quadrant.

Angle between 90π‘œand 180π‘œ are in the

second quadrant.

Angle between 180π‘œand 270π‘œ are in the

third quadrant.

Angle between 270π‘œand 360π‘œ are in the

fourth quadrant.

An angle in standard position is said to lies in

that quadrant if its terminal side lies in that

quadrant. Angles 𝛼, 𝛽, 𝛾 π‘Žπ‘›π‘‘ πœƒ lie in

𝐼, 𝐼𝐼 , 𝐼𝐼𝐼 π‘Žπ‘›π‘‘ 𝐼𝑉 quadrant respectively.

Quadrantal Angles:

If the terminal side of an angle in standard position

falls on π‘₯ βˆ’ π‘Žπ‘₯𝑖𝑠 or 𝑦 βˆ’ π‘Žπ‘₯𝑖𝑠 then it is called a

Page 10: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

8 | P a g e

quadrantal angles. The quadrantal angles are shown

as below.’

Trigonometric Ratios and their reciprocals with the

help of a unit circle:

There are six fundamental trigonometric ratios called

sine, cosine, tangent, cotangent ,secant and cosecant.

To define these functions we uses circular approaches

which involves the unit circle.

Let πœƒ be real number, which represents the radian

measure of an angle in standard position. Let 𝑃(π‘₯, 𝑦)

Be any point on the unit circle lying on terminal side

of πœƒ as shown in figure.

We define sine of πœƒ, π‘€π‘Ÿπ‘–π‘‘π‘‘π‘’π‘› π‘Žπ‘  π‘ π‘–π‘›πœƒ π‘Žπ‘›π‘‘ π‘π‘œπ‘ π‘–π‘›π‘’ π‘œπ‘“

πœƒ written as

π‘ π‘–π‘›πœƒ =𝐸𝑃

𝑂𝑃=

𝑦

1= π‘ π‘–π‘›πœƒ = 𝑦

π‘π‘œπ‘ πœƒ =𝑂𝐸

𝑂𝑃=

π‘₯

1 π‘π‘œπ‘ πœƒ = π‘₯

𝑖. 𝑒 cos πœƒ π‘Žπ‘›π‘‘ π‘ π‘–π‘›πœƒ π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘₯ βˆ’coordinates and

𝑦 βˆ’coordinates of the point P on the unit circle. The

equations π‘₯ = π‘π‘œπ‘ πœƒ and 𝑦 = π‘ π‘–π‘›πœƒ are called circular

or

Trigonometric functions.

The remaining trigonometric functions tangent,

cotangent, sector and cosecant will be denoted by

π‘‘π‘Žπ‘›πœƒ , π‘π‘œπ‘‘πœƒ, π‘ π‘’π‘πœƒ, π‘Žπ‘›π‘‘ π‘π‘œπ‘ π‘’π‘πœƒ π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘Ÿπ‘’π‘Žπ‘™ π‘Žπ‘›π‘”π‘™π‘’ πœƒ.

π‘‡π‘Žπ‘›πœƒ =𝐸𝑃

𝑂𝐸=

𝑦

π‘₯ π‘‘π‘Žπ‘›πœƒ =

𝑦

π‘₯(π‘₯ β‰  0)

𝐴𝑠 𝑦 = π‘ π‘–π‘›πœƒ π‘Žπ‘›π‘‘ π‘₯ = π‘π‘œπ‘ πœƒ π‘‘π‘Žπ‘›πœƒ =π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ

π‘π‘œπ‘‘πœƒ =π‘₯

𝑦(𝑦 β‰  0) π‘π‘œπ‘‘πœƒ =

π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ

π‘ π‘’π‘πœƒ =1

π‘₯(π‘₯ β‰  0) π‘Žπ‘›π‘‘ π‘π‘œπ‘ π‘’π‘πœƒ =

1

𝑦(𝑦 β‰  0)

π‘ π‘’π‘πœƒ =1

π‘π‘œπ‘ πœƒ π‘Žπ‘›π‘‘ π‘π‘œπ‘ π‘’π‘πœƒ =

1

π‘ π‘–π‘›πœƒ

Reciprocal Identities:

Sin πœƒ =1

π‘π‘œπ‘ π‘’π‘πœƒ π‘œπ‘Ÿ π‘π‘œπ‘ π‘’π‘πœƒ =

1

sin πœƒ

π‘π‘œπ‘ πœƒ =1

π‘ π‘’π‘πœƒ π‘œπ‘Ÿ π‘ π‘’π‘πœƒ =

1

π‘π‘œπ‘ πœƒ

π‘‘π‘Žπ‘›πœƒ =1

π‘π‘œπ‘‘πœƒ π‘œπ‘Ÿ π‘π‘œπ‘‘πœƒ =

1

π‘‘π‘Žπ‘›πœƒ

Signs of trigonometric ratios in different Quadrants:

Allied angles:

sin(βˆ’πœƒ) = βˆ’π‘ π‘–π‘›πœƒ cos(βˆ’πœƒ) = π‘π‘œπ‘ πœƒ

sin(90 βˆ’ πœƒ) = π‘π‘œπ‘ πœƒ cos(90 βˆ’ πœƒ) = π‘ π‘–π‘›πœƒ

sin(90 + πœƒ) = π‘π‘œπ‘ πœƒ sin(90 + πœƒ) = βˆ’π‘ π‘–π‘›πœƒ

sin(180 βˆ’ πœƒ) = π‘ π‘–π‘›πœƒ cos(180 βˆ’ πœƒ) = βˆ’π‘π‘œπ‘ πœƒ

sin(180 + πœƒ) = βˆ’π‘ π‘–π‘›πœƒ cos(180 + πœƒ) = βˆ’π‘π‘œπ‘ πœƒ

Page 11: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

9 | P a g e

Exercise 7.3 Question No.1 Locate each of the following angles in

standard position using a protector or fair free hand

guess, also find a positive and a negative angle

conterminal with each given angle:

Solution:

i. 170π‘œ Positive coterminal angle = 360π‘œ + 170π‘œ

= 530π‘œ

Negative coterminal angle = βˆ’1900

ii. 7800

Positive coterminal angle 7800 +2[360π‘œ] =

600

Negative coterminal angle = βˆ’3000

iii. βˆ’1000

Positive coterminal angle 2600

Negative coterminal angle = βˆ’360π‘œ βˆ’ 100π‘œ

= βˆ’4600

iv. βˆ’500π‘œ

Positive coterminal angle = 2200

Negative coterminal angle= βˆ’140π‘œ

Question No.2 Identity closest quadrantile angles

between which the following angles lie.

i. 1560

Answer: 900 π‘Žπ‘›π‘‘ 1800

ii. 3180

Answer: 2700 π‘Žπ‘›π‘‘ 3600

iii. 5720

Answer: 5400 π‘Žπ‘›π‘‘ 6300

iv. βˆ’3300 Answer: 0π‘œ π‘Žπ‘›π‘‘ 90π‘œ

Question No.3 Write the closest quadrantal angles

between which the angles lie. Write your answer in

radian measure.

i. πœ‹

3

Answer : π‘œ π‘Žπ‘›π‘‘πœ‹

2

ii. 3πœ‹

4

Answer: πœ‹

2 π‘Žπ‘›π‘‘ πœ‹

iii. βˆ’πœ‹

2

Answer: 0 π‘Žπ‘›π‘‘ βˆ’πœ‹

2

iv. βˆ’3πœ‹

4

Answer : βˆ’πœ‹

2 π‘Žπ‘›π‘‘ βˆ’ πœ‹

Question No.4 in which quadrant 𝜽 lies, when

i. π‘ π‘–π‘›πœƒ > 0, π‘‘π‘Žπ‘› < 0 Answer 𝐼𝐼 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

ii. π‘π‘œπ‘ πœƒ < 0, π‘ π‘–π‘›πœƒ < 0 Answer: 𝐼𝐼𝐼 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

iii. π‘ π‘’π‘πœƒ > 0, π‘ π‘–π‘›πœƒ < 0

Answer : 𝐼𝑉 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

iv. π‘π‘œπœƒ < 0 , π‘‘π‘Žπ‘›πœƒ < 0 Answer:𝐼𝐼 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

v. π‘π‘œπ‘ π‘’π‘πœƒ > 0, π‘π‘œπ‘ πœƒ > 0 Answer:𝐼 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

vi. π‘ π‘–π‘›πœƒ < 0, π‘ π‘’π‘πœƒ < 0 Answer: 𝐼𝐼𝐼 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘

Page 12: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

10 | P a g e

Question No.5 Fill in the blanks:

i. cos(βˆ’1500) = _________ π‘π‘œπ‘ 150π‘œ

ii. sin(βˆ’3100) = _________ 𝑠𝑖𝑛310π‘œ

iii. tan(βˆ’2100) = _________ π‘‘π‘Žπ‘›210π‘œ

iv. cot(βˆ’450) = _________ π‘π‘œπ‘‘450

v. sec(βˆ’600) = _________ 𝑠𝑒𝑐60π‘œ

vi. cosec(βˆ’1370) = _________ π‘π‘œπ‘ π‘’π‘137π‘œ

Answers:

i. +𝑣𝑒 ii. βˆ’π‘£π‘’ iii. βˆ’π‘£π‘’ iv. βˆ’π‘£π‘’ v. +𝑣𝑒 vi. βˆ’π‘£π‘’

Question No.6 The given point p lies on the

terminal side of 𝜽, Find quadrant of 𝜽 and all six

trigonometric ratios.

i. (βˆ’2,3) 𝑀𝑒 β„Žπ‘Žπ‘£π‘’ π‘₯ = βˆ’2 and 𝑦 = 3, π‘ π‘œ πœƒ lies in

quadrant 𝐼𝐼.

π‘Ÿ = √π‘₯2 + 𝑦2

= √(βˆ’2)2 + (3)2

= √4 + 9

= √13

Thus,

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ=

3

√13 π‘π‘œπ‘ π‘’π‘πœƒ =

√13

3

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ= βˆ’

2

√13 π‘ π‘’π‘πœƒ = βˆ’

√13

2

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯= βˆ’

3

2 π‘π‘œπ‘‘πœƒ = βˆ’

2

3

ii. (βˆ’3,4)

𝑀𝑒 β„Žπ‘Žπ‘£π‘’ π‘₯ = βˆ’3 and 𝑦 = 4, π‘ π‘œ πœƒ lies in

quadrant 𝐼𝐼𝐼.

π‘Ÿ = √π‘₯2 + 𝑦2

= √(βˆ’3)2 + (4)2

= √9 + 16

= √25 = 5

Thus,

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ=

βˆ’4

5 π‘π‘œπ‘ π‘’π‘πœƒ =

βˆ’5

4

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ=

βˆ’3

5 π‘ π‘’π‘πœƒ = βˆ’

5

3

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

4

3 π‘π‘œπ‘‘πœƒ =

3

4

iii. (√2, 1)

We have π‘₯ = √2 π‘Žnd 𝑦 = 1 so πœƒ lies in quadrant 𝐼𝐼.

π‘Ÿ = √π‘₯2 + 𝑦2

π‘Ÿ = √(√2)2

+ (1)2

= √2 + 1

= √3

Thus,

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ=

1

√3 π‘π‘œπ‘ π‘’π‘πœƒ = √3

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ=

√2

√3 π‘ π‘’π‘πœƒ =

√3

√2

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

1

√2 π‘π‘œπ‘‘πœƒ = √2

Question No.7 if 𝐜𝐨𝐬 𝜽 = βˆ’πŸ

πŸ‘ and terminal arm of

the angle 𝜽 is in quadrant 𝑰𝑰, find the valves of

remaining trigonometric functions.

In any right triangles π‘‹π‘Œπ‘

cosπœƒ = βˆ’2

3=

π‘₯

π‘Ÿ π‘‘β„Žπ‘’π‘› π‘₯ = βˆ’2 π‘Žπ‘›π‘‘ π‘Ÿ = 3

Also,

π‘ π‘’π‘πœƒ =1

π‘π‘œπ‘ πœƒ= βˆ’

3

2

As we know

π‘Ÿ2 = π‘₯2 + 𝑦2 (3)2 = (βˆ’2)2 + 𝑦2

9 = 4 + 𝑦2

𝑦2 = 5

𝑦 = ±√5 π‘ π‘œ 𝑦 = √5

Now

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ=

√5

3 π‘π‘œπ‘ π‘’π‘πœƒ =

π‘Ÿ

𝑦=

3

√5

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ=

βˆ’2

3 π‘ π‘’π‘πœƒ =

π‘Ÿ

π‘₯=

βˆ’3

2

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

βˆ’βˆš5

2 π‘π‘œπ‘‘πœƒ =

βˆ’2

√5

Question No.8 π’Šπ’‡ π’•π’‚π’πœ½ =πŸ’

πŸ‘ 𝒂𝒏𝒅 π’”π’Šπ’πœ½ <

𝟎, π’‡π’Šπ’π’… 𝒕𝒉𝒆 valves of other trigonometric functions

at 𝜽

Solution:

As tanπœƒ =3

4 π‘Žπ‘›π‘‘ π‘ π‘–π‘›πœƒ 𝑖𝑠 βˆ’ 𝑣𝑒, π‘€β„Žπ‘–π‘β„Ž is possible in

quadrant 𝐼𝐼𝐼 only. We complete the figure.

Page 13: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

11 | P a g e

From the figure π‘₯ = βˆ’3 π‘Žπ‘›π‘‘ 𝑦 = βˆ’4

By Pythagorean theorem

π‘Ÿ2 = π‘₯2 + 𝑦2

π‘Ÿ = √π‘₯2 + 𝑦2

π‘Ÿ = √(βˆ’3)2 + (βˆ’4)2

π‘Ÿ = √9 + 6

π‘Ÿ = √25

π‘Ÿ = 5

Now,

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ= βˆ’

4

5 π‘π‘œπ‘ π‘’π‘πœƒ =

π‘Ÿ

𝑦=

βˆ’5

4

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ=

βˆ’3

5 π‘ π‘’π‘πœƒ =

π‘Ÿ

π‘₯=

βˆ’5

3

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

4

3 π‘π‘œπ‘‘πœƒ =

3

4

Question No. 9 π’Šπ’‡ π’”π’Šπ’πœ½ = βˆ’πŸ

√𝟐, and terminal side of

the angle is not in quadrant 𝑰𝑰𝑰, find the valves of

π’•π’‚π’πœ½, π’”π’†π’„πœ½ and π’„π’π’”π’†π’„πœ½.

Solution:

As sin = βˆ’1

√2 π‘Žπ‘›π‘‘ π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘™ side of angle is not in 𝐼𝐼𝐼

quadrant, so it lies in quadrant 𝐼𝑉.

From the figure 𝑦 = βˆ’1 π‘Žπ‘›π‘‘ π‘Ÿ = √2

By Pythagorean theorem

π‘Ÿ2 = π‘₯2 + 𝑦2

π‘₯2 = π‘Ÿ2 βˆ’ 𝑦2

π‘₯ = βˆšπ‘Ÿ2 βˆ’ 𝑦2

π‘Ÿ = √(√2)2

βˆ’ (βˆ’1)2

π‘Ÿ = √2 βˆ’ 1

π‘Ÿ = √1

π‘Ÿ = 1

Now,

π‘‡π‘Žπ‘›πœƒ =𝑦

π‘₯= βˆ’

1

1= βˆ’1

π‘ π‘’π‘πœƒ =π‘Ÿ

π‘₯=

√2

1= √2

π‘π‘œπ‘ π‘’π‘πœƒ =π‘Ÿ

𝑦=

√2

1= βˆ’βˆš2

Question No.10 If π’„π’π’”π’†π’„πœ½ =πŸπŸ‘

𝟏𝟐 𝒂𝒏𝒅 π’”π’†π’„πœ½ >

𝟎 π’‡π’Šπ’π’…

The remaining trigonometric functions.

Solution:

As, π‘π‘œπ‘ π‘’π‘πœƒ =13

12 π‘Žπ‘›π‘‘ π‘Žπ‘™π‘ π‘œ π‘ π‘’π‘πœƒ 𝑖𝑠 + 𝑣𝑒, which is

only possible in quadrant 𝐼

From the figure 𝑦 = 12 π‘Žπ‘›π‘‘ π‘Ÿ = 13

By Pythagorean theorem

π‘Ÿ2 = π‘₯2 + 𝑦2

π‘₯2 = π‘Ÿ2 βˆ’ 𝑦2

π‘₯ = βˆšπ‘Ÿ2 βˆ’ 𝑦2

π‘Ÿ = √(13)2 βˆ’ (12)2

π‘Ÿ = √169 βˆ’ 144

π‘Ÿ = √25

π‘Ÿ = 5

Now,

π‘ π‘–π‘›πœƒ =𝑦

π‘Ÿ=

12

13 π‘π‘œπ‘ π‘’π‘πœƒ =

π‘Ÿ

𝑦=

13

12

π‘π‘œπ‘ πœƒ =π‘₯

π‘Ÿ=

5

13 π‘ π‘’π‘πœƒ =

π‘Ÿ

π‘₯=

13

5

π‘‘π‘Žπ‘›πœƒ =𝑦

π‘₯=

12

5 π‘π‘œπ‘‘πœƒ =

5

12

Page 14: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

12 | P a g e

Question No.11 Find the valves of trigonometric

functions at the indicated angles 𝜽 in the right

triangles.

i.

From the figure Hypotenuse = 4 π‘Žπ‘›π‘‘ π΅π‘Žπ‘ π‘’ = 3

By Pythagorean theorem we can find perpendicular.

(π‘ƒπ‘’π‘Ÿπ‘)2 + (π΅π‘Žπ‘ π‘’)2 = (𝐻𝑦𝑝. )2

(π‘π‘’π‘Ÿπ‘. )2 + (3)2 = (4)2 (π‘π‘’π‘Ÿπ‘)2 = 16 βˆ’ 9

(π‘π‘’π‘Ÿπ‘)2 = 7

π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘Žπ‘™ = √7

Now

π‘ π‘–π‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

𝐻𝑦𝑝.=

√7

4 π‘π‘œπ‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π‘ƒπ‘’π‘Ÿ.=

4

√7

π‘π‘œπ‘ πœƒ =π΅π‘Žπ‘ π‘’

𝐻𝑦𝑝.=

3

4 π‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π΅π‘Žπ‘ π‘’=

4

3

π‘‘π‘Žπ‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

π΅π‘Žπ‘ π‘’=

√7

3 π‘π‘œπ‘‘πœƒ =

π΅π‘Žπ‘ π‘’

π‘ƒπ‘’π‘Ÿ.=

3

√7

ii. From the figure

π»π‘¦π‘π‘’π‘Ÿπ‘‘π‘’π‘›π‘œπ‘’π‘  = 17

π‘ƒπ‘’π‘Ÿπ‘π‘’π‘Ÿπ‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ = 8

π΅π‘Žπ‘ π‘’ = 15

Now

π‘ π‘–π‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

𝐻𝑦𝑝.=

8

17 π‘π‘œπ‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π‘ƒπ‘’π‘Ÿ.=

17

8

π‘π‘œπ‘ πœƒ =π΅π‘Žπ‘ π‘’

𝐻𝑦𝑝.=

15

17 π‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π΅π‘Žπ‘ π‘’=

15

17

π‘‘π‘Žπ‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

π΅π‘Žπ‘ π‘’=

8

15 π‘π‘œπ‘‘πœƒ =

π΅π‘Žπ‘ π‘’

π‘ƒπ‘’π‘Ÿ.=

15

8

iii. From the figure

β„Žπ‘¦π‘π‘œπ‘‘π‘’π‘›π‘œπ‘’π‘  = 7 π΅π‘Žπ‘ π‘’ = 3

we can find perpendicular by Pythagorean

theorem.

(π΅π‘Žπ‘ π‘’)2 + (π‘ƒπ‘’π‘Ÿπ‘ƒ)2 = (𝐻𝑦𝑝. )2 (π‘ƒπ‘’π‘Ÿπ‘. )2 + (3)2 = (7)2

(π‘π‘’π‘Ÿπ‘. )2 = 40 βˆ’ 9

(π‘π‘’π‘Ÿπ‘. )2 = 40

π‘ƒπ‘’π‘Ÿπ‘. = √40

π‘ƒπ‘’π‘Ÿπ‘. = √4 Γ— 10 Now.

π‘ π‘–π‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

𝐻𝑦𝑝.=

2√10

7 π‘π‘œπ‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π‘ƒπ‘’π‘Ÿ.=

2√10

√7

π‘π‘œπ‘ πœƒ =π΅π‘Žπ‘ π‘’

𝐻𝑦𝑝.=

3

7 π‘ π‘’π‘πœƒ =

𝐻𝑦𝑝.

π΅π‘Žπ‘ π‘’=

7

3

π‘‘π‘Žπ‘›πœƒ =π‘ƒπ‘’π‘Ÿ.

π΅π‘Žπ‘ π‘’=

2√10

3 π‘π‘œπ‘‘πœƒ =

π΅π‘Žπ‘ π‘’

π‘ƒπ‘’π‘Ÿ.=

3

2√10

Question No.12 Find the value of the trigonometric

functions. Do not use trigonometric table or

calculator.

Solution:

we know that 2π‘˜πœ‹ + πœƒ = πœƒ, π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ ∈ 𝑍

i. π‘‘π‘Žπ‘›30π‘œ

30π‘œ = 30 πœ‹

180 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘› =

πœ‹

6π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›

π‘‘π‘Žπ‘›30π‘œ = tanπœ‹

6=

1

√3

ii. π‘‘π‘Žπ‘›330π‘œ

π‘‘π‘Žπ‘›330π‘œ = tan(360π‘œ βˆ’ 30π‘œ)

= π‘‘π‘Žπ‘›2πœ‹ βˆ’πœ‹

6

= tan (βˆ’πœ‹

6)

= βˆ’ tanπœ‹

6

= βˆ’1

√3

iii. 𝑠𝑒𝑐 3300

𝑠𝑒𝑐330π‘œ = sec(3600 βˆ’ 300)

= sec 2πœ‹ βˆ’πœ‹

6

= 𝑠𝑒𝑐 βˆ’πœ‹

6

= secπœ‹

6

=2

√3

iv. cotπœ‹

4

=1

tanπœ‹4

=1

π‘‘π‘Žπ‘›45π‘œ=

1

1= 1

v. cos2πœ‹

3

Page 15: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

13 | P a g e

cos(1200) = βˆ’1

2

vi. π‘π‘œπ‘ π‘’π‘2πœ‹

3

π‘π‘œπ‘ π‘’π‘2πœ‹

3= π‘π‘œπ‘ π‘’π‘1200 =

1

sin(1200)=

1

√32

=2

√3

vii. cos(βˆ’4500)

cos(βˆ’4500) = cos(βˆ’3600 βˆ’ 900)

π‘π‘œπ‘  βˆ’ 2πœ‹ βˆ’πœ‹

2

= π‘π‘œπ‘ 2(βˆ’1)πœ‹ βˆ’πœ‹

2

π‘π‘œπ‘ πœ‹

2= 0

viii. tan(βˆ’9πœ‹)

tan(βˆ’9πœ‹) = tan(βˆ’8πœ‹ βˆ’ πœ‹)

= tan [2(βˆ’4)πœ‹ βˆ’ πœ‹]

= tan(βˆ’8πœ‹ + (βˆ’πœ‹))

= tan(βˆ’πœ‹)

= 0

ix. π‘π‘œπ‘  (βˆ’5πœ‹

6)

= cos (βˆ’5πœ‹

6)

= βˆ’ cosπœ‹

6 = βˆ’

√3

2

x. sin7πœ‹

6

sin7πœ‹

6= sin (2πœ‹ βˆ’

5πœ‹

6)

= sin [2πœ‹ + (βˆ’5πœ‹

6)]

= sin (βˆ’5πœ‹

6) = sin(βˆ’1500) = βˆ’

1

2

xi. cot7πœ‹

6

cot7πœ‹

6= cot [2πœ‹ + (βˆ’

5πœ‹

6)]

= cot (βˆ’5πœ‹

6)

=1

tan (βˆ’5πœ‹6 )

=1

tan(βˆ’1500)=

1

1

√3

= √3

xii. cos 2250

cos(2250) = cos(1800 + 450)

= cos πœ‹ +πœ‹

4

= βˆ’ cosπœ‹

4= βˆ’

1

√2

Exercise 7.4 Things to know:

cos2 πœƒ + sin2 πœƒ = 1

1 + tan0 πœƒ = sec2 πœƒ

1 + cot2 πœƒ = π‘π‘œπ‘ π‘’π‘2πœƒ In problem 1 βˆ’ 6 simplify each expression to a single

trigonometric functions.

1. sin2 π‘₯

cos2 π‘₯

Solution:

∡sin2 π‘₯

cos2 π‘₯ = tan2 π‘₯

2. π‘‘π‘Žπ‘›π‘₯𝑠𝑖𝑛π‘₯𝑠𝑒𝑐π‘₯ Solution:

π‘‘π‘Žπ‘›π‘₯𝑠𝑖𝑛π‘₯𝑠𝑒𝑐π‘₯ = π‘‘π‘Žπ‘›π‘₯𝑠𝑖𝑛π‘₯ (1

π‘π‘œπ‘ π‘₯)

=𝑠𝑖𝑛π‘₯

π‘π‘œπ‘ π‘₯sin π‘₯

1

π‘π‘œπ‘ π‘₯

=sin2 π‘₯

cos2 π‘₯

= tan2 π‘₯

3. π‘‘π‘Žπ‘›π‘₯

𝑠𝑒𝑐π‘₯

Solution:

π‘‘π‘Žπ‘›π‘₯

𝑠𝑒𝑐π‘₯=

𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯

1cos π‘₯

=𝑠𝑖𝑛π‘₯

π‘π‘œπ‘ π‘₯Γ—

π‘π‘œπ‘ π‘₯

1= 𝑠𝑖𝑛π‘₯

4. 1 βˆ’ cos2 π‘₯ Solution:

1 βˆ’ cos2 π‘₯ = cos2π‘₯ + sin2 π‘₯ βˆ’ cos2 π‘₯ = sin2 π‘₯

5. sec2 π‘₯ βˆ’ 1 Solution:

sec2 π‘₯ βˆ’ 1 = sec2 π‘₯ βˆ’ (sec2 βˆ’ tan2 π‘₯)

= sec2 π‘₯ βˆ’ sec2 π‘₯ + tan2 π‘₯

= tan2 π‘₯

6. sin2 π‘₯ . cot2 π‘₯ Solution:

sin2 π‘₯ . cot2 π‘₯ = sin2 π‘₯ .cos2 π‘₯

sin2 π‘₯

= cos2 π‘₯ in problem 7-24 verify the identities.

7. (1 βˆ’ π‘ π‘–π‘›πœƒ)(1 + π‘ π‘–π‘›πœƒ) = πœƒ

Solution:

𝑳. 𝑯. 𝑺 = (𝟏 βˆ’ π’”π’Šπ’πœ½)(𝟏 + π’”π’Šπ’πœ½)

= 1 βˆ’ sin2 πœƒ

= cos2 πœƒ = 𝑅. 𝐻. 𝑆

8. π‘ π‘–π‘›πœƒ+π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ πœƒ= 1 + π‘‘π‘Žπ‘›πœƒ

Solution:

𝐿. 𝐻. 𝑆 =π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ πœƒ

=π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ+

π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ πœƒ

= π‘‘π‘Žπ‘›πœƒ + 1

Page 16: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

14 | P a g e

= 𝑅. 𝐻. 𝑆

9. (π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ)π‘‘π‘Žπ‘›πœƒ = sec2 πœƒ Solution:

𝐿. 𝐻. 𝑆 = (π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ)π‘‘π‘Žπ‘›πœƒ

= (π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ+

π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ)

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ

= (sin2 πœƒ + cos2 πœƒ

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ)

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ

= (1

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ)

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ

=1

cos2 πœƒ

= sec2 πœƒ

10. (π‘π‘œπ‘‘πœƒ + π‘π‘œπ‘ π‘’π‘πœƒ)(π‘‘π‘Žπ‘›πœƒ βˆ’ π‘ π‘–π‘›πœƒ) = π‘ π‘’π‘πœƒ βˆ’π‘π‘œπ‘ πœƒ

Solution:

𝐿. 𝐻. 𝑆 = (π‘π‘œπ‘‘πœƒ + π‘π‘œπ‘ π‘’π‘πœƒ)(π‘‘π‘Žπ‘›πœƒ βˆ’ π‘ π‘–π‘›πœƒ)

= (π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ+

1

π‘ π‘–π‘›πœƒ) (

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒβˆ’ π‘ π‘–π‘›πœƒ)

= (π‘π‘œπ‘ πœƒ + 1

π‘ π‘–π‘›πœƒ) (

π‘ π‘–π‘›πœƒ βˆ’ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

π‘π‘œπ‘ πœƒ)

= (1 + π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ) (

π‘ π‘–π‘›πœƒ(1 βˆ’ π‘π‘œπ‘ πœƒ)

π‘π‘œπ‘ πœƒ)

= (1 + π‘π‘œπ‘ πœƒ)(1 βˆ’ cos πœƒ)

π‘π‘œπ‘ πœƒ

=1 βˆ’ cos2 πœƒ

π‘π‘œπ‘ πœƒ

=1

π‘π‘œπ‘ πœƒβˆ’

cos2 πœƒ

π‘π‘œπ‘ πœƒ

= π‘ π‘’π‘πœƒ βˆ’ π‘π‘œπ‘ πœƒ

= 𝑅. 𝐻. 𝑆

11. π‘ π‘–π‘›πœƒ+π‘π‘œπ‘ πœƒ

tan2 πœƒβˆ’1=

cos2 πœƒ

π‘ π‘–π‘›πœƒβˆ’π‘π‘œπ‘ πœƒ

Solution:

𝐿. 𝐻. 𝑆 =π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

tan2 πœƒ βˆ’ 1

=π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

sin2 πœƒcos2 πœƒ

βˆ’ 1

=π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

sin2 πœƒ βˆ’ cos2 πœƒcos2 πœƒ

=π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

sin2 πœƒ βˆ’ cos2 πœƒΓ— cos2 πœƒ

=π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ

(π‘ π‘–π‘›πœƒ + π‘π‘œπ‘ πœƒ)(π‘ π‘–π‘›πœƒ βˆ’ π‘π‘œπ‘ πœƒ)Γ— cos2 πœƒ

=1

π‘ π‘–π‘›πœƒ βˆ’ π‘π‘œπ‘ πœƒΓ— cos2 πœƒ

=cos2 πœƒ

π‘ π‘–π‘›πœƒ βˆ’ cos πœƒ

= 𝑅. 𝐻. 𝑆

12. cos2 πœƒ

π‘ π‘–π‘›πœƒ+ π‘ π‘–π‘›πœƒ = π‘π‘œπ‘ π‘’π‘πœƒ

Solution:

𝐿. 𝐻. 𝑆 =cos2 πœƒ

π‘ π‘–π‘›πœƒ+ π‘ π‘–π‘›πœƒ

=cos2 πœƒ + sin2 πœƒ

π‘ π‘–π‘›πœƒ

=1

π‘ π‘–π‘›πœƒ= π‘π‘œπ‘ π‘’π‘πœƒ

13. π‘ π‘’π‘πœƒ βˆ’ π‘π‘œπ‘ πœƒ = π‘‘π‘Žπ‘›πœƒπ‘ π‘–π‘›πœƒ Solution:

𝐿. 𝐻. 𝑆 = π‘ π‘’π‘πœƒ βˆ’ π‘π‘œπ‘ πœƒ

=1

π‘π‘œπ‘ πœƒβˆ’ π‘π‘œπ‘ πœƒ

=1 βˆ’ cos2 πœƒ

π‘π‘œπ‘ πœƒ

=sin2 πœƒ

π‘π‘œπ‘ πœƒ

=π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒΓ— π‘ π‘–π‘›πœƒ

= π‘‘π‘Žπ‘›πœƒπ‘ π‘–π‘›πœƒ

14. sin2 πœƒ

π‘π‘œπ‘ πœƒ+ π‘π‘œπ‘ πœƒ = π‘ π‘’π‘πœƒ

Solution:

𝐿. 𝐻. 𝑆 =sin2 πœƒ

π‘π‘œπ‘ πœƒ+ π‘π‘œπ‘ πœƒ

=sin2 πœƒ + cos2 πœƒ

π‘π‘œπ‘ πœƒ

=1

π‘π‘œπ‘ πœƒ

= π‘ π‘’π‘πœƒ

15. π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ = π‘ π‘’π‘πœƒπ‘π‘œπ‘ π‘’π‘πœƒ Solution:

𝐿. 𝐻. 𝑆 = π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ

=π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ+

π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ

=sin2 πœƒ + cos2 πœƒ

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ

=1

π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

=1

π‘ π‘–π‘›πœƒΓ—

1

cos πœƒ

= π‘ π‘’π‘πœƒπ‘π‘œπ‘ π‘’π‘πœƒ

16. (π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ)(π‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒ) = π‘ π‘’π‘πœƒ +

π‘π‘œπ‘ π‘’π‘πœƒ

Solution:

𝐿. 𝐻. 𝑆 = (π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ)(π‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒ)

= (π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ+

π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ) (π‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒ)

= (sin2 πœƒ + cos2 πœƒ

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ) (π‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒ)

= (1

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ) (π‘π‘œπ‘ πœƒ + π‘ π‘–π‘›πœƒ)

=π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ+

π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ

=1

π‘ π‘–π‘›πœƒ+

1

π‘π‘œπ‘ πœƒ

= π‘π‘œπ‘ π‘’π‘πœƒ + π‘ π‘’π‘πœƒ

𝑅. 𝐻. 𝑆

17. π‘ π‘–π‘›πœƒ(π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ) = π‘ π‘’π‘πœƒ Solution:

Page 17: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

15 | P a g e

𝐿. 𝐻. 𝑆 = π‘ π‘–π‘›πœƒ(π‘‘π‘Žπ‘›πœƒ + π‘π‘œπ‘‘πœƒ)

= sin πœƒ (π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ+

π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ)

= (sin2 πœƒ + cos2 πœƒ

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ) π‘ π‘–π‘›πœƒ

= (1

π‘π‘œπ‘ πœƒπ‘ π‘–π‘›πœƒ) π‘ π‘–π‘›πœƒ

=1

π‘π‘œπ‘ πœƒ

= π‘ π‘’π‘πœƒ

18. 1+π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ+

π‘ π‘–π‘›πœƒ

1+π‘π‘œπ‘ πœƒ= 2π‘π‘œπ‘ π‘’π‘πœƒ

Solution:

𝐿. 𝐻. 𝑆 =1 + π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ+

π‘ π‘–π‘›πœƒ

1 + π‘π‘œπ‘ πœƒ

=(1 + π‘π‘œπ‘ πœƒ)2 + sin2 πœƒ

π‘ π‘–π‘›πœƒ(1 + π‘π‘œπ‘ πœƒ)

=(1 + 2π‘π‘œπ‘ πœƒ + cos2 πœƒ + sin2 πœƒ)

sinπœƒ (1 + π‘π‘œπ‘ πœƒ)

=1 + 2π‘π‘œπ‘ πœƒ + 1

π‘ π‘–π‘›πœƒ

=2 + 2π‘π‘œπ‘ πœƒ

π‘ π‘–π‘›πœƒ(1 + π‘π‘œπ‘ πœƒ)

=2(1 + π‘π‘œπ‘ πœƒ)

π‘ π‘–π‘›πœƒ(1 + π‘π‘œπ‘ πœƒ)

=2

π‘ π‘–π‘›πœƒ

= 2π‘π‘œπ‘ π‘’π‘πœƒ

= 𝑅. 𝐻. 𝑆

19. 1

1βˆ’π‘π‘œπ‘ πœƒ+

1

1+π‘π‘œπ‘ πœƒ= 2π‘π‘œπ‘ π‘’π‘2πœƒ

Solution:

𝐿. 𝐻. 𝑆 =1

1 βˆ’ π‘π‘œπ‘ πœƒ+

1

1 + π‘π‘œπ‘ πœƒ

=1 + π‘π‘œπ‘ πœƒ + 1 βˆ’ π‘π‘œπ‘ πœƒ

(1 βˆ’ π‘π‘œπ‘ πœƒ)(1 + π‘π‘œπ‘ πœƒ)

=2

1 βˆ’ cos2 πœƒ

=2

sin2 πœƒ

= 2π‘π‘œπ‘ π‘’π‘2πœƒ = 𝑅. 𝐻. 𝑆

20. 1+π‘ π‘–π‘›πœƒ

1βˆ’π‘ π‘–π‘›πœƒβˆ’

1βˆ’π‘ π‘–π‘›πœƒ

1+π‘ π‘–π‘›πœƒ= 4π‘‘π‘Žπ‘›πœƒπ‘ π‘’π‘πœƒ

Solution:

𝐿. 𝐻. 𝑆 =1 + π‘ π‘–π‘›πœƒ

1 βˆ’ π‘ π‘–π‘›πœƒβˆ’

1 βˆ’ π‘ π‘–π‘›πœƒ

1 + π‘ π‘–π‘›πœƒ

=(1 + sin πœƒ)2 βˆ’ (1 βˆ’ π‘ π‘–π‘›πœƒ)2

(1 βˆ’ π‘ π‘–π‘›πœƒ)(1 + π‘ π‘–π‘›πœƒ)

=1 + 2π‘ π‘–π‘›πœƒ + sin2 πœƒ βˆ’ 1 + 2π‘ π‘–π‘›πœƒ βˆ’ sin2 πœƒ

1 βˆ’ sin2 πœƒ

=4π‘ π‘–π‘›πœƒ

cos2 πœƒ

=4π‘ π‘–π‘›πœƒ

cos πœƒΓ—

1

π‘π‘œπ‘ πœƒ

= 4π‘‘π‘Žπ‘›πœƒπ‘ π‘’π‘πœƒ

21. sin3 πœƒ = π‘ π‘–π‘›πœƒ βˆ’ π‘ π‘–π‘›πœƒ cos2 πœƒ

Solution:

𝑅. 𝐻. 𝑆 = π‘ π‘–π‘›πœƒ βˆ’ π‘ π‘–π‘›πœƒ cos2 πœƒ

= π‘ π‘–π‘›πœƒ(1 βˆ’ cos2 πœƒ)

= π‘ π‘–π‘›πœƒ(sin2 πœƒ)

= sin3 πœƒ = 𝐿. 𝐻. 𝑆

22. cos4 πœƒ βˆ’ sin4 πœƒ = cos2 πœƒ βˆ’ sin2 πœƒ Solution:

𝐿. 𝐻. 𝑆 = cos4 πœƒ βˆ’ sin4 πœƒ

= (cos2 πœƒ)2 βˆ’ (sin2 πœƒ)2

= (cos2 πœƒ βˆ’ sin2 πœƒ)(cos2 πœƒ + sin2 πœƒ)

= (cos2 πœƒ βˆ’ sin2 πœƒ)(1)

= 𝑅. 𝐻. 𝑆

23. √1+π‘π‘œπ‘ πœƒ

1βˆ’π‘ π‘–π‘›πœƒ=

π‘ π‘–π‘›πœƒ

1βˆ’π‘π‘œπ‘ πœƒ

𝐿. 𝐻. 𝑆 = √1 + π‘π‘œπ‘ πœƒ

1 βˆ’ π‘ π‘–π‘›πœƒ

= √(1 + π‘π‘œπ‘ πœƒ)(1 βˆ’ π‘π‘œπ‘ πœƒ)

(1 βˆ’ π‘π‘œπ‘ πœƒ)(1 βˆ’ π‘π‘œπ‘ πœƒ)

= √1 βˆ’ cos2 πœƒ

(1 βˆ’ π‘π‘œπ‘ πœƒ)2

= √sin2 πœƒ

(1 βˆ’ π‘π‘œπ‘ πœƒ)2

=π‘ π‘–π‘›πœƒ

1 βˆ’ π‘π‘œπ‘ 

= 𝑅. 𝐻. 𝑆

24. βˆšπ‘ π‘’π‘πœƒ+1

π‘ π‘’π‘πœƒβˆ’1=

π‘ π‘’π‘πœƒ+1

π‘‘π‘Žπ‘›πœƒ

Solution:

= βˆšπ‘ π‘’π‘πœƒ + 1

π‘ π‘’π‘πœƒ βˆ’ 1

= √(π‘ π‘’π‘πœƒ + 1)(π‘ π‘’π‘πœƒ + 1)

(π‘ π‘’π‘πœƒ βˆ’ 1)(π‘ π‘’π‘πœƒ + 1)

= √(π‘ π‘’π‘πœƒ + 1)2

sec2 πœƒ βˆ’ 1

= √(π‘ π‘’π‘πœƒ + 1)2

tan2 πœƒ

𝑅. 𝐻. 𝑆

Page 18: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

16 | P a g e

Angle of Elevation:

The angle between the horizontal line through eye

and a lie from eye to the object above the horizontal

line is called angle of elevation.

Angle of depression:

The angle between the horizontal line through eye

and a line from eye to the object below the horizontal

line is called angle of depression.

Exercise 7.5 Question No.1 Find the angle of elevation of the

sun if a 6feet man casts a 3.5 feet shadow.

Solution:

From figure we have

π‘‘π‘Žπ‘›πœƒ =𝐴𝐡

𝐡𝐢

π‘‘π‘Žπ‘›πœƒ =6

3.5

π‘‘π‘Žπ‘›πœƒ = 1.714

πœƒ = tanβˆ’1(1.7143)

πœƒ = 59.74370

πœƒ = 59044β€²37β€²β€²

Question No.2 A true casts a 40 meter shadow when

the angle of elevation of the sun is πŸπŸ“πŸŽ. Find the

height of the tree.

Solution:

From the figure

Height of tree = π‘šπ΄πΆΜ…Μ… Μ…Μ… =?

Length of shadow= π‘šπ΅πΆΜ…Μ… Μ…Μ… = 40π‘š

Angle of Elevation = πœƒ = 250

Angle of fact that

π‘‘π‘Žπ‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

40

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 40 Γ— π‘‘π‘Žπ‘›250

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 18.652π‘š

So, height of tree is 18.652 π‘š

Question No.3. A feet long ladder is learning against

a wall. The bottom of the wall. Find the acute angle

(angle of elevation) the ladder makes with the

ground.

Solution:

from the figure

Length of ladder = π‘š 𝐴𝐡̅̅ Μ…Μ… = 20𝑓𝑒𝑒𝑑

Distance of ladder from the wall= π‘š 𝐡𝐢̅̅ Μ…Μ… = 5 𝑓𝑒𝑒𝑑

𝐴𝑛𝑔𝑙𝑒 π‘œπ‘“ π‘’π‘™π‘’π‘£π‘Žπ‘‘π‘–π‘œπ‘› = πœƒ =?

Using the fact that

π‘π‘œπ‘ πœƒ =π‘š 𝐡𝐢̅̅ Μ…Μ…

π‘š 𝐴𝐡̅̅ Μ…Μ…

π‘π‘œπ‘ πœƒ =5𝑓𝑑.

20𝑓𝑑.

π‘π‘œπ‘ πœƒ = 0.25

πœƒ = cosβˆ’1 0.25

πœƒ = 75.5225

πœƒ = 75.50

π‘œπ‘Ÿ πœƒ = 75030β€²

So, angle of elevation is 75030β€²

Page 19: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

17 | P a g e

Question No.4 The base of rectangular is 25 feet and

the height of rectangular is 13 feet. Find the angle

that diagram of the rectangular makes with the base.

Solution:

From the figure

Base of rectangular = π‘šπ΅πΆΜ…Μ… Μ…Μ… = 25𝑓𝑒𝑒𝑑

Height of rectangular = π‘šπ΅πΆΜ…Μ… Μ…Μ… = 13𝑓𝑒𝑒𝑑

Diagonal 𝐴𝐢̅̅ Μ…Μ… 𝑖𝑠 π‘‘π‘Žπ‘˜π‘’π‘›

Angle between diagonal and base= πœƒ

Using the fact that

π‘‘π‘Žπ‘›πœƒ =π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘šπ΄π΅Μ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›πœƒ =13

25

πœƒ = tanβˆ’113

25

πœƒ = 27.4744

πœƒ = 27.470

So, angle between diagonal and base is 27.470

Question No.5 A rocket is launched and climbs at a

constant angle of πŸ–πŸŽπŸŽ. Find the altitude of the rocket

after it travels πŸ“πŸŽπŸŽπŸŽ meter.

Solution:

From the figure

Distance travelled by rocket = π‘šπ΄π΅Μ…Μ… Μ…Μ… = 5000π‘š

𝐴𝑙𝑑𝑖𝑑𝑒𝑑𝑒 π‘œπ‘“ π‘Ÿπ‘œπ‘π‘˜π‘’π‘‘ = π‘šπ΄πΆΜ…Μ… Μ…Μ… =?

Angle of elevation = πœƒ = 800

Using

π‘ π‘–π‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΄π΅Μ…Μ… Μ…Μ…

𝑠𝑖𝑛800 =π‘šπ΄πΆΜ…Μ… Μ…Μ…

5000

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 5000 Γ— 𝑠𝑖𝑛800

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 4924.04π‘š

Question No.6 An aero plane pilot flying at an

altitude of 4000m wishes to make an approaches to

an airport at an angle of πŸ“πŸŽπŸŽ π’˜π’Šπ’•π’‰ 𝒕𝒉𝒆 plane be

when the pilot begins to descend?

Solution:

From the figure

Altitude of aero plane= π‘šπ΄πΆΜ…Μ… Μ…Μ… = 4000π‘š

Distance of plane from airport= π‘šπ΅πΆΜ…Μ… Μ…Μ… =?

Angle of depression= 500

As the altimeter angles of parallel lines are equal, so

angle

πœƒ = 500 Using the fact that

π‘‘π‘Žπ‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›500 =4000π‘š

π‘šπ΅πΆ

π‘šπ΅πΆΜ…Μ… Μ…Μ… =4000π‘š

π‘‘π‘Žπ‘›500

π‘šπ΅πΆΜ…Μ… Μ…Μ… = 33356.4m

So, the distance of aero plane from airport is 3356.4m

Question No.7 A guy wire (supporting wire) runs

from the middle of a utility pole to ground. The wire

makes an angle of πŸ•πŸ–. 𝟐𝟎 π’˜π’Šπ’•π’‰ 𝒕𝒉𝒆 π’ˆπ’“π’π’–π’π’… and

touch the ground 3 meters from the base of the pole.

Find the height of the pole.

Solution:

From the figure

Height of pole= π‘šπΆπ·Μ…Μ… Μ…Μ… =?

Distance of wire from the base of the pole

= π‘šπ΅πΆΜ…Μ… Μ…Μ… = 3π‘š

Angle of elevation= πœƒ = 78.20

As the wire is attached with the pole at its middle

point 𝐴 so first we find π‘šπ΄πΆΜ…Μ… Μ…Μ…

Using the fact that

Page 20: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

18 | P a g e

π‘‘π‘Žπ‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΅π‘Μ…Μ…Μ…Μ…

π‘‘π‘Žπ‘›78.2 =π‘šπ΄πΆΜ…Μ… Μ…Μ…

3

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 3π‘š Γ— π‘‘π‘Žπ‘›78.20

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 14.36π‘š

So, Height of pole is = π‘šπ·πΆΜ…Μ… Μ…Μ… = 2(π‘šπ΄πΆΜ…Μ… Μ…Μ… )

= 2 Γ— 14.36π‘š

= 28.72π‘š

Question No.8 A road is inclined at an angle πŸ“. πŸ•πŸŽ

suppose that we drive 2 miles up this road starting

from sea level. How high above sea level are we?

Solution:

From the figure

Distance covered on road = π‘šπ΄π΅Μ…Μ… Μ…Μ… = 2π‘šπ‘–π‘™π‘’π‘ 

Angle of inclination = 𝜽 = πŸ“. πŸ•πŸŽ

Height from sea level = π‘šπ΄πΆΜ…Μ… Μ…Μ… =?

Using the fact that,

π‘ π‘–π‘›πœƒ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΄π΅Μ…Μ… Μ…Μ…

π’”π’Šπ’πŸ“. πŸ•πŸŽ =π‘šπ΄πΆΜ…Μ… Μ…Μ…

𝟐

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 2 Γ— 𝑠𝑖𝑛5.70

π‘šπ΄πΆΜ…Μ… Μ…Μ… = 0.199π‘šπ‘–π‘™π‘’

Hence , we are at height of 0.199 mile from the sea

level.

Question No.9 A television antenna of 8 feet height

is point on the top of a house. From a point on the

ground the angle of elevations to the top of the

house is πŸπŸ•πŸŽ

And the angle of elevation to the top of antenna is

𝟐𝟏. πŸ–πŸŽ. find the height of the house.

Solution:

From the figure

Distance of point from house π‘šπ΅πΆΜ…Μ… Μ…Μ… = π‘₯

π‘―π’†π’Šπ’ˆπ’‰π’• 𝒐𝒇 𝒉𝒐𝒖𝒔𝒆 = π‘šπ΄πΆΜ…Μ… Μ…Μ… = β„Ž =?

Height of antenna = π‘šπ΄π·Μ…Μ… Μ…Μ… = 8𝑓𝑒𝑒𝑑

Angle of elevation of top of house = 170

Angle of elevation of top of antenna= 21.80

In right angled βˆ†π΄π΅πΆ

π‘‘π‘Žπ‘›170 =π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›170 =β„Ž

π‘₯

π‘₯ =1

π‘‘π‘Žπ‘›170Γ— β„Ž

π‘₯ = 3.271 Γ— β„Ž β†’ (𝑖)

Now in right angle βˆ†π·π΅πΆ

π‘‘π‘Žπ‘›21.8 =π‘šπΆπ·Μ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›21.8 =π‘šπ΄π·Μ…Μ… Μ…Μ… + π‘šπ΄πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘‘π‘Žπ‘›21.8 =8 + β„Ž

π‘₯

0.40 =8 + β„Ž

3.271β„Ž π‘“π‘Ÿπ‘œπ‘š (𝑖)

0.40 Γ— 3.271β„Ž = 8 + β„Ž

1.3084β„Ž βˆ’ β„Ž = 8 (1.3084 βˆ’ 1)β„Ž = 8

0.3084β„Ž = 8

β„Ž =8

0.3084

β„Ž =8

0.3084= 25.94𝑓𝑒𝑒𝑑

question No.10 from an observation point, the

angles of depression of two boats in line with this

point are found to πŸ‘πŸŽπŸŽ 𝒂𝒏𝒅 πŸ’πŸ“πŸŽ find the distance

between the two bosts if the point of observation is

πŸ’πŸŽπŸŽπŸŽ feet high.

Solution:

From the figure

Height of observation point = π‘šπ΄π·Μ…Μ… Μ…Μ… = 4000𝑓𝑒𝑒𝑑

Distance between boats = π‘šπ΅πΆΜ…Μ… Μ…Μ… =?

Angle of depression of points 𝐡 π‘Žπ‘›π‘‘ 𝐢 π‘Žπ‘Ÿπ‘’

300 π‘Žπ‘›π‘‘ 450 respectively from point A.

As the alternate angles of parallel lines are equal, so

π‘šβˆ π΅ = 300 π‘Žπ‘›π‘‘ π‘šβˆ πΆ = 450

Page 21: 7/18/2020 Chapter 7

Class 10th Chapter 7 www.notes.pk.com

19 | P a g e

Now in right angled βˆ†π΄πΆπ·

π‘‘π‘Žπ‘›450 =π‘šπ΄π·Μ…Μ… Μ…Μ…

π‘šπΆπ·Μ…Μ… Μ…Μ…

1 =4000

π‘šπΆπ·Μ…Μ… Μ…Μ…

π‘šπΆπ·Μ…Μ… Μ…Μ… = 4000𝑓𝑒𝑒𝑑

Now in right angled βˆ†ACD

π‘‘π‘Žπ‘›300 =π‘šπ΄π·Μ…Μ… Μ…Μ…

π‘šπ΅π·Μ…Μ… Μ…Μ…

1

√3=

4000

π‘šπ΅πΆΜ…Μ… Μ…Μ… + π‘šπΆπ·Μ…Μ… Μ…Μ…

1

√3=

4000

π‘šπ΅πΆΜ…Μ… Μ…Μ… + 4000

π‘šπ΅πΆΜ…Μ… Μ…Μ… + 4000 = 4000√3

π‘šπ΅πΆΜ…Μ… Μ…Μ… = 4000√3 βˆ’ 4000

π‘šπ΅πΆΜ…Μ… Μ…Μ… = 6928.20 βˆ’ 4000

π‘šπ΅πΆΜ…Μ… Μ…Μ… = 2928.20𝑓𝑒𝑒𝑑

So, the distance between boats is 2928.2 feet.

Question No.11 Two ships, which are in lines with the

base of a vertical cliff are 120 meters apart. The angles of

depression from the top of the cliff to the ship are πŸ‘πŸŽπŸŽ

and πŸ’πŸ“πŸŽ as shown in the diagram.

(a) Calculate the distance BC

(b) Calculate the height CD of the cliff.

Solution:

From the figure

Height of cliff = 𝐢𝐷̅̅ Μ…Μ… = β„Ž =?

Distance= 𝐡𝐢̅̅ Μ…Μ… = π‘₯ =?

Distance between boats = 𝐴𝐡̅̅ Μ…Μ… = 120π‘š

Angles of depression from point D to point A and B are

300 π‘Žπ‘›π‘‘ 450 respectively.

As the altitude angles of parallel lines are equal, so π‘šβˆ π΄ =

300 π‘Žπ‘›π‘‘ π‘šβˆ π΅ = 450

In right angled βˆ†π΅πΆπ·

π‘‘π‘Žπ‘›450 =π‘šπΆπ·Μ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

𝑙 =β„Ž

π‘₯

π‘₯ = β„Ž β†’ (𝑖)

Now in right angled βˆ†π΄πΆπ·

π‘‘π‘Žπ‘›300 =π‘šπΆπ·Μ…Μ… Μ…Μ…

π‘šπ΄πΆΜ…Μ… Μ…Μ…

1

√3=

β„Ž

π‘šπ΅πΆΜ…Μ… Μ…Μ… + π‘šπ΅πΆΜ…Μ… Μ…Μ…

1

√3=

β„Ž

120 + π‘₯

120 + π‘₯ = √3β„Ž

120 + β„Ž = √3β„Ž

120 = √3β„Ž βˆ’ β„Ž

120 = β„Ž(√3 βˆ’ 1)

120 = β„Ž(1.7321 βˆ’ 1)

120 = (0.7321β„Ž) 120

0.7321= β„Ž

β„Ž = 163.91π‘š

As π‘₯ = β„Ž , π‘ π‘œ

π‘₯ = 163.91π‘š π‘œπ‘Ÿ 164π‘š

Height of cliff= π‘šπΆπ·Μ…Μ… Μ…Μ… = 164π‘š

Question No.12 Suppose that we are standing on a

bridge 30 meter above a river watching a log (piece

of wood) floating towards us. If the angle with the

horizontal to the front of the log is πŸπŸ”. πŸ•πŸŽ and angle

with the horizontal to the back of the log is πŸπŸ’πŸŽ,

π’‰π’π’˜ π’π’π’π’ˆ π’Šπ’” 𝒕𝒉𝒆 π’π’π’ˆ?

Solution:

Height of the observer position = π‘šπ‘‚πΆΜ…Μ… Μ…Μ… = 30π‘š

Length of log wood= π‘šπ΄π΅Μ…Μ… Μ…Μ… = π‘₯ =?

Angles of depression from point 𝑂 of the points A and B are

140 and =16.70 respectively

In right angled βˆ†π‘‚π΅πΆ

π‘‘π‘Žπ‘›16.70 =π‘šπ‘‚πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ…

0.30 =30

π‘šπ΅πΆΜ…Μ… Μ…Μ…

π‘šπ΅πΆΜ…Μ… Μ…Μ… =30

0.30

π‘šπ΅πΆΜ…Μ… Μ…Μ… = 100π‘š

Now in right angled βˆ†π‘‚π΄πΆ

π‘‘π‘Žπ‘›140 =π‘šπ‘‚πΆΜ…Μ… Μ…Μ…

π‘šπ΄πΆΜ…Μ… Μ…Μ…

0.249 =30

π‘šπ΄π΅Μ…Μ… Μ…Μ… + π‘šπ΅πΆΜ…Μ… Μ…Μ…

0.249 =30

(π‘₯ + 100)

0.249(π‘₯ + 100) = 30

π‘₯ + 100 =30

0.249

π‘₯ + 100 = 120.482

π‘₯ = 120.482 βˆ’ 100

π‘₯ = 20.482π‘š

So the length of log is 20.48222m.

www.notespk.com

Complied by Shumaila Amin