7.1 apply the pythagorean theorem

24
7.1 7.1 Apply the Pythagorean Theorem Bell Thinger 2. Solve x 2 + 9 = 25. ANSWER 10, –10 ANSWER 4, –4 1. Solve x 2 = 100. ANSWER 2 5 3. Simplify 20. ANSWER 6 cm 4. Find x. Video attached

Upload: detwilerr

Post on 27-May-2015

823 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: 7.1 apply the pythagorean theorem

7.17.1 Apply the Pythagorean TheoremBell Thinger

2. Solve x2 + 9 = 25.

ANSWER 10, –10

ANSWER 4, –4

1. Solve x2 = 100.

ANSWER 2 5

3. Simplify 20.

ANSWER 6 cm

4. Find x.

Video attached

Page 2: 7.1 apply the pythagorean theorem

7.1

Page 3: 7.1 apply the pythagorean theorem

7.1

Find the length of the hypotenuse of the right triangle.

Example 1

SOLUTION

(hypotenuse)2 = (leg)2 + (leg)2 Pythagorean Theorem

x2 = 62 + 82

x2 = 36 + 64

x2 = 100

x = 10 Find the positive square root.

Substitute.

Multiply.

Add.

Page 4: 7.1 apply the pythagorean theorem

7.1Guided Practice

Identify the unknown side as a leg or hypotenuse. Then, find the unknown side length of the right triangle. Write your answer in simplest radical form.

1.

ANSWER Leg; 4

Page 5: 7.1 apply the pythagorean theorem

7.1

Identify the unknown side as a leg or hypotenuse. Then, find the unknown side length of the right triangle. Write your answer in simplest radical form.

2.

13hypotenuse; 2ANSWER

Guided Practice

Page 6: 7.1 apply the pythagorean theorem

7.1Example 2

SOLUTION

= +

Page 7: 7.1 apply the pythagorean theorem

7.1

Find positive square root.

Substitute.

Multiply.

Subtract 16 from each side.

Approximate with a calculator.

162 = 42 + x2

256 = 16 + x2

15.492 ≈ x

240 = x2

The ladder is resting against the house at about 15.5 feet above the ground.

ANSWER The correct answer is D.

Example 2

√240 = x

Page 8: 7.1 apply the pythagorean theorem

7.1Guided Practice

The top of a ladder rests against a wall, 23 feet above the ground. The base of the ladder is 6 feet away from the wall. What is the length of the ladder?

3.

about 23.8 ftANSWER

Page 9: 7.1 apply the pythagorean theorem

7.1

The Pythagorean Theorem is only true for what type of triangle?

4.

right triangleANSWER

Guided Practice

Page 10: 7.1 apply the pythagorean theorem

7.1Example 3

SOLUTION

Find the area of the isosceles triangle with side lengths 10 meters, 13 meters, and 13 meters.

STEP 1 Draw a sketch. By definition, the length of an altitude is the height of a triangle. In an isosceles triangle, the altitude to the base is also a perpendicular bisector. So, the altitude divides the triangle into two right triangles with the dimensions shown.

Page 11: 7.1 apply the pythagorean theorem

7.1 Use the Pythagorean Theorem to find the height of the triangle.STEP 2

Pythagorean TheoremSubstitute.

Multiply.Subtract 25 from each side.

Find the positive square root.

c2 = a2 + b2

12 = h

132 = 52 + h2

169 = 25 + h2

144 = h2

Find the area.STEP 3

= (10) (12) = 60 m212

The area of the triangle is 60 square meters.

Area = 12

(base) (height)

Example 3

Page 12: 7.1 apply the pythagorean theorem

7.1Guided Practice

Find the area of the triangle.

5.

ANSWER about 149.2 ft2

Page 13: 7.1 apply the pythagorean theorem

7.1

Find the area of the triangle.

6.

ANSWER 240 m2.

Guided Practice

Page 14: 7.1 apply the pythagorean theorem

7.1

Page 15: 7.1 apply the pythagorean theorem

7.1Example 4

SOLUTION

Find the length of the hypotenuse of the right triangle.

Method 1: Use a Pythagorean triple.

A common Pythagorean triple is 5, 12, 13. Notice that if you multiply the lengths of the legs of the Pythagorean triple by 2, you get the lengths of the legs of this triangle: 5 2 = 10 and 12 2 = 24. So, the length of the hypotenuse is 13 2 = 26.

. ..

Page 16: 7.1 apply the pythagorean theorem

7.1

Method 2: Use the Pythagorean Theorem.

x2 = 102 + 242

x2 = 100 + 576

x2 = 676

x = 26

Pythagorean Theorem

Multiply.

Add.

Find the positive square root.

Example 4

Page 17: 7.1 apply the pythagorean theorem

7.1Guided Practice

7.

ANSWER 15 in.

Find the unknown side length of the right triangle using the Pythagorean Theorem. Then use a Pythagorean triple.

Page 18: 7.1 apply the pythagorean theorem

7.1

Find the unknown side length of the right triangle using the Pythagorean Theorem. Then use a Pythagorean triple.

8.

ANSWER 50 cm.

Guided Practice

Page 19: 7.1 apply the pythagorean theorem

7.1Exit Slip

1. Find the length of the hypotenuse of the right triangle.

ANSWER 39

Page 20: 7.1 apply the pythagorean theorem

7.1

2. Find the area of the isosceles triangle.

ANSWER 1080 cm2

Exit Slip

Page 21: 7.1 apply the pythagorean theorem

7.1

3. Find the unknown side length x. Write your answer in simplest radical form.

ANSWER 4 13

Exit Slip

Page 22: 7.1 apply the pythagorean theorem

7.1Exit SlipExtra practice

Page 23: 7.1 apply the pythagorean theorem

7.1

Page 24: 7.1 apply the pythagorean theorem

7.1

HomeworkPg 454-457 #5, 12, 16, 26, 31