7. hydrogen atoms,4 - michigan state university · 2017. 11. 3. · normalization: 1 = fff 1124121...

45
7. Hydrogen Atoms,4 lecture 27, October 32, 2017 I crack myself up sometimes

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 7. Hydrogen Atoms,4

    lecture 27, October 32, 2017I crack myself up sometimes

  • housekeeping

    I got nothin’

  • today

    Hydrogen atom, more

  • WHERE WE WERE1

    .

    Schrodinger equation for 3 dimensional configuration

    - E'

    I . Er Cryer ) + resting 3fGm03o )+ rtzswzo Fan

    ]4Cno . on

    a[-

    Far4 ( no , g) = EH v. t.cl )reduced

    mass

    rneat.tl#EyhIIp3Ieaoti%a0ent+iEnaos4nemdr,

    a,on = Rue ( r ) Ye

    "

    ( 0.0 ) En = Effteogtfzznz"

    Eigen functions"

    "

    eigen valves"

  • QUANTUM NUMBERS of the QUANTVM CENTRAL FORCE SOLUTION

    n : Principle Quantum Number

    n= 1,2 , 3 . - . A

    l : Orbital Angular Momentum Quantum Number

    l= 0, 1,2 ... ( n - I ) Of l En

    \ connected to R

    me: Magnetic Quantum Number

    me = - l

    , - ltl

    , - l +2

    , . ,-1,0 , I , e. . l- I

    ,l

    - l E me < l

  • a few : Yen

    MATHEMMCA

  • l=2L=A✓ #

    L =

    AVTLz

    3k Lz = melt

    25zh

    gmet 2

    = 0,

    1,

    -1,

    2,

    -2

    A A ¢ me ,0 0•#a*mr=o- hi - hi # me= -1- 2h -2At.me: -2-3k

    me =- l

    ,

    - ltl,

    -1+2, . ,-1,0 , 1 , ... l

    - 1,

    l

  • Normalization :

    1 = fff 1124121 YA , a) tndvsitdddqall space

    1 = lotRchtdv§ ( "

    IYCA , g) Tswododq

    can sort of visualize2 different probability distributions :

    r21R(r)Tdr

    IYIY a e) Tsinododq

  • Most probable ? in hydrogen ,2=1

    - 2r/aoPlo = 4- me :

    P÷r4 = tap [ zri% . n ( yo )E% ]

    = 0 for extremum

    = 4- e"%[ zv . zado ]Gp

    : =) ✓ = Ao HOW COOL is THAT ?p (

    most probable p10 10

    0.6- v

    1-

    oiler. " a.

    A'"

    iii.... :

    .

    : " a.

  • Average"

    place"

    fn electron ?

    ( r ) = ( rpiolr ) vdr = 4g, µr3e→%°dr

    line | zheitdz = n !

    Change variables : z = 2%0

    ( v ) =Ag

    ( 3 ! ) Pioab

    . fmost probable

    < r > = } a .o , µ averageIta

    Va.

    WHERE IS THE ELECTRON ?

  • Average"

    place"

    fn electron ?

    ( r ) = ( rpiolr ) vdr = 4g, µr3e→%°dr

    line | zheitdz = n !

    Change variables : z = 2%0

    ( v ) =Ag

    ( 3 ! ) Pioab

    . fmost probable

    < r > = } a .o , µ averageIta

    Va.

    WHERE IS THE ELECTRON ?

  • Probability of electron outside the 1st Bohr orbit ?

    assume : Is

    x

    Pcr > a.) = f P , .cn ) drao

    =

    Qag ( r2e→%°dv another one if more integrals .

    = { f%j×d×|←£×d×= - tz(×+z×+z)[

    ×

    ×= 2%0

    : zPC ✓ s a.) = 5e - 0.68⇒ 43 of tn

    time ! How about clearly outside of

    its atom ?

    > v= looao- 83

    Pcr > lwa D= 10 to

  • How cmnt ZS state. . .

    YI → snuuvetnh .- r/2ao

    Rao = ctfap ( 2 - ⇒e

    -

    density peaks

    25 electrons spend

    a significant time

    in is land

  • Energy depends on n alone En= e-4

    "

    ( 4. € of ¥zznzTHE BOHR ENERGY

    But each n can have many ls'

    & me 's

    substantial degeneracy .

    #stat=

    - 0.85 4s 4p 4d 4f 1 + 3 +5 + 7 = 16

    -1.51 35 3P 3d 1+3+5 = 9

    -3.4 Zs ZP 1+3 = 4

    - 13,6 ← 15 1

    .

    # degenerates = n2 forH

  • TRANSITIONS l=0 l= 1 l=z l=3

    18 . n=4-1.5 . h=3

    -3,4

    ZPn=2

    Ecevj-5

    : 3.6 > ← h=1

    -15 -

    BOHR SCHROEDINGER

  • TRANSITIONS l=0 l= I l=z l=3

    i8 . n=4-1.5

    I Pcschen. n=3

    → µ§ Balmer

    zpn=z

    Eton"

    }yuman: 3.6 V > ← h=1

    -15 -

    ✓7

    translate

    to to in

    BOHR s .E . SCHROEDINGER

  • TRANSITIONS - - - the almost veal way.

    .

    m ,

    ftp..mg#seEafes"

    Be$ y

    in an

    www.er.mn,

    the t¥¥oYqY#±¥*§3a djosoinatina electricradiation or T \ P dipole4M¥he I =eF

    4a( r , A 4) & 4,3 ( r , A. y ) each wave functions for" levels

    "

    A & B

    → for a transition, they must

    "

    overlap"

    in the"

    presence

    "

    ofan electric dipole operator .

    < p >= |H4a*(r , 0 , g) QF 4,3 ( no , a) r2dvsi0d0d¢

    a-

    If integrals are zero ⇒ no transition from �1� → A

    non - zero ⇒ transitions from B → A can happen

    & calculation yields prob & rate

    C intensities )

  • ( p > = /rzR(rYaRCr)Bdr ffyeamact, of YMCA , a) sinododq.

    complicated . --

    but always control the"

    allowed"

    and"

    forbidden"

    non-zero transitions

    |* which become

    particular al 's

    t

    always Al=±1

    so : p → s ? sure

    s → s, pep ... ? hope

    "

    selection Rules"

    t not quite

  • SELECTION RULESl=0 l= 1 l=2 l=3

    18 . n=4-1.5 . n=3

    -3,4 ; ← h=1

    -15 -

    BOHR SCHROEDINGER

  • Orbiting electric charges → a magnetic moment . & µ

    Classical E. & M : current loop A ¥#.rmagnetic moment |µ|= IA ( R . H . rule )

    If an eieotrr charge going in a circle I = dye = 0¥ €7 v

    So L= mvr t

    vr= 2¥+ A = IN

    L=m(air )r

    = an

    II=

    2M¥ →B L

    µ= IA =

    QgA =

    Qzkmor F= zqmi

    '

    €H•- rere= . e- I tµZM

  • Strange superposition ofclassical & quantum mechanical notions :

    We found . .

    L= theme

    a vector w/ quantized projection onto Lz axis - Lz= met

    we have no preferred direction - . . jcould be anywhere

    something hurt pioh a particular direction and break that symmetry

    & define the"

    axisof quantization

    "

    Magnetic fields do that .

  • tEmHe÷¥¥

    ±¥q¥€Tf¥iB #

    IFEIEfItE5t@EfEaIBteidiYo.hYnathEy3aaIsniizaamJauqma0PyqIgiGEjrpgizemLz-tezImmewmaasaasnltgEeg.t

    .q!eg.accordingto L→

  • µz=- e- time defines Bohr Magneto µB=

    ezIm=9.3×152451,2 M

    µz=-

    µB me ⇒atomic magnetic moments can the

    threat. of

    as multiple , of µB .

    Remember : E =f× Be → seems to align Fand Be

    → a

    E = DI = Q Lx Bdt ZM

  • %B→

    de perpendicular to plane ofB&I

    =#.

    . .,

    , 1 - i

    ¥¥e.

    ←iµ, ldll

    = Lsinttdo→ :L4 d¢= 1=4L5m0 o : L Sino- :£- ...E , . -+ I toll¥€s'sEIf. ' ' a =t

    → :

    dld¢ d¢ = ltldtlsino

    dcf = Qhm( L Bino)dt

    Tino

    dof = Bzlfndt ⇒ precession @ angular

    frequency''

    we day= QI

    ZM

    Lavmov Frequency

  • Got a torque ? through an angle ?

    →you got work done

    dw = Edt

    dw = - µBsiQdO ( opposes B)

    dw = d ( ii. B )

    unh stored as potential energy: dw = - DV

    an induced magnetic potential energy V = - ii. B

    depends on :

    . B

    . the more aligned , the less is ✓

  • But... µ is quantized according to Lz µz=

    -

    µB me

    l=l,

    fn example :

    ' -

    Y from V = - F ' Bme of L

    - 1 ->

    ✓ is indeed quantized

    The magnetic field defines a particular direction In space

    → the quantisation axis , along Be . . . of

    ✓ = e- E. Be = e -1131LagZM

    ZM

    ✓ = MB meB

    me ranges over - l → + l

  • Bottom line :

    apply a magnetic field → energy levels change

    degeneracy lifted

    Lorentz Predicted , Zeeman discovered → bcfne Q . M .

    spectra : By 111

    13=0 BFO

    Mmejl ←} MBB

    - ⇒ I } MBBme . i

    / selection RULEA me = 0 , ± I-<me=O -✓

    l=o 4=1 4=0 l= 1

  • "

    NORMAL

    "

    ZEEMAN EFFECT

    1 → 3 splitting . -" normal

    "

    because classical picture predicts

    rough behavior

    "

    ANOMALOUS"

    ZEEMAN EFFECT

    1 → 4

    or \ experimentally confusing , classically , disturbing1 → 6

    "

    Stern - Gerlach Experiment"

    → slides !

  • “Spin”some%mesweuse“normallanguage”

    torefertoaphysicalpropertywithoutacommon-senseanalog

    andsome6mes,justtobesilly

    Rememberacurrentloop:where’stheBfield?

    B

    I

    Likeabarmagnet,withthenorthpoleup...

    RememberthatOerstedfoundthatacompassneedlefollowedtheBfield,sothissetupwouldalso

    externalBfield

    calleda“magne%cdipole”

  • dipolemomentcharacterizesthemagne%smofacurrentloop

    Acurrentloop’smagne%smcanbecharacterized

    μ

    I

    morecurrent,higherthemoment–theμ themoretorque

    μ iscalledthe“magne%cdipolemoment”

    externalBfield

    μ

  • Bohrwasnotthewholestory

    buthisquan%za%oncondi%onwasmostlycorrect

    Orbitalangularmomentum-thes,p,d,f,g,h,etcoriginateswithSchroedinger’sevolu%onofBohr’soriginalidea:

    L

    v

    L = mvr =nh

    2⇡

    InSchroedinger’smodel Lz = m`h

    2⇡

    But,theelectron’sorbitisaliMlecurrentB, μ

    I

    =0:s=1:p=2:detc

    externalBfield

    μ

    So,atomicorbitsshouldtwist

  • rememberspectroscopicnota8on

    fromChemistry?

    That’swhatOMoSternandWaltherGerlachsetabouttomeasurein1922...

    clevermagnetpoleshapes

    N

    SSo,theatomsmovetoalignthedipolewiththemagnetfield

    silveratoms

  • theBohrModelpredictedabunchofspots

    sinceSilverisacomplicatedatom:

    1s22s22p63s23p63d104s24p64d105s1

    IfBohrwasright

    IfBohrwaswrongWhattheysaw

    Separa%oninto2loca%ons,whichmadenosense.

    Separa%oninto2spots-evidenceof“quan%za%on”ofsomesort…why2?

    Somethingis“quan%zed”

  • youcan’talwaysdowhatyou’resupposedtodo

    youngDutchexperimentersGeorgeUhlenbeck*andSamGoudsmithadanidea

    toldbytheiradvisor“don’tpublish”

    theydid.

    μ

    *eventuallyprofessoratUofM

    Theelectronislikeaspinningcharge...

    Likefororbitalangularmomentum,

    Lz = m�h

    2�

    Electronshaveanintrinsicangularmomentum

    Sz = msh

    2⇡

    But,the“spin”canonlytakeontwovalues:

    ms = +12

    ms = �12

    or

    Wesay“spin,plus1/2”or“spinup”and“spin,minus1/2”or“spindown”

    + 1/2

    – 1/2

  • Stern & Gerlach got a hodge . podqe of results

    Oxygen 5 spots 2s2zp4

    silver 2 spots - . - 5s

    Interpreted as an angular - momentum - like seletim rule w|"

    l"

    = Yz

    Your 'e not much if you're not Dutch . . .

    Govdsmit & Vhlenbeoh pound

    electron has an inherent puberty : "

    spin"

    5=42with projections

    like L : 1 staffe = aye

    Yzt -'

    iii.s

    s / i , Isl = Dehf f

    - yztn

    ¥↳ Sy = ± Yztn = mstns

  • spin

    has features like angular momentum . - magnetic - like

    NO CIRCULAR CURRENTS !

    NO CHARGES GOING AROUND ANYTHING !

    NOT A BALL OF CHARGE ROTATING1

    . €¥§#SPIN IS INHERENT TO ELECTRONS

    tDEFINE AN ELECTRON !

    lousy name !

    no - thing is" spinning

    "• An excitation of the

    electron field

    • having mass = 0.5N new

    . having electric charge = - 1.6×15 '9c

    • having intrinsic spin = You

  • '

    Magnetic Moment

    E's = - age e- sZme

    /a fudge factor . - measurable : gyromagnetic

    ratio ( stay tuned )

    No reason or " implementation"

    of spin in Quantum Mechanics

    Until 1928 ! Paul Divac → first relativistic quantum mechanics

    The Divac Equation designed to deal with negative E

    • 4 wave functions resulted

    �2�with + energies → electron

    oosterhof" { @with - energies -7 anti - electron

    mathematics

    Spin is an inherently Relativistic property of electrons . . .

  • . . .and neutrons

    , protons → all" fermions

    "

    Also a quantum mechanics of integer- spin excitations → all

    "

    bosons"

    S = 0 pious . kaons . Hits boson

    . - -

    S = 1 photon , rwo meson , W , Z - -

    (that's why al = ±l

    Angular momentum is conserved -8 radiates away

    and tales angular momentum oftt from system

    So,

    Al is reduced .

  • ABOUTg

    .

    We have 2 moments now :

    orbital avatar momentum " Re = - MfE ( = - guest )

    spin

    "

    intrinsic"

    angular momentum: F's = -

    2M¥I ( = - go.gg

    § )

    gs is strictly a relativistic quantity .

    gs=2

    geis sometimes included .

    get

  • More g .

    e¥e•gF×=h¥a# onits ,

    "

    strength gearinteraction

    "

    Relativistic Quantum Field Theory

    ex

    @

    •te ¥}8 since x small , each additional× } " vertex " is smaller than predecessor .8

    Full treatment of electrons requires

    Aav y

    + + }+

    0 ×

    } } 3m

    + combinations & additional TToetc .

    } §

  • Contributions addup

    and modify

    static properties if he electron

    its (e) = ge e- sZmec

    (net effect is to wrdify get

    2

    "

    g- 2"

    . . .

    "

    qee minus two"

    ...

    a race fn precision

    between theory ( . 103 individual Feynman diagrams )

    and experiment ( heroic Penning Trap experiments )

  • Conventionally , what 's reported is

    Ae = £-2z

    - 13

    experiment : AE"

    = 1 1596521807.3 ( 2. 8) xlo

    =

    0.00115965218073±0,00000000000028

    theory Ase"

    = 0,00115965218178

    ± 0.00000000000006 ( 4 loop uncertainties )

    ±

    0,00000000000004( 5 loop uncertainties )

    HAD± 0,00000000000002 Sae±

    0.00000000000076Saens

    ( L )

    AFM - Asen = - 10.5 ( 8. 1) × 1513 1,1J difference

    The most precise enunciation about naturein the history of . . everything