6hdufkhv ’ lvfryhulhvqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0...

42
6XSHUV\PPHWU\WKHRU\ ([SHULPHQWDOVLJQDWXUHV ([DPSOHVRI5XQ,VHDUFKHV 1HZSRVVLELOLWLHVLQ5XQ,, )LQDO5HPDUNV 6HDUFKHV’LVFRYHULHV -LDQPLQJ4LDQ 7KH8QLYHUVLW\RI0LFKLJDQ

Upload: others

Post on 11-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6XSHUV\PPHWU\�WKHRU\([SHULPHQWDO�VLJQDWXUHV([DPSOHV�RI�5XQ�,�VHDUFKHV1HZ�SRVVLELOLWLHV�LQ�5XQ�,,)LQDO�5HPDUNV

6HDUFKHV��'LVFRYHULHV

-LDQPLQJ�4LDQ7KH�8QLYHUVLW\�RI�0LFKLJDQ

87(9��)HUPLODE1RYHPEHU���������

Page 2: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

H H

V H

H H

H HF

7KHRUHWLFDO�3UREOHPV

$V�PXFK�DV�ZH�ORYH�WKH�6WDQGDUG�0RGHO�LW�LV�XQOLNHO\�WR�EH�D�FRPSOHWH�WKHRU\

6WDQGDUG�0RGHO�GRHV�QRW�LQFRUSRUDWH�JUDYLW\

6WURQJ��HOHFWURPDJQHWLF�DQG�ZHDN�LQWHUDFWLRQV�GR�QRW�XQLI\�DW�KLJK�HQHUJLHV�ZLWKRXW�QHZ�SK\VLFV 0

10

103

–1

105 107 10

Grand Unified(GUT) Scale

No Supersymmetry

9 10Energy Scale, [GeV]

Inve

rse c

ouplin

g c

onst

ant

µ

( )

α µ

–12( )α µ

–11( )α µ

–13( )α µ

11 1013 1015 1017

20

30

40

50U(1) E.M. Force

SU(2) Weak Force

SU(3) Strong Force

60

+LJJV�ERVRQ�PDVV�UHFHLYHV�UDGLDWLYH�FRUUHFWLRQV�ZKLFKDUH�TXDGUDWLFDOO\�GLYHUJHQW

Page 3: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

:KDW�LV�WKH�6XSHUV\PPHWU\"

,W�LV�D�WKHRU\�SRSXODU�WKHRUHWLFDOO\�EXW�

XQREVHUYHG�H[SHULPHQWDOO\

3URYLGHV�D�VROXWLRQ�WR�+LJJV�PDVV�SUREOHP

2IIHUV�D�SDWK�WR�WKH�LQFRUSRUDWLRQ�RI�JUDYLW\

8QLILHV�VWURQJ��HOHFWURPDJQHWLF�DQG�ZHDN�IRUFHV�DW�KLJK�HQHUJLHV

3UHGLFWV�WKH�UDGLDWLYH�EUHDNLQJ�RI�(:�V\PPHWU\

0

10

103

–1

105 107 10

Grand Unified(GUT) Scale

?

With Supersymmetry

9 10Energy Scale, [GeV]

Invers

e c

ouplin

g c

onsta

nt

µ(

)

α

µ

–12( )α µ

–11( )α µ

–13( )α µ

11 1013 1015 1017

20

30

40

50U(1) E.M. Force

SU(2) Weak Force

SU(3) Strong Force

60

)RU�HYHU\ +HWKHUH�LV�D 6KH

Page 4: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

Standard Model Particles

W±H± γ Z h H A u d e ν ......

χ~±

2 χ~±

1 χ~0

4 χ~0

3 χ~0

2 χ~0

1

u~

L d~

L e~

L ν~

L

u~

Rd~

R e~

R ν~

R

..~..~..~

Supersymmetric Particles

⇓ ⇓ ⇓

)RU�HYHU\�VSLQ�GHJUHH�RI�IUHHGRP�LQ�60��WKHUH�LV�D�VXSHUV\PPHWULF�VSLQ�GHJUHH�RI�IUHHGRP

6XSHUV\PPHWULF�0RGHOV

7KH�VLPSOHVW�VXSHUV\PPHWULF�PRGHOLV�WKH�PLQLPDO�VXSHUV\PPHWULF�VWDQGDUG�PRGHO��0660��

����$Q�H[WUD�+LJJV�GRXEOHW�RI�RSSRVLWH�K\SHUFKDUJH����6XSHUV\PPHWUL]LQJ�WKH�JDXJH�ILHOG

/RWV�RI�QHZ�SDUWLFOHV�⇒ ORWV�RI�RSSRUWXQLW\

Page 5: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

δπ π

απ

mg

mg

m O m mHF

FB

B B F2

22 2

22 2 2 2

4 4= −������ + +

������ + ≈ �

��� −Λ Λ3 8 3 8 | |

+LJJV�0DVV�6ROXWLRQ

H H

Fermions

H HBosons ......

H H

Bosons

H HFermions ......

6WDQGDUG�0RGHO 6XSHUV\PPHWU\

:LWK�VXSHUV\PPHWU\IHUPLRQ�DQG�ERVRQ�ORRSV�KDYH�RSSRVLWH�VLJQV

WKHUH�DUH�HTXDO�QXPEHUV�RI�ERVRQV�DQG�IHUPLRQV

7KH�GLYHUJHQFH�FDQFHOV�IRU�LGHQWLFDO�FRXSOLQJV

6XSHUV\PPHWU\�PDVV�VFDOH�~ ��7H9<

LI�δm mH H2 2<a

Page 6: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

+LVWRULFDO�*XLGDQFH

7R�VROYH�.�→µµ GHFD\�SUREOHP��WKH�FKDUP�TXDUN�ZDV�SRVWXODWHG

:�ERVRQ�ZDV�LQWURGXFHG�WR�PDNH�σ(eνe→eνe) ILQLWH

K0

d

s_

u

W

W

µ+

µ-

νµ

+

K0

d

s_

c

W

W

µ+

µ-

νµ

σ ⇒ G2F s

π

W

σ ⇒ G2F M

2W

π

W

W

W

W+

W

W

W

W

H

( )ERVRQ�+LJJV�WKH�LQWURGXFHG�ZH��ILQLWH��PDNH�7R −+−+ → LLLL WWWWσ

Page 7: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6XSHUV\PPHWU\�%UHDNLQJ

6XSHUV\PPHWU\�PXVW�EH�EURNHQ

7KH�V\PPHWU\�LV�DVVXPHG�WR�EH�EURNHQ�LQ�D�KLGGHQ�VHFWRU��D�PHVVHQJHU�VHFWRU�PHGLDWHV�

WKH�EUHDNLQJ�WR�WKH�YLVLEOH�VHFWRU

'LIIHUHQW�PHGLDWLRQ�OHDGV�WR�GLIIHUHQW�FODVVHV�RI�PRGHOV

*UDYLW\�LQVSLUHG�PRGHOV7KH�PHVVHQJHU�LQWHUDFWLRQ�LV�RI�JUDYLWDWLRQDO�VWUHQJWK

*DXJH�PHGLDWHG�PRGHOV60�JDXJH�LQWHUDFWLRQV�SOD\�WKH�UROH�RI�PHVVHQJHU�IRUFH

ν γν χ χ

�� � � � � �

� � � � �

l

l

q g W H Z hHA

q g

± ±±~ ~ ~ ~ ~ ~0

+LGGHQ�6HFWRU 9LVLEOH�6HFWRU

0HVVHQJHU

Page 8: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

5�3DULW\��/636XSHUV\PPHWU\�SKHQRPHQRORJ\�GHSHQGV�RQ���� :KHWKHU�5�SDULW\�LV�FRQVHUYHG��� :KDW�LV�WKH�OLJKWHVW�VXSHUV\PPHWULF�SDUWLFOH��/63�

,I�5�SDULW\�LV�FRQVHUYHG���� 6XSHUV\PPHWULF�SDUWLFOHV�DUH�SDLU�SURGXFHG��� +HDY\�VSDUWLFOHV�GHFD\�WR�OLJKWHU�VSDUWLFOHV��� /63�LV�VWDEOH��QR�DYDLODEOH�GHFD\�PRGH�

&RVPRORJLFDO�FRQVLGHUDWLRQ�VXJJHVWV�WKDWWKH�/63�LV�QHXWUDO�LQ�HOHFWULF�DQG�FRORU�FKDUJHV

/63�FDQGLGDWHV�DUH�1HXWUDOLQR��VFDODU�QHXWULQR��JUDYLWLQR��«

5�SDULW\�FRQVHUYDWLRQ�JHQHUDOO\�OHDGV�WRPLVVLQJ�(7 VLJQDWXUH�

Page 9: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

0LQLPDO�6XSHU*UDYLW\�0RGHO6XSHUV\PPHWU\�EUHDNLQJ�VFDOH�LV�JHQHUDO�RI�a��� � 7H9

P68*5$�DVVXPHV�VFDODU�DQG�JDXJLQRPDVV�XQLILFDWLRQ�DW�*87�VFDOH

à $�PDVVLYH�JUDYLWLQRà 7KH�OLJKWHVW�60�VXSHUSDUWQHU�LV�WKH�/63

+DV�IRXU�FRQWLQXRXV�DQG�RQH�GLVFUHWH�IUHH�SDUDPHWHUV�DW�*87�VFDOH

P�

FRPPRQ�VFDODU�PDVV�SDUDPHWHUP

���FRPPRQ�JDXJLQR�PDVV�SDUDPHWHU

$�

FRPPRQ�WULOLQHDU�FRXSOLQJWDQβ UDWLR�RI�9�(�9��RI�WKH�+LJJV�GRXEOHWV6LJQ�µ� VLJQ�RI�KLJJVLQR�PDVV�SDUDPHWHU

P68*5$�SUHGLFWV�UDGLDWLYH�EUHDNLQJ�RIWKH�HOHFWURZHDN�JDXJH�V\PPHWU\

Page 10: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

0LQLPDO�*DXJH�0HGLDWLRQ�0RGHO

0LQLPDO�*DXJH�0HGLDWLRQ�0RGHO��0*0�Λ VXSHUV\PPHWU\�EUHDNLQJ�VFDOH0

PPHVVHQJHU�VHFWRU�VFDOH

1 QXPEHU�RI�PHVVHQJHUVWDQβ UDWLR�RI�9�(�9��RI�WKH�+LJJV�GRXEOHWV6LJQ�µ� VLJQ�RI�WKH�KLJJVLQR�PDVV�SDUDPHWHU

6XV\�EUHDNLQJ�VFDOH�FDQ�EH�DV�ORZ�DV�a�����7H9⇒ $Q�H[FHHGLQJO\�OLJKW�JUDYLWLQR⇒ *UDYLWLQR�LV�QDWXUDOO\�WKH�/63

7KH�SKHQRPHQRORJ\�GHSHQGV�RQ�WKHQH[W�OLJKWHVW�VXSHUV\PPHWULF�SDUWLFOH��1/63�

~ ( , , ) ~ ~ ~χ γ τ τ10 → + → + h Z G G

/HDGLQJ�WR�DQRPDORXV�SURGXFWLRQ�RI�HYHQWVZLWK�SKRWRQ�WDX�DQG�ODUJH�PLVVLQJ�(

7

Page 11: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

+DGURQ�&ROOLGHU�&KURQLFOH�

10 GeV

100 GeV

1 TeV

10 TeV

1960 1970 1980 1990 2000 2010Year

ISR

Spp_S

Tevatron

LHC

100 nb-1

1 pb-1

10 pb-1

100 pb-1

1 fb-1

10 fb-1

Spp_S

TeV Run I

TeV Run II

TeV Run IIIs L

������,65�DW�&(51������6SS6�DW�&(51������7HYDWURQ�DW�)HUPLODE������/+&�DW�&(51

SS��KLJK�S �SK\VLFV��PLVVHG�-� �

SS��: � =�GLVFRYHULHVSS��WRS�GLVFRYHU\�����

SS��"""

7 ψ

Page 12: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

+DGURQ�&ROOLVLRQ�.LQHPDWLFV

p p_ (p)

Hard Scattering)RU�WKH�SXUSRVH�RI�KDUG�VFDWWHULQJ��D�SURWRQ��DQWL�SURWRQ��LV�D�EURDG�EDQG��XQVHOHFWHG�EHDP�RI�TXDUNV��DQWL�TXDUNV�DQG�JOXRQV�

7RWDO�HQHUJ\�LV�XQNQRZQ7RWDO�ORQJLWXGLQDO�PRPHQWXP�LV�XQNQRZQ7RWDO�WUDQVYHUVH�PRPHQWXP�LV�]HUR

E/ T

R-φ plane

(Transverse Plane)

7KH�WRWDO�WUDQVYHUVH�HQHUJ\RI�LQYLVLEOH�SDUWLFOHV�FDQ�EHLQIHUUHG�IURP�YLVLEOH�SDUWLFOHV

r r

r r r

E E

E E E

T T

T T T

inv vis

inv vis

∑ ∑

∑ ∑

+ =

/ ≡ = −

0

Page 13: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

)URP�&ROOLVLRQ�WR�'HWHFWLRQ

$Q�HQHUJHWLF�TXDUN�RU�JOXRQ�DSSHDUV�LQ�D�GHWHFWRU�DV�D�MHW�RI�FRORUOHVV�KDGURQV

q

q_

q

q_

q

q_, q,

q_ Jet

Jetdistance

α s

+HDY\�TXDUNV�OHSWRQV�GHFD\�YLD�ZHDN�LQWHUDFWLRQ�WR�WKHLUOLJKWHU�FRXQWHUSDUWV�ZKHQHYHU�NLQHPDWLFDOO\�DOORZHG

(stable) m 650~c W(delayed) m 90~c W(delayed) m 470~c cWb(prompt) fm 1~c bWt

*

*

*

τν→µµτν→τµτ→

τ→

µ

τ

2FFXU�DW�DQ�HQHUJ\�VFDOH�Λ4&'

a����0H9

τµννν τµ

e

bsd

tcu

e

2/3

−1/3

0

−1

Page 14: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6LJQDO�&URVV�6HFWLRQV

Mass (GeV/c2)

Cro

ss S

ectio

n (fb

)

10-1

1

10

10 2

100 150 200 250 300

Mass (GeV/c2)C

ross

Sec

tion

(pb)

10-1

1

10

10 2

150 200 250 300 350 400

pp e e X→ +~~

pp q g X→ +~ / ~

m mq g~ ~=

m me eR L~ ~=

3URGXFWLRQ�KDV�OHVV�GHSHQGHQFH�RQ�VXV\SDUDPHWHUV�WKDQ�GHFD\V

6TXDUNV�DQG�JOXLQRVGRPLQDQW�WKH�SURGXFWLRQDW 7HYDWURQ LI�DFFHVVLEOHNLQHPDWLFDOO\

&URVV�VHFWLRQV�IRU�VFDODUOHSWRQV�DUH�VPDOO

s = 18. TeV

~q

~q

~*q

g

g

g

~q

~q

q

q

Page 15: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

1 fb

1 pb

1 nb

1 µb

1 mb

Cross Section

Jet

bb_

W/Z

tt_

HiggsNew ?

1

103

106

109

1012

Events

pp_ → X

TeV 8.1s =

7KH�FURVV�VHFWLRQ�IRU�QHZ�SK\VLFV�LV�VPDOOFRPSDUHG�ZLWK�GRPLQDQW�6WDQGDUG�0RGHO�SURFHVVHV

/HSWRQV��e��µ��DQG�PLVVLQJ�(

7DUH�WKH�NH\V�

� PLVVLQJ�(7UHVROXWLRQ

� OHSWRQ�LGHQWLILFDWLRQ�HIILFLHQF\�� OHSWRQ�IDNH�UDWH

%DFNJURXQG�&URVV�6HFWLRQV

Page 16: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

pp WZ E E XWW E E X

T T

T T

→ → + / ⇒ + / +→ + / ⇒ + / +

±

± ±

~ ~~ ~

, ,

,

χ χχ χ

1 20 1 2 3

1 11 2

l

l

pp qq X jets Ejets Ejets Ejets Ejets E

pp gg X jets E

T

T

T

T

T

T

→ → + ⇒ + /+ ⇒ + / ++ ⇒ + / ++ ⇒ + / ++ ⇒ + / ++

→ → + ⇒ + / +

±

± ±

±

±

± ± ± ±

~~ ~ ~~ ~~ ~~ ~~ ~

~~ ~ ~

χ χχ χχ χχ χχ χ

χ χ

10

10

1 10

1 1

20

10

1 20

1 1

......

l

l l

l l

lll

l l

m m

m

Signatures: pp SUSY E j

T

n m→ ⇒ / + +l

)RU�PRVW�RI�WKH�SDUDPHWHU�VSDFH��WKH�OLJKWHVW�QHXWUDOLQR�LV�WKH�/63

~ (~ )χ χi j0 ±

~χ10

Z W( )~ ~~ ~

~ ~~ ~

χ χχ χ

χ

i

j

ZW

q qg q q

010

10

10

→→

→→

±

P68*5$�6LJQDWXUHV

Page 17: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

t∼1 → cχ

∼10

t∼1 → bχ

∼1+

t∼1 → bWχ

∼10 t

∼1 → tχ

∼10

q

q

g

1~t

1~t

01

01

c

c1~t

01

~χ+

1~χ

cb

*W

,Q�PDQ\�VXSHUV\PPHWU\�PRGHOV��VWRS��DQG�VERWWRP��FDQ�EH�VLJQLILFDQWO\�OLJKWHU�WKDQ�RWKHU�VTXDUNV

Assuming pair production of will yield two acoplanar - jets

Br b bb

b

(~ ~ )

~1 10

1

100%→ =χ

b~

1

χ~

10

b

~ ~ ~~ ~t b Wbt c1 1 1

0

1 10

→ + → +→ +

±χ χχ

[R. Demina]

6LJQDWXUHV����H[FHVV�RI�60�WRS�HYHQWV���WZR�DFRSODQDU�F�MHWV���PLVVLQJ�(

7

6LJQDWXUHV�WZR�DFRSODQDU�E�MHWV���PLVVLQJ�(

7

6WRS�DQG�6ERWWRP�6LJQDWXUHV

�$OVR�H[SHFWHG�IURP�:+��=+�

Page 18: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6LJQDWXUHV�GHSHQG�RQ�WKH�QH[W�OLJKWHVW�VXSHUV\PPHWULF�SDUWLFOH��1/63�

~ ~, ~, ~~χ γ

1

0 →→

G ZG hGG

l l

pp SUSY NLSP jE jE jE j h

n m

Tn m

Tn m

Tn m

→ ⇒ + +⇒ / + + +⇒ / + + +⇒ / + + +

2 l

l

l ll

l

( ))

( )......

γγ

γ�

'HSHQGLQJ�RQ�WKHLU�OLIHWLPHV��1/63V�FDQGHFD\�DW�WKH�SURGXFWLRQ�YHUWH[��

LQVLGH�DQG�RXWVLGH�GHWHFWRU⇓

GLVSODFHG�SKRWRQVKRW�FHOOV

VORZ�PRYLQJ�SDUWLFOHVNLQNHG�WUDFNV

Signatures: , ... T T Tγγ γ/ / /E E bb Ell , ,

0*0�6LJQDWXUHV

Page 19: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

In addition to the SM interactions, following interactions are allowed

~l i

q j

q k

λ ’ i j k

~ν i

l j

l k

λ i j k

~q i

q j

q k

λ " i jk

Resulting lepton and baryon number violationsas well as the R-parity violation

B - violating " couplings will lead tomultijet events without E

λ ijk

T/The L - violating and ’ couplings

will give rise to multilepton eventsλ λijk ijk

Frequent assumptions:1) R-parity violating LSP decay2) couplings are not too week or too strong3) terms with similar event topology dominate

~ ~ )~ ~ )

*

*

χ νν ν λχ λ

10

10

→ ⇒→ ⇒

ll

ll l

(

( ’ijk

ijkqq

Signatures

:( )pp SUSY j En m

T→ ⇒ + + /l

5�SDULW\�9LRODWLQJ�6FHQDULR

Page 20: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6XPPDU\�RI�6LJQDWXUHV

/HSWRQLF�6LJQDWXUHV6LQJOH�OHSWRQ�'L�OHSWRQ

RSSRVLWH�VLJQ�OLNH�VLJQ+HDY\�FKDUJHG�SDUWLFOHV

7UL� �PXOWL�OHSWRQFKDUJLQR�QHXWUDOLQR�5�SDULW\�YLRODWLQJ

τ HYHQWV

3KRWRQLF�6LJQDWXUHV6LQJOH�SKRWRQ'LSKRWRQ

-HW�6LJQDWXUHVE�TXDUN�MHWVF�TXDUN�MHWVMHWV

([SHULPHQWDO�VLJQDWXUHV�FDQ�EH�JURXSHG�LQWR�WKUHH�EURDG�FDWHJRULHV

6XSHUV\PPHWU\�FDQ�UHVXOW�DOPRVW�DQ\�ILQDO�VWDWH

6HDUFK�IRU�6XSHUV\PPHWU\___

6HDUFK�IRU�1HZ�3K\VLFV

Page 21: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

,I�+ �DUH�OLJKW��WKH\�FDQ�EH�SURGXFHG�LQ�WRS�TXDUN�GHFD\V�

±

→t Hb

7KHUHIRUH� �ZLOO�FRPSHWH�ZLWKWKH�VWDQGDUG�PRGHO� �GHFD\

t Hbt Wb

→→

H cs Wbb+ → , ,τν

[D. Chakraborty]

100 pb-1

500 pb-1

2 fb-1

0

2

4

6

8

10

12

14

16

18

20

140 150 160 170 180 190 200Top Quark Mass (GeV/c2)

Cro

ss S

ectio

n (p

b)

Laenen et al.

Berger et al.

Catani et al.

6HDUFK�IRU�&KDUJHG�+LJJV

6XSHUV\PPHWU\�FDQQRW�H[LVWZLWKRXW�FKDUJHG�KLJJV�ERVRQV

:LWKRXW�NQRZLQJ�LW��\RX�PLJKW�EHVHDUFKLQJ�IRU�VXSHUV\PPHWU\

Page 22: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

mq =

m g~

~

CD

F D

ilept

on

Previous DØ Jets + ET(MSSM)

This experiment95% CL Jets + ET(MLES: tan = 2, A0 = 0, < 0)

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

UA

1/U

A2

DELPHI / Mark II

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

0 100 200 300 400 500 6000

100

200

300

400

CDF Jets + ET

mgluino (GeV/c2)

msq

uark

(GeV

/c2 )

mq < m

No correspondingMLES model

6TXDUNV�DQG�JOXLQRV�FDQ�EH�FRSLRXVO\�SURGXFHG�DW�7HYDWURQ�LI�WKH\�DUH�OLJKW

'������SE²���VHDUFKHG�IRU�HYHQWV�ZLWK�MHWV�DQG�PLVVLQJ�(

7

q~

χ~

i0

q

g~

q~

q

χ~

i0

q

-HWV�(7 )LQDO�6WDWH

7KH�VLJQDWXUH�IRU� �SURGXFWLRQLV�WKHUHIRUH�-HWV�

pp qq qg gg XET

→ +/

~~, ~~, ~~

$GYDQWDJH�/DUJH�FURVV�VHFWLRQ

'LVDGYDQWDJH�+XJH�4&'�EDFNJURXQG

�$OVR�H[SHFWHG�IURP�/4�

Page 23: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

10-1

1

10

10 2

10-6

10-5

10-4

10-3

10-2

10-1

1

Data - 88 pb-1

W/Z/Top + QCD

t∼1 110 GeV/c2 LSP 40 GeV/c2

b∼

1 140 GeV/c2 LSP 40 GeV/c2

min JP

-HWV��E�F��(7 )LQDO�6WDWHV

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

BR (t∼1 → c + χ

∼10) = 100%

max t∼-Z0 coupling

min t∼-Z0 coupling

D0/7.4 pb-1

ALEPH√s=189 GeV

M(t

∼ 1)=

M(c

)+M

(χ∼ 10 )

M(t

∼ 1)=

M(b

)+M

(W)+

M(χ

∼ 10 )

CDF 95% CLexcluded

M(t∼1) (GeV/c2)

M(χ∼ 10 ) (

GeV

/c2 )

CDF Preliminary88 pb-1

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

BR (b∼

1 → b + χ∼

10) = 100%

max b∼-Z0 coupling

min b∼-Z0 coupling

D0/RUN I

ALEPH√s=189 GeV

M(b

∼ 1)=

M(b

)+M

(χ∼ 10 )

CDF 95% CLexcluded

M(b∼

1) (GeV/c2)

M(χ∼ 10 ) (

GeV

/c2 )

CDF Preliminary88 pb-1

&')�VHDUFKHG�IRU�HYHQWVZLWK�KHDY\�TXDUN�MHWV�DQGODUJH�PLVVLQJ�(

7

E� DQG�F�TXDUN�MHWV�DUH�WDJJHGXVLQJ�WKH�YHUWH[�LQIRUPDWLRQ

Page 24: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

95% C.L. Excluded Region

DØ Preliminary

LEP I Excluded(dotted lines)

tan 2.0

3.0

4.0

5.06.0

β

Excluded

m0 in GeV/c2

m1/

2 in

GeV

/c2

µ < 0A0 = 0

0

20

40

60

80

100

0 50 100 150 200 250 300

6TXDUNV�DQG�JOXLQRV�FDQ�DOVR�UHVXOW�LQ�GLOHSWRQ�ILQDO�VWDWHV

q

q_

gq~

q

χ~0

2

χ~0

1

Z*

q~

q

χ~±

1

χ~0

1

W*

l

l

q ’

q

'LOHSWRQ�)LQDO�6WDWH

pp SUSY jj ET→ ⇒ + /ll

$GYDQWDJH�5HODWLYH�VPDOO�EDFNJURXQG

'LVDGYDQWDJH�6PDOO�SURGXFWLRQ�UDWH/RZ�HIILFLHQF\

'���εa����

6LJQDWXUH��GLOHSWRQ�HYHQWV�ZLWK�WZR�MHWV�DQG�ODUJH�PLVVLQJ�(

7

Page 25: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

bb–/cc

t t–

1R�HYHQWV�REVHUYHG�ZLWK���������H[SHFWHGEDFNJURXQG�HYHQWV�

/LNH�6LJQ�'LOHSWRQV

&')�VHDUFKHG�IRU�

�HYHQWVl lm± jj

~~ ( ~)( ~)( )( )

~~ ( ~ )( ~ )( ’ )( ’ )

......

gg cc cccc d d

qq q qqq qq qq

→⇒→⇒

+ +

± ±

���

���

l l

l l

χ χ10

10

([SHFWHG�IURP�

9HU\�VPDOO�EDFNJURXQG

Page 26: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

~χ 10 ~e

e

λ ’1 j k

q j

q k

pp SUSY eejjjj→ ⇒ →~ ~χ χ10

10

'LOHSWRQ�-HWV�)LQDO�6WDWH

6LJQDWXUH��WZR�HOHFWURQV�ZLWK�IRXU�MHWV�DQG�QR�PLVVLQJ�(

7

'��6WXGLHG�WKH�FDVH�WKDW�DOO� �FRXSOLQJV�DUH

VPDOO�H[FHSW� �ZLWKLQ�WKH�IUDPHZRUN�RI�P68*5$

/Rp

jkλ1’

mg̃ = 280 GeV/c2

mg̃ = 330 GeV/c2

mg̃ = 227 GeV/c2

m g̃ =

mq̃ m

q̃ = 243 GeV/c 2

mq̃ = 273 G

eV/c 2

m0 (GeV/c2)

m1/

2 (G

eV/c

2 )

No

EW

SB

ν̃ LSP This experiment 95% C.L.

%DFNJURXQGV�0LVLGHQWLILFDWLRQ'UHOO�<DQ�SURFHVV

7ZR�HYHQWV�REVHUYHG�ZLWK���±����HYHQWV�H[SHFWHG

Page 27: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

%RWK�&')������SE²���DQG�'���a���SE²����VHDUFKHG�IRU�eee, eeµ, eµµ, µµµ HYHQWV�LQ�5XQ�,

35/������������������35/����������������

1R�HYHQWV�ZHUH�REVHUYHG�LQ�HLWKHU�H[SHULPHQW7KH�H[SHFWHG���RI�EDFNJURXQG�HYHQWV�LV�

��������IRU�&')�DQG���������IRU�'�

q

q_´

W*χ~

χ~0

1

W*

χ~0

2

χ~0

1

Z*

l

l

l

ν3URGXFWLRQ�RI� �Z LOO�OHDG�WR�WULOHSWRQ�HYHQWV�Z LWK� �

~ ~χ χ1 20±

/E T

7ULOHSWRQ�)LQDO�6WDWH

2QH�RI�WKH�FOHDQHVW�VLJQDWXUHVRI�VXSHUV\PPHWU\

0DLQ�EDFNJURXQGV�DUH:=��WRS�TXDUN��PLVLGHQWLILFDWLRQ

Page 28: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

10-2

10-1

1

10

50 60 70 80 90 100 110

M(χ∼±

1) (GeV/c2)

σ⋅B

r(χ∼

± 1χ∼

0 2→ trile

pto

ns

+ X

) (p

b)

CDF Preliminary ∫ L dt = 106 pb-1

CDF 95% C.L. Upper Limit

D∅ 95% C.L. Upper Limit

minimal SUGRA tan β = 2

A = 0 µ < 0

a)

b)

c)

d)

m0 = 2500 GeV/c2

m0 = 100 GeV/c2

&KDUJLQRV�DQG�1HXWUDOLQRV7KH�QXOO�UHVXOWV�ZHUH�LQWHUSUHWHG�ZLWKLQ�WKH�IUDPHZRUN

RI�0660�PRGHOV�ZKLFK�JLYHm m m~ ~ ~χ χ χ1 2

0102± ≈ ≈

7KH�W\SLFDO�HIILFLHQF\�LV�������IRU�&')�DQG������IRU�'��ZKHQ�FKDUJLQR�PDVV�LV�YDULHG�IURP����WR�����*H9

$GYDQWDJH�6PDOO�EDFNJURXQG

'LVDGYDQWDJH�6PDOO�FURVV�VHFWLRQ/RZ�HIILFLHQF\

6LPLODU�WR�GLOHSWRQ�LQWRS�TXDUN�VHDUFK�DQGGLVFRYHU\

Page 29: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

R/ P SUSY λ121 χ10 χ1

0 → llll

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

LSP = ν̃

Unphysical

Mq̃ =200 GeV

Mq̃ =300 GeV

Mq̃ =400 GeV

M g̃=200 GeV

Mg̃=300 GeV

Mg̃=400 GeV

Mg̃=500 GeV

M0 [GeV]

M1/

2 [GeV

]

95% C.L. excluded

CDF Preliminary∫ L dt = 87.5 pb-1

ISAJET 7.20tanβ=2µ < 0

6LJQDWXUH��(YHQWV�ZLWK�IRXU�OHSWRQV

2QH�HYHQW�REVHUYHG�FRPSDUHG�ZLWK��������HYHQWV�H[SHFWHG

~χ 10

~ν i

l j

l k

ν i

λ i j k

pp SUSY X→ ⇒ → +~ ~χ χ10

10 llll

)RXU�/HSWRQ�)LQDO�6WDWH&')�VWXGLHG�WKH�FDVH�ZLWK�D�GRPLQDQW

�LQ�WKH�P68*5$�IUDPHZRUN�λ121’

$GYDQWDJH�9HU\�FOHDQ�VLJQDWXUH

'LVDGYDQWDJH�/RZ�HIILFLHQF\

Page 30: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

44.8 GeV

e1ET = 36 GeV γ2

ET = 30GeV

e CandidateET = 63 GeV

γ1ET = 36 GeV

eeγγETCandidate Event

ET = 55 GeV

7KH�SUREDELOLW\�IRU�WKH�HYHQW�WR�EH�UHVXOWHG�IURP�NQRZQ�SURFHVV�LV�VPDOO�35/����������������

0XFK�SXEOLFLW\�KDV�DFFRPSDQLHG�WKH�&')�HYHQW

,W�LV�XQXVXDO�EHFDXVH�LVRODWHG�OHSWRQV��SKRWRQV��DQG�HVSHFLDOO\�ODUJH�PLVVLQJ�(

7DUH�UDUH�

LQ�WKH�6WDQGDUG�0RGHO

&')�eeγγET (YHQW

Page 31: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

E/ T (GeV)

Eve

nts

γγ sample

Background

(µ,M2)=(-160,400)(×10)

(µ,M2)=(600,180)(×10)

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

)LQDO�6WDWH

&')� 35'������������������'�� 35/���������������

γγ /ET

%RWK�&')�DQG�'��VHDUFKHG�IRU������ HYHQWVDQG�QR�VLJQLILFDQW�H[FHVV�ZDV�IRXQG

γγ /ET

Page 32: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

E/ T (GeV)

Eve

nts

/ 2.5

GeV

Backgroundγ + ≥ 2 jets

m(q~) = 150 GeV

m(q~) = 300 GeV (×10)

1

10

10 2

10 3

0 20 40 60 80 100 120 140

'������SE²���DOVR�VHDUFKHG�IRU�VLQJOH�SKRWRQ�HYHQWV�ZLWK�WZR�RU�PRUH�MHWV�DQG�ODUJH�PLVVLQJ�(

7

3K\V��5HY��/HWWHUV��������������

)RU�PLVVLQJ�(7!���*H9�

����HYHQWV�VHOHFWHG�ZLWK��������HYHQWV�H[SHFWHG

γET�-HWV�)LQDO�6WDWH

0DMRU�EDFNJURXQG�IURPPLVVLQJ�(

7PLVPHDVXUHPHQW

7KH�PLVVLQJ�(7GLVWULEXWLRQV�

RI�VLJQDO�DQG�FRQWURO�VDPSOHVDJUHH�YHU\�ZHOO

Page 33: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

qq GGg qg GGq gg GGg→ → →~ ~ ~ ~ ~ ~�� ��

6LJQDWXUH��KLJK�(

7PRQRMHW�HYHQWV

)LYH�HYHQWV�REVHUYHG�ZKLOH������HYHQWV�DUH�H[SHFWHG

m eVF GeV

G~ .> ×>

−12 10221

5��

,I�WKH�JUDYLWLQR�LV�OLJKW�DQG�DOO�RWKHU�VXSHU�SDUWQHUVDUH�KHDY\���LW�FRXOG�EH�WKH�RQO\�VXSHU�SDUWQHU�

SURGXFHG�DW�7HYDWURQ

0RQRMHW�)LQDO�6WDWH

/DUJH�EDFNJURXQG�IURP:�=�DQG�WRS�TXDUN�SURGXFWLRQ

6LQFH�σ ∝ −mG~2

Page 34: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

CPS

EM

~G

γ

Zvtx resolution, Run II

0

250

500

750

1000

1250

1500

1750

2000

-10 -8 -6 -4 -2 0 2 4 6 8 10

436.2 / 193Constant 1812. 7.347Mean -0.7222E-02 0.6948E-02Sigma 2.192 0.5494E-02

a)

Impact parameter, Run II

0

500

1000

1500

2000

2500

3000

-10 -8 -6 -4 -2 0 2 4 6 8 10

700.7 / 195Constant 2882. 11.58Mean 0.2570E-02 0.4352E-02Sigma 1.368 0.3325E-02

b)

[D. Cutts & G. Landsberg hep-ph/9904396]

0.1mm 1mm 1cm 10cm 1m 10m

Hot cellγ τcPhotons as

we know Impactparameter

~ ~χ γ10 → G

σ rz = 2 2. cm

σ φr = 1.4 cm

Central Region

Similar resolutions in forward region cm cmrσ σφ = =1 2 2 8. .rz

/RQJ�OLYHG�1HXWUDOLQR

Page 35: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

10-4

10-3

10-2

10-1

1

10

10 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Particle β

Effic

ien

cy, %

Heavy Slow Moving Particle

MIP

0.1mm 1mm 1cm 10cm 1m 10m~ ~l l→ G

SMT CFT CALTracks as we know Kinks Large dE/dx

Tools for massive stable charged particles (MSP)dE/dx information from

1) Silicon2) Fiber tracker3) Preshowers4) Calorimeter

An efficiency of 68% for MSP anda rejection factor of 10 for MIP are assumed

[D. Cutts & G. Landsberg]

0

500

1000

1500

2000

2500

3000

x 102

0 20 40 60 80 100 120ADC counts

Eve

nts

68% 95% 99%

[M. Roco]

SMT

/RQJ�OLYHG�6OHSWRQ

Page 36: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

Chargino Mass (GeV)

Λ (TeV)

Cro

ss S

ectio

n (fb

) Theory

0.5 fb-1

2 fb-1

30 fb-1

χ~0

1 NLSP

150 200 250 300 350 400

60 80 100 120 140 160

1

10

10 2

γ γ / +E XT

γ jjE XT/ +

cτ (cm)

Pro

babi

lity

detectable

DCA>5.0 cm

m(χ~

1±)=249 GeV

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

pp X

X G

jj X GT

T

→ → +⇒ / + →⇒ / + →

± ±~ ~ , ~ ~ ~ ~~ ~

)~ ~

)

χ χ χ χ χ χγ γ χ γγ χ γ

1 1 1 20

10

10m

E (prompt E (delayed

10

10

[JQ: hep-ph/9903548]

• Cuts: ≥2γ, ET>20 GeV, ET>50 GeV• Backgrounds

0.4 fb (QCD)0.2 fb (Fakes)

• Efficiency: 15–30%• 5σ reach:M GeV

1~χ ± < 290

• Cuts: ≥1γ’, ET>20 GeV,ET>50 GeV

• Backgrounds: 0.6 fb • Efficiencies: varies

0*0�ZLWK�D�1HXWUDOLQR�1/63

Cha

rgin

o M

ass

(GeV

)

cτ (cm)

Λ (T

eV)

Neutralino NLSP

30 fb-1

2 fb-1

30 fb-1

2 fb-1γγE/T Analysis

γ'jjE/T Analysis

50

100

150

200

250

300

350

400

0 100 200 300 400 500

50

100

150

200

250

300

350

400

20

40

60

80

100

120

140

160

Page 37: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

Mas

s Sc

ale

(GeV

)

Λ=40 TeV

χ~±

1

χ~0

1

τ~

1

G~

ν (98

)

W (2

)

τ (10

0)

τ (100)

χ~0

2

τ~

1

e~, µ

~

G~

τ (65

)τ (

100)

e,µ (3

4)

τ+(e,µ)(100)

0

25

50

75

100

125

150

175

200

Chargino Mass (GeV)

Λ (TeV)

Cro

ss S

ectio

n (fb

)

Theory

0.5 fb-1

2 fb-1

30 fb-1

0.5 fb-1

2 fb-1

30 fb-1

Stau NLSP

Short-lived NLSP

Quasi-stable NLSP

100 150 200 250 300 350 400 450

20 30 40 50 60 70 80 90 100

1

10

10 2

10 3

Prompt 1~ ~τ τ→ G

lll

l l

l

l

jE

p E

jjE

p E

T

T Tj

T

T

T Tj

T

/> / >

/> > / >

± ±

Cuts: GeV, > 20 GeV, E GeV

Cuts: GeV, GeV, E GeV

15 5 5 20

15 20 25

, ,

Background: 0.7 fbEfficiency: 0.5–3.5%

lll

ll

+ Cuts: GeV, M GeV,

dE dxp dE dxT

//> >50 150

Quasi - stable 1~τ

Background: 0.5 fbEfficiency: 35–55%

[JQ: hep-ph/9903548]

0*0�ZLWK�D�6WDX�1/63

Page 38: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

β

m(χ~

1±)=279 GeV

m(χ~

1±)=437 GeV

Slepton Co-NLSP

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mjj (GeV)

Eve

nts/

10 G

eV

m(χ~

1±)=167 GeV

mh=104 GeV

2 fb-1

0

2

4

6

0 20 40 60 80 100 120 140 160 180 200

~ ~l l→ G

Prompt: E + XTlllj /

~ ~

~ ~χ γχ

10

10

→→

GhG

Prompt decayE eventsT⇒ / +γ bj X

≥ >≥ >≥/ >

1 2020

50

γ with GeV2j with GeV1 tagged b - jet

E GeVT

EE

T

T

Backgrounds: 0.4 fbusing P(j→b)=10–3

Efficiency: 1-15%5 reach: M GeVσ χ~1

250± <

Quasi - stable: + dE / dxllEfficiency: 30 - 50%5 reach: M GeV

1σ χ~ ± < 330

6OHSWRQ�DQG�+LJJVLQR�1/63V

Page 39: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

3K\VLFV�:H�'R

�� 0HDVXUHPHQW�RI�VWDQGDUG�PRGHO�SDUDPHWHUV4XDUN�OHSWRQ�PDVVHV��FRXSOLQJ�FRQVWDQWV�&.0�PDWUL[�HOHPHQWV

���0HDVXUHPHQW�RI�WKLQJV�ZLWK�QR�UHOLDEOH�FDOFXODWLRQV&URVV�VHFWLRQV�RI�KLJK�RUGHU�4&'�SURFHVVHV�EUDQFKLQJ�UDWLRV�RI�UDUH�GHFD\V��«

���7HVW�RI�VWDQGDUG�PRGHO:�=�SK\VLFV��WRS�TXDUN��%�SK\VLFV��ν SK\VLFV��«

���6HDUFKHV�IRU�QHZ�SKHQRPHQD6XSHUV\PPHWU\��OHSWRTXDUNV��WHFKQLFRORUV��«

:K\�DUH�ZH�GRLQJ�WKHVH"

6HDUFK�IRU�1HZ�3K\VLFV�

Page 40: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

6HDUFK�6WUDWHJLHV

$Q\�VHDUFK�KDV�WR�DQVZHU�WZR�TXHVWLRQV���� 'R�GDWD�DJUHH�ZLWK�H[SHFWDWLRQ"��� :KDW�LV�WKH�LPSOLFDWLRQ�RQ�WKHRU\"

$V�H[SHULPHQWDOLVWV��ZH�QHHG�WR��� )RFXV�RQ�GDWD��RQ�HYHQW�WRSRORJ\��� +DYH�JUHDW�LQWHUHVW�LQ�WDLOV�RI�GLVWULEXWLRQV��� 3D\�VSHFLDO�DWWHQWLRQ�WR�UDUH�HYHQWV

'HVSLWH�LWV�EHDXW\��ZRUOG�PD\�QRW�EH�VXSHUV\PPHWULF(YHQ�LW�LV��DOO�EXW�RQH�PRGHOV�DUH�ZURQJ

0RGHOV�DUH�WKHRULVW·V�OLIHOLQH�IRU�SDSHUV:H�PDNH�RXU�OLYLQJ�RQ�GDWD�

Page 41: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

1R�HYLGHQFH�IRU��DJDLQVW�VXSHUV\PPHWU\

,W�LV�XQOLNHO\�WKDW�ZH�FDQ�HYHUH[FOXGH�VXSHUV\PPHWU\

:H�FDQ�PDNH�GLVFRYHULHVWKURXJK�VXSHUV\PPHWU\�VHDUFKHV

ZLWK�*RG·V�KHOS

6XPPDU\

Page 42: 6HDUFKHV ’ LVFRYHULHVqianj/utev99.pdf · yyyyyyyyyyyyyyyyyyyyyyyyy yyyyyyyyyyyyyyyyyyyyyyyyy 0 100 200 300 400 500 600 0 100 200 300 400 CDF E T m gluino (GeV/c 2) m squark (GeV/c

pp SUSY XX qq qq X

→ → +⇒ + ⇒ +

~ ~

(~

)(~

) ( ’)( ’)χ χ1

010

ll ll l l

pp e⇒ + ≥ll l4jets ( = , )µ

Selection: 2 with E GeV 4jets with E GeV Z veto

T

T

≥ >≥ >

l

ll

151015,

Backgrounds: DY + 4 jets tt + jets Fakes

→ ll

Extrapolating from Run I eejjjj analysis:

[N. Parua et al.: hep-ph/9904397]

Sensitive to couplings and ’jk 2jkλ λ’1

Using mSUGRA framework as a measure of sensitivity

tanβ=2, A0=0, µ<0

λ’1 jk

5�SDULW\�9LRODWLRQ