69451 weinheim, germany - wiley-vchresults the structural parameters for the model complex 4* were...

16
Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany

Upload: others

Post on 01-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Supporting Information © Wiley-VCH 2006

69451 Weinheim, Germany

Page 2: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Rhodium(I) Complexes of a PBP Ambiphilic Ligand:

Evidence for a Metal→Borane Interaction**

Sébastien Bontemps, Heinz Gornitzka, Ghenwa Bouhadir, Karinne Miqueu,

Didier Bourissou*

Contents

Computational details ………………………………………………………………………S1

Results ……………….………………………………………………………………………S4

Z-matrix and total ZPE energy ………….………………………………………….......…S6

Spectroscopic data ………………...……….………………………………………….......S13

-S1-

Page 3: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Computational details

Calculations were performed with the Gaussian 98 program,[1,2] using the density

functional method.[3] The hybrid exchange functional B3LYP and the gradient-corrected

functional BP86 were used. B3LYP is a three parameter functional developed by Becke

which combines the Becke gradient-corrected exchange functional[4a] and the Lee-Yang-Parr

and Vosko-Wilk-Nusair correlation functionals[4b] with part of exact HF exchange energy.

BP86 consists of Becke 88 gradient correction for exchange[5a] and Perdew 86 expression for

the correlation energy.[5b]

Different basis set were retained for all the calculations. The 6-31G*[6] basis set was

used for C, P, B, Cl, N and H. Six basis set-RECP (relativistic effective core potential)

[LanL2DZ,[7] CEP-31G,[8] SDD,[9] LanL2DZ+f, CEP+f and SDD+f] were retained for Rh.

The first and second basis sets, denoted as LanL2DZ and CEP-31G, are double ζ valence

basis sets associated with the ECPs of Hay/Wadth and Stevens/Basch/Krauss, respectively.

The third, denoted as SDD, is the combination of the Huzinaga-Dunning double ζ basis set on

lighter elements with the Stuttgart/Dresden basis set-RECP on transition metals. Finally, the

fourth, fifth and sixth, denoted as LanL2DZ+f, CEP-31G+f and SDD+f, are respectively the

LanL2DZ, CEP-31G and SDD basis sets augmented with an f-type polarization function with

an exponent of 1.350[10] [Rh(αc)=1.350].

The optimized structures were confirmed as true minima on the potential energy

through vibrational analysis. The frequencies were calculated with analytical second

derivative. All total energies have been zero-point energy (ZPE) and temperature corrected

using unscaled density functional frequencies.

The electronic structure of the model complex 4* was studied using Natural Bond

Orbital (NBO) analysis.[11] The NBO-3.1 program was used to gain insight into the nature of

the interaction between rhodium and boron and to evaluate the energy of donor/acceptor

interaction (interaction between filled and empty orbitals). The Natural Localized Molecular

Orbitals (NLMO) obtained from the NBO analysis was plotted by using the molecular graphic

package Molekel.[12]

-S2-

Page 4: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

References

[1] Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratman, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. K. Rabuck, Raghavachari, J. B. Foresman, J. Cioslowswi, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Jonhson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998. [2] W. J. Hehre, L. Radom, P.v.R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley and Sons: New York, 1986. [3] R. G. Parr, W. Yang, Functional Theory of Atoms and Molecules, R. Breslow, J. B. Goodenough, Eds., Oxford University Press: New York, 1989. [4] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. 1988, B37, 785-789. [5] a) A. D. Becke, Phys. Rev. 1988, A38, 3098-3100; b) J. P. Perdew, Phys. Rev. 1986, B33, 8822-8824; c) J. P. Perdew, Phys. Rev. 1986, B34, 7406 (erratum). [6] a) G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081-6090; b) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193-2218. [7] a) T. H. Dunning Jr., P. J. Hay, In Modern Theoretical Chemistry, H. F. Schaefer III, Ed.; Plenum : New York, 1976, 1-28; b) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283; c) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298; d) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310. [8] a) W. Stevens, H. Basch, J. Krauss, J. Chem. Phys. 1984, 81, 6026-6033; B) W. Stevens, J. Krauss, H. Basch, J. Chem. Phys. 1992, 70, 612-630; c) T. R. Cunduri, W. Stevens, J. Chem. Phys., 1992, 98, 5555-5565. [9] a) M. Dolg, in Modern Methods and Algorithm of Quantum Chemistr; Grotendorst J., Ed.; John von Neuman Institute for Computing: Jülich, 2000, vol 1, pp 479-508; b) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866-872; c) D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta. 1990, 77, 123-141. [10] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111-114. [11] a) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926; b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218. [12] a) P. F. Flükiger, Development of the molecular graphics package MOLEKEL and its application to selected problems in organic and organometallic chemistry, thèse, Université de Geneva, Suisse, 1992; b) S. Portmann, H. P. Lüthi, MOLEKEL: An Interactive Molecular Graphics Tool. Chimia, 54, 2000.

-S3-

Page 5: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Results

The structural parameters for the model complex 4* were determined at different levels

of theory. The BP86 functional led to a significantly better agreement between the optimized

geometry of 4* and the X-ray diffraction study of 4 than the B3LYP functional. At the

BP86/6-31G*(C,P,B,Cl,N,P,H) level of theory, only marginal differences were observed for

the various basis sets used for Rh (LanL2DZ, CEP-31G and SDD), and the addition of a f

function did not induce noticeable variations.

Table S1. Selected bond lengths and angles (in Å and °, respectively) predicted

for the model complex 4*.

BPh

N

PMe2Me2PRh

Cl4*H2N

N

N

P P

Cl

B

Rh

Rh-P Rh-B PRhP PRhB ΣRhα ΣBα

X-ray 2.286(1)/2.256(1) 2.295(5) 97.62(4) 80.1(1)/83.6(1) 360.2 340.3

B3LYP/LanL2DZ(Rh)* 2.296/2.265 2.458 97.52 78.13/81.38 359.3 344.6

BP86/LanL2DZ(Rh)* 2.282/2.249 2.392 97.39 78.61/82.04 359.2 342.8

BP86/CEP-31G(Rh)* 2.281/2.251 2.384 97.38 78.51/81.97 359.2 339.2

BP86/SDD(Rh)* 2.274/2.241 2.381 97.41 78.63/82.10 359.2 342.2

BP86/LanL2DZ+f(Rh)* 2.279/2.244 2.392 97.33 78.59/82.07 359.2 342.8

BP86/CEP-31G+f(Rh)* 2.278/2.347 2.385 97.33 78.49/81.98 359.2 342.2

BP86/SDD+f(Rh)* 2.271/2.237 2.382 97.35 78.61/82.11 348.6 342.2

* The 6-31G* basis set was used for C,P,B,Cl,N,P,H.

-S4-

Page 6: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Table S2. Stabilizing interaction dz2 (Rh) → pπ (B) (kcal/mol) for complex 4* at different

calculation levels. Hybridization of the NLMO involving the Rh and Boron atoms.

dz2 (Rh) → pπ (B) NLMO Rh→B Acceptor NBO pπ (B)

stabilizing interaction (kcal/mol)

% dz2 (Rh) % pπ (B) % s (B) % p (B)

B3LYP/LanL2DZ(Rh)* 34.8 81.8 14.9 11.6 88.3

BP86/LanL2DZ(Rh)* 29.6 81.1 15.6 12.2 87.7

BP86/CEP-31G (Rh)* 55.2 79.3 17.1 12.7 87.3

BP86/SDD (Rh)* 50.6 80.5 16.1 12.5 87.4

BP86/LanL2DZ+f (Rh)* 30.0 81.0 15.6 12.2 87.7

BP86/CEP-31G+f(Rh)* 57.6 79.9 16.7 12.7 87.2

BP86/SDD+f(Rh)* 50.1 80.1 16.3 12.6 87.4

* The 6-31G* basis set was used for C,P,B,Cl,N,P,H.

Whatever the basis set, the stabilizing interaction dz2 (Rh) → pπB is rather large (> 29.6

kcal/mol). Although the precise value for this donor-acceptor interaction is meaningless, its

magnitude is in agreement with a strong interaction between the rhodium and boron atoms.

The concerned NLMO has about 80 % contribution from the dz2 (Rh) orbital, with major

delocalization tails (16 %) from the vacant boron orbital pπB. This transfer of electron density

from the metal to the σ-acceptor ligand is accompanied by some hydridization of the boron

atom (around 12 % s and 88 % p).

Figure S1. Molekel plots (cutoff : 0.04) for the Donor NBO, Acceptor NBO and NLMO

involving the rhodium and boron atoms at the BP86/[CEP-31G+f(Rh),6-

31G*(C,P,B,Cl,N,P,H)] level of theory.

Acceptor NBO pπ (Β) Donor NBO dz2 (Rh) NLMO dz2 (Rh) / pπ (Β)

Rh

B

B

Rh

-S5-

Page 7: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Z-Matrix and ZPE total energy (ua) 4* [B3LYP/LanL2DZ(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.657861 -0.275142 2.800336 C -0.061681 0.745588 2.025696 C -0.470514 2.068422 2.302724 C -1.417210 2.361283 3.288780 C -1.989794 1.328853 4.034332 C -1.604374 0.007765 3.784249 B 1.048709 0.411790 0.932367 Rh -0.316979 -0.644356 -0.817753 Cl -0.769004 -2.879433 0.099583 C 1.761378 1.698168 0.240468 C 1.336085 2.266475 -0.977498 C 1.950693 3.407404 -1.516280 C 3.015723 4.007998 -0.849249 C 3.460827 3.461145 0.357945 C 2.843485 2.328470 0.887218 P -0.060209 1.394585 -1.771407 C 2.105434 -0.748243 1.304399 C 2.604651 -1.629696 0.323008 C 3.609128 -2.559727 0.606764 C 4.143102 -2.634766 1.894052 C 3.661261 -1.780440 2.886685 C 2.657564 -0.853897 2.593431 P 1.775148 -1.463564 -1.292330 N -2.482713 -0.332309 -0.503299 C -3.266910 -1.100189 -1.287943 C -4.646902 -1.134177 -1.194163 C -5.293135 -0.350500 -0.220036 C -4.473722 0.439582 0.603983 C -3.098800 0.415401 0.429865 N -6.666823 -0.326038 -0.111389 C 0.230483 1.490491 -3.601160 C 3.017630 -0.584168 -2.356861 C 1.775114 -3.120813 -2.103016 C -1.471364 2.587056 -1.615144 H -7.171734 -1.110858 -0.500542 H -7.051238 0.006672 0.762609 H -2.457861 1.009958 1.068029 H -4.901252 1.062099 1.384568 H -5.216005 -1.775900 -1.860667 H -2.752086 -1.727190 -2.007105 H 2.286388 -0.207643 3.385289 H 4.061285 -1.842752 3.896210 H 4.916671 -3.363473 2.122369 H 3.966648 -3.241181 -0.161884 H 3.215276 1.913992 1.821299 H 4.296790 3.916995 0.883526 H 3.498963 4.887108 -1.267753 H 1.607367 3.824987 -2.460499 H -0.023818 2.888750 1.746100 H -1.699445 3.394544 3.480187 H -2.723577 1.550466 4.806022 H -2.044849 -0.804747 4.357560 H -0.388803 -1.308716 2.603282 H 1.323003 -3.025767 -3.095928 H 2.793997 -3.506648 -2.217253 H 1.169089 -3.802741 -1.505018 H 2.694444 -0.600380 -3.403207 H 3.141234 0.451645 -2.034372 H 3.984243 -1.094554 -2.285687 H -0.624817 1.038283 -4.113655 H 0.333883 2.526395 -3.942003 H 1.129261 0.935558 -3.876582 H -2.359965 2.188997 -2.114360 H -1.703305 2.742422 -0.559156 H -1.205303 3.550173 -2.063883 Etot(ZPE) : -2433.970304 ua

-S6-

Page 8: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/LanL2DZ(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.700722 -0.329085 2.780949 C -0.096538 0.704354 2.013994 C -0.508301 2.032901 2.304658 C -1.464982 2.318718 3.294676 C -2.044756 1.273340 4.032461 C -1.656146 -0.053287 3.769637 B 1.020558 0.377894 0.915483 Rh -0.299295 -0.621657 -0.810830 Cl -0.729272 -2.871148 0.040629 C 1.757265 1.684614 0.275321 C 1.336037 2.285900 -0.937495 C 1.953074 3.443703 -1.455490 C 3.023584 4.030436 -0.766552 C 3.466572 3.453082 0.436913 C 2.843102 2.302779 0.943478 P -0.065273 1.414167 -1.737189 C 2.085073 -0.779149 1.299932 C 2.610418 -1.635822 0.299041 C 3.624471 -2.570583 0.568621 C 4.141972 -2.675550 1.869907 C 3.635226 -1.847333 2.884175 C 2.622918 -0.914351 2.600723 P 1.780011 -1.415201 -1.316550 N -2.449227 -0.344946 -0.495986 C -3.225531 -1.126840 -1.292539 C -4.614286 -1.162348 -1.217975 C -5.281525 -0.368286 -0.253767 C -4.470388 0.433380 0.582462 C -3.085167 0.413230 0.429631 N -6.661624 -0.342791 -0.168745 C 0.211221 1.534941 -3.575030 C 3.025217 -0.494260 -2.353410 C 1.784589 -3.049385 -2.187490 C -1.483739 2.605527 -1.556457 H -7.163152 -1.138258 -0.562620 H -7.063330 -0.001492 0.703953 H -2.445716 1.015937 1.079652 H -4.913556 1.063884 1.360642 H -5.175500 -1.816097 -1.894447 H -2.690944 -1.764230 -2.002319 H 2.230015 -0.285769 3.409440 H 4.024219 -1.936600 3.905928 H 4.924199 -3.410430 2.092733 H 4.000707 -3.233231 -0.220884 H 3.213418 1.861083 1.876971 H 4.309065 3.900514 0.978305 H 3.514435 4.924856 -1.167335 H 1.609114 3.884245 -2.400168 H -0.050351 2.863410 1.752904 H -1.749705 3.359065 3.496892 H -2.787793 1.489646 4.809762 H -2.102864 -0.877696 4.338898 H -0.427942 -1.369511 2.570181 H 1.334698 -2.920003 -3.186985 H 2.813560 -3.432534 -2.307056 H 1.169200 -3.752877 -1.606950 H 2.710250 -0.491151 -3.411546 H 3.132020 0.542855 -2.000464 H 4.003329 -1.001645 -2.280583 H -0.661709 1.099506 -4.090660 H 0.328630 2.583993 -3.900316 H 1.107051 0.965929 -3.865522 H -2.383651 2.208045 -2.054930 H -1.703427 2.748042 -0.486893 H -1.218249 3.581048 -2.000388 Etot(ZPE) : -2434.108959 ua

-S7-

Page 9: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/CEP-31G(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.672545 -0.301670 2.797565 C -0.085945 0.723580 2.006253 C -0.509129 2.052742 2.277442 C -1.459747 2.346503 3.271077 C -2.021953 1.308888 4.032943 C -1.621539 -0.018103 3.790220 B 1.022806 0.388569 0.899983 Rh -0.302346 -0.644304 -0.792036 Cl -0.715610 -2.864105 0.084077 C 1.745209 1.695865 0.241130 C 1.309069 2.278286 -0.975707 C 1.910244 3.435487 -1.513021 C 2.980370 4.040993 -0.839848 C 3.438370 3.482712 0.367016 C 2.830092 2.332785 0.892729 P -0.090953 1.380976 -1.750789 C 2.106067 -0.748285 1.298047 C 2.632119 -1.615071 0.306291 C 3.660499 -2.532615 0.580099 C 4.192003 -2.609924 1.877710 C 3.684481 -1.771877 2.883620 C 2.658039 -0.855875 2.595380 P 1.778481 -1.428587 -1.302341 N -2.446977 -0.370422 -0.475985 C -3.227340 -1.152870 -1.269460 C -4.616133 -1.180663 -1.196450 C -5.280605 -0.378386 -0.237253 C -4.466256 0.423578 0.595535 C -3.081159 0.396233 0.444882 N -6.660504 -0.345171 -0.154295 C 0.172845 1.478626 -3.592879 C 3.002349 -0.514477 -2.370799 C 1.792656 -3.078753 -2.144383 C -1.516381 2.567282 -1.581527 H -7.166251 -1.139308 -0.545372 H -7.062057 0.003986 0.715331 H -2.439586 1.000556 1.091154 H -4.906819 1.060463 1.369959 H -5.179624 -1.834747 -1.870593 H -2.695408 -1.795021 -1.976898 H 2.264992 -0.219389 3.397878 H 4.084516 -1.839986 3.902779 H 4.985566 -3.331306 2.104624 H 4.037613 -3.203078 -0.202444 H 3.211928 1.906468 1.828731 H 4.280723 3.944922 0.896130 H 3.459409 4.935028 -1.255568 H 1.554512 3.861276 -2.460157 H -0.064648 2.878013 1.707147 H -1.753302 3.387415 3.457312 H -2.760316 1.531387 4.812934 H -2.054443 -0.836764 4.378180 H -0.389959 -1.342938 2.604627 H 1.324493 -2.973418 -3.138203 H 2.824464 -3.450654 -2.274345 H 1.196957 -3.781108 -1.542512 H 2.674480 -0.533792 -3.424840 H 3.103425 0.529914 -2.037945 H 3.986396 -1.010592 -2.300607 H -0.698996 1.027836 -4.097046 H 0.278960 2.523840 -3.934063 H 1.072163 0.913758 -3.880636 H -2.417362 2.157841 -2.068374 H -1.730394 2.726266 -0.513095 H -1.259152 3.537081 -2.042434 Etot(ZPE) : -2434.710409ua

-S8-

Page 10: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/SDD(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.676463 -0.275931 2.802717 C -0.086744 0.741549 2.003545 C -0.506914 2.073822 2.264436 C -1.458562 2.377492 3.254070 C -2.025009 1.347079 4.022620 C -1.626642 0.017412 3.791462 B 1.020566 0.395297 0.898774 Rh -0.301222 -0.644982 -0.787210 Cl -0.722017 -2.854465 0.105722 C 1.746604 1.695635 0.230481 C 1.313992 2.265965 -0.993280 C 1.918593 3.416154 -1.541671 C 2.988968 4.026035 -0.872900 C 3.443106 3.479977 0.341039 C 2.831223 2.337197 0.878001 P -0.086709 1.362700 -1.759125 C 2.100387 -0.741796 1.305585 C 2.624047 -1.616562 0.319561 C 3.648061 -2.537249 0.599672 C 4.177976 -2.609012 1.898207 C 3.673696 -1.762083 2.898346 C 2.651645 -0.843226 2.603759 P 1.770951 -1.436968 -1.289510 N -2.437942 -0.368437 -0.476159 C -3.216854 -1.156672 -1.265980 C -4.605598 -1.186179 -1.193893 C -5.272132 -0.380254 -0.238866 C -4.459582 0.428109 0.589627 C -3.074335 0.402302 0.440048 N -6.651651 -0.350544 -0.155609 C 0.173950 1.443707 -3.602443 C 2.998572 -0.535402 -2.364879 C 1.781603 -3.092689 -2.121186 C -1.509241 2.553781 -1.601855 H -7.156273 -1.146887 -0.543533 H -7.054764 0.004149 0.711001 H -2.434123 1.010126 1.084263 H -4.901482 1.068105 1.360715 H -5.167237 -1.845823 -1.864211 H -2.683035 -1.802805 -1.968693 H 2.261930 -0.199490 3.402112 H 4.073136 -1.825173 3.918065 H 4.968083 -3.332513 2.130342 H 4.022241 -3.214374 -0.178543 H 3.209699 1.920566 1.819779 H 4.285072 3.946418 0.867072 H 3.470745 4.914633 -1.297037 H 1.565941 3.832410 -2.494170 H -0.059864 2.893768 1.688346 H -1.749612 3.420585 3.431866 H -2.764020 1.577381 4.799705 H -2.061618 -0.795697 4.385624 H -0.397277 -1.319585 2.617514 H 1.299841 -2.996425 -3.109526 H 2.814093 -3.459131 -2.261345 H 1.197240 -3.794601 -1.507913 H 2.675608 -0.569522 -3.420149 H 3.098309 0.513372 -2.045648 H 3.981944 -1.031083 -2.282976 H -0.700298 0.991203 -4.101130 H 0.281269 2.486499 -3.950850 H 1.071204 0.874842 -3.888516 H -2.412332 2.139240 -2.080650 H -1.720777 2.729711 -0.535574 H -1.249755 3.515614 -2.078070 Etot(ZPE) : -2435.193795 ua

-S9-

Page 11: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/LanL2DZ+f (Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.697692 -0.314164 2.785570 C -0.095263 0.715155 2.011792 C -0.507149 2.045164 2.295421 C -1.462573 2.336172 3.285130 C -2.040859 1.294730 4.029630 C -1.651932 -0.033190 3.773961 B 1.020726 0.383189 0.913679 Rh -0.300392 -0.626225 -0.806136 Cl -0.728190 -2.867591 0.056739 C 1.755833 1.686449 0.265283 C 1.333101 2.279072 -0.951174 C 1.948615 3.433993 -1.477217 C 3.019000 4.026351 -0.792847 C 3.463326 3.457557 0.414195 C 2.841341 2.310024 0.928859 P -0.068272 1.399716 -1.742798 C 2.085705 -0.771564 1.303240 C 2.609546 -1.632980 0.305777 C 3.623999 -2.566343 0.578441 C 4.143360 -2.664831 1.879529 C 3.638147 -1.831580 2.890443 C 2.625341 -0.900041 2.603931 P 1.775995 -1.418656 -1.309177 N -2.444094 -0.349459 -0.492871 C -3.221106 -1.134496 -1.286105 C -4.609828 -1.168630 -1.211882 C -5.276928 -0.369764 -0.251535 C -4.465444 0.435214 0.581151 C -3.080243 0.413531 0.428920 N -6.656949 -0.343038 -0.167041 C 0.205693 1.508841 -3.581989 C 3.021851 -0.503826 -2.351230 C 1.781244 -3.056778 -2.173423 C -1.486011 2.593746 -1.569778 H -7.159070 -1.139701 -0.557702 H -7.058909 0.002930 0.703686 H -2.440774 1.019085 1.076190 H -4.908350 1.069719 1.356210 H -5.171174 -1.825054 -1.885634 H -2.686928 -1.775496 -1.992929 H 2.233678 -0.267420 3.410100 H 4.028714 -1.915760 3.912027 H 4.925922 -3.398585 2.104895 H 3.999109 -3.232840 -0.208364 H 3.212635 1.874949 1.865072 H 4.305697 3.909471 0.952041 H 3.508734 4.918551 -1.199905 H 1.603638 3.867942 -2.424566 H -0.050442 2.872656 1.738157 H -1.747529 3.377511 3.481804 H -2.782980 1.515125 4.806655 H -2.097413 -0.854518 4.348613 H -0.424519 -1.355635 2.580551 H 1.329160 -2.932272 -3.172562 H 2.810592 -3.438740 -2.293630 H 1.168344 -3.759149 -1.588970 H 2.708074 -0.507947 -3.409723 H 3.128207 0.535665 -2.005306 H 3.999967 -1.010535 -2.274025 H -0.668505 1.071098 -4.093537 H 0.323551 2.555730 -3.914012 H 1.100465 0.937195 -3.870465 H -2.386635 2.193622 -2.064872 H -1.705093 2.744524 -0.501211 H -1.219913 3.565767 -2.020961 Etot(ZPE) : -2434.111267 ua

-S10-

Page 12: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/CEP-31G+f(Rh)/6-31G*(C,P,B,Cl,N,P,H)] C -0.668641 -0.286393 2.802231 C -0.083940 0.734397 2.003839 C -0.507179 2.064970 2.267864 C -1.456310 2.364183 3.261276 C -2.016853 1.330826 4.030133 C -1.616177 0.002609 3.794726 B 1.023416 0.393624 0.897790 Rh -0.303911 -0.648755 -0.786881 Cl -0.714790 -2.859500 0.100892 C 1.744291 1.697247 0.230574 C 1.306236 2.271426 -0.989407 C 1.906017 3.425510 -1.534796 C 2.976565 4.035981 -0.866743 C 3.436328 3.485834 0.343178 C 2.829415 2.338917 0.877017 P -0.094452 1.367365 -1.755815 C 2.107166 -0.740979 1.300584 C 2.631312 -1.612693 0.312284 C 3.660030 -2.528957 0.588892 C 4.193799 -2.599678 1.885977 C 3.688257 -1.756381 2.888502 C 2.661365 -0.841736 2.597485 P 1.774005 -1.432698 -1.295274 N -2.442055 -0.374288 -0.472616 C -3.223011 -1.159244 -1.263493 C -4.611745 -1.186109 -1.190736 C -5.276162 -0.380159 -0.234567 C -4.461580 0.424462 0.595402 C -3.076515 0.396078 0.445243 N -6.656004 -0.346095 -0.152030 C 0.165801 1.454058 -3.599189 C 2.997832 -0.524890 -2.369637 C 1.788142 -3.086809 -2.130255 C -1.519023 2.556165 -1.592720 H -7.162143 -1.141226 -0.540556 H -7.057742 0.006638 0.716060 H -2.434972 1.002798 1.089208 H -4.901960 1.064490 1.367323 H -5.175275 -1.842324 -1.862758 H -2.691376 -1.804095 -1.968697 H 2.269904 -0.201053 3.397419 H 4.090184 -1.819302 3.907251 H 4.987662 -3.320002 2.115218 H 4.035628 -3.203427 -0.190938 H 3.212577 1.918868 1.815312 H 4.278998 3.951996 0.868304 H 3.454587 4.927609 -1.288770 H 1.548912 3.845029 -2.484202 H -0.064017 2.886985 1.691888 H -1.750057 3.406039 3.441813 H -2.754119 1.557607 4.809927 H -2.047702 -0.812724 4.388294 H -0.385751 -1.328647 2.615157 H 1.317184 -2.986455 -3.123286 H 2.820131 -3.457772 -2.261514 H 1.195229 -3.787720 -1.524016 H 2.669963 -0.550636 -3.423552 H 3.099125 0.521519 -2.043331 H 3.981809 -1.020705 -2.296518 H -0.707404 1.000901 -4.098901 H 0.271781 2.497170 -3.946788 H 1.064127 0.886965 -3.885614 H -2.421050 2.144288 -2.075603 H -1.731622 2.722850 -0.525160 H -1.261668 3.522582 -2.060599 Etot(ZPE) : -2434.712662 ua

-S11-

Page 13: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

4* [BP86/SDD+f(Rh)/6-31G*(C,P,B,Cl,N,P,H)] Rh -0.303048 -0.649711 -0.781644 Cl -0.721739 -2.849226 0.124787 P -0.089772 1.347891 -1.765034 P 1.766102 -1.442231 -1.281531 N -2.433044 -0.372275 -0.472360 N -6.647238 -0.351372 -0.153531 B 1.021230 0.401028 0.896312 C -0.672224 -0.258509 2.807795 C -0.084611 0.753834 2.000638 C -0.504812 2.087639 2.253406 C -1.454906 2.397497 3.242592 C -2.019560 1.371976 4.018965 C -1.620850 0.040992 3.796190 C 1.745871 1.697146 0.218885 C 1.311576 2.258293 -1.008439 C 1.915075 3.404706 -1.565763 C 2.985813 4.019941 -0.902464 C 3.441395 3.483042 0.315017 C 2.830647 2.343891 0.860902 C 2.101414 -0.733751 1.308504 C 2.622791 -1.614351 0.326618 C 3.646867 -2.533867 0.610158 C 4.179152 -2.598239 1.908134 C 3.677239 -1.745125 2.904222 C 2.655012 -0.827555 2.606231 C -3.212423 -1.163451 -1.259254 C -4.601120 -1.191999 -1.187652 C -5.267760 -0.381947 -0.236178 C -4.455112 0.429451 0.589224 C -3.069875 0.402563 0.440365 C 0.168010 1.416348 -3.609524 C 2.993952 -0.547932 -2.363241 C 1.776493 -3.102448 -2.105024 C -1.511337 2.541771 -1.615221 H -7.152186 -1.148877 -0.538617 H -7.050651 0.007235 0.711318 H -2.429742 1.013058 1.082056 H -4.896987 1.072943 1.357402 H -5.162674 -1.854123 -1.855579 H -2.678781 -1.812656 -1.959263 H 2.267183 -0.178914 3.401536 H 4.078623 -1.802369 3.923522 H 4.969291 -3.320794 2.143113 H 4.019192 -3.215692 -0.164842 H 3.210226 1.934317 1.805334 H 4.283660 3.953715 0.836781 H 3.466783 4.905640 -1.333536 H 1.561246 3.813910 -2.520863 H -0.059044 2.903843 1.671057 H -1.746162 3.441612 3.413900 H -2.757380 1.607142 4.795722 H -2.054293 -0.768274 4.396681 H -0.392592 -1.303215 2.629352 H 1.291658 -3.011803 -3.092410 H 2.809077 -3.468088 -2.246551 H 1.195080 -3.802481 -1.486859 H 2.671058 -0.589102 -3.418313 H 3.094147 0.502978 -2.051299 H 3.977141 -1.043392 -2.278050 H -0.707399 0.960996 -4.103608 H 0.275210 2.456657 -3.965311 H 1.064415 0.845054 -3.893482 H -2.415501 2.124431 -2.089589 H -1.721495 2.726430 -0.550104 H -1.251802 3.499663 -2.099275 Etot(ZPE) : -2435.196090 ua

-S12-

Page 14: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

Spectroscopic data for 2-4

11B, 31P and 103Rh chemical shifts are expressed with a positive sign, in parts per million,

relative to external BF3.OEt2, 85% H3PO4 and Ξ = 3,186447 MHz. Otherwise stated, NMR

was recorded at 293 K.

BP

P1

1

2

3

45

6

7

8

12

9

11

10

2

3

45

6

2: 31P{1H} NMR (C6D6) δ = 11.0; 13C{1H} NMR (C6D6) δ = 160.4 (d, 1JC-P = 43.0 Hz, C2),

147.7 (s, C7), 137.4 (s br, C1), 137.3 (s, C8 and C12), 136.0 (pseudo-t, JC-P = 25.0 Hz, C3 or 6),

131.0 (s, C3 or 6), 129.2 (s, C10), 128.7 (s, C4 or 5), 127.6 (s, C9 and C11), 126.8 (s, C4 or 5), 25.7

(pseudo-t, 1JC-P = 4.0 Hz, CHCH3), 20.3 (pseudo-t, 2JC-P = 3.8 Hz, CHCH3), 20.1 (pseudo-t, 2JC-P = 6.6 Hz, CHCH3); 1H NMR (C6D6) δ = 8.62 (d, 2H, 3JH-H = 7.2 Hz, H3 or 6), 7.79 (d, 2H, 3JH-H = 5.6 Hz, H8 and H12), 7.56 (pseudo-t, 2H, 3JH-H = 7.2 Hz, H4 or 5), 7.43 (dd, 2H, 3JH-H =

7.2 Hz, JH-P = 5.2 Hz, H3 or 6), 7.32 (pseudo-t, 2H, 3JH-H = 7.2 Hz, H4 or 5), 7.25 (m, 3H, H9, H10

and H11), 2.04 ( sept.d, 4H, 3JH-H = 7.0 Hz, 2JH-P = 14.0 Hz, CHCH3), 1.06 (dd, 12H, 3JH-H =

7.0 Hz, 3JH-P = 13.8 Hz, CHCH3), 0.87 (dd, 12H, 3JH-H = 7.0 Hz, 3JP-H = 13.8 Hz, CHCH3); 11B

NMR (C6D6) δ = 43.1; MS (EI, 70eV) m/z (%): 474 [M]+ (5), 431 [M - i-Pr]+ (40), 388 [M -

2(i-Pr)]+ (5), 357 [M - P(i-Pr)2]+ (10); mp: 95-97°C.

-S13-

Page 15: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

B

P

P

Rh

12

34

5

7

8

12

9

11

10

6

Cl1

2

34

5

6

2

3: 31P{1H} NMR (CDCl3, 293 K) δ = 88.8 (d, 1JP-Rh = 187.0 Hz), 70.0 (br ∆ν1/2 ≈ 650 Hz),

50.4 (d, 1JP-Rh = 126.1 Hz); 11B NMR (CDCl3, 293 K) δ = 20,0; 31P{1H} NMR (CDCl3, 213

K) δ = 50.0 (br, minor conformer), 74.7 (dd, 1JP-Rh = 151.9 Hz, 2JP-P = 24.3 Hz, PA), 64.2 (dd, 1JP-Rh = 160.0 Hz, 2JP-P = 24.3 Hz, PB), 100.0 (br, minor conformer); 13C{1H} NMR (CDCl3,

213 K) δ = 168.4 (d, 2JC-P = 41.5 Hz, C1B), 167.5 (d, 2JC-P = 38.5 Hz, C1A), 156.0 (s br, C7),

140.3 (d, 1JC-P = 51.6 Hz, C2A), 138.8 (d, 1JC-P = 49.1 Hz, C2B), 138.2 (s, C8 or 12), 135.5 (s, C8 or

12), 131.9 (s, C3A or 6A), 131.0 (d, JC-P = 20.0 Hz, C3B or 6B), 129.0 (s, C3B or 6B), 128.8 (s, C4B or

5B), 128.5 (s, C3A or 6A), 127.5 (s, C9 or 10 or 11 and C4A or 5A), 125.9 (s, C9 or 10 or 11), 124.8 (s, C9 or

10 or 11), 123.9 (s, C5B or 4B), 123.4 (s, C5A or 4A), 30.1 (d, 1JC-P = 22.6 Hz, PACHCH3), 28.5 (s br,

PACHCH3), 27.8 (d, 1JC-P = 10.7 Hz, PACHCH3), 26.6 (s br, PBCHCH3), 25.1 (d, 1JC-P = 18.9

Hz, PBCHCH3), 24.8 (s, PBCHCH3), 22.0 (s, PBCHCH3), 21.5 (d, 2JC-P = 6.3 Hz, PACHCH3),

21.4 (s, PBCHCH3), 21.0 (d, 2JC-P = 5.0 Hz, PACHCH3), 19.9 (s, PACHCH3), 18.8 (s,

PBCHCH3); 1H NMR (CDCl3, 213 K) δ = 8.57 (d, 1H, 3JH-H = 7.0 Hz, H8), 7.55 (m, 1H, H6A),

7.53 (d, 1H, 3JH-H = 7.0 Hz, H3A), 7.25 (m, 4H, H9 or 10 or 11, H3B, H4A and H4B), 7.12 (pseudo-t,

1H, 3JH-H = 7.0 Hz, H9 or 10 or 11), 7.05 (pseudo-t, 1H, 3JH-H = 7.5 Hz, H5A), 7.00 (m, 1H, H5B),

6.93 (pseudo-t, 1H, 3JH-H = 7.0 Hz, H9 or 10 or 11), 6.85 (m, 1H, H6B), 6.55 (d, 1H, 3JH-H = 7.0 Hz,

H12), 2.67 (br, 1H, PBCHCH3), 2.27 (br, 1H, PACHCH3), 2.09 (br, 1H, PACHCH3), 1.92 (dd,

3H, 3JH-P = 17.1 Hz, 3JH-H = 6.6 Hz, PACHCH3), 1.74 (dd, 3H, 3JH-P = 18.8 Hz, 3JH-H = 6.4 Hz,

PACHCH3), 1.60 (dd, 6H, 3JH-P = 11.7 Hz, 3JH-H = 6.7 Hz, PBCHCH3), 1.13 (dd, 3H, 3JH-P =

15.1 Hz, 3JH-H = 6.7 Hz, PACHCH3), 1.05 (m, 1H, PBCHCH3), 0.86 (dd, 3H, 3JH-P = 14.7 Hz, 3JH-H = 6.5 Hz, PBCHCH3), 0.30 (dd, 6H, 3JH-P = 14.0 Hz, 3JH-H = 5.4 Hz, PACHCH3 and

PBCHCH3); 103Rh NMR (CDCl3, 213 K) δ = -7365; 31P{1H} NMR (solid state, 293 K) δ =

76.9 (d, 1JP-Rh = 166.6 Hz), 66.5 (d, 1JP-Rh =162.8 Hz); MS (DCI/NH3) m/z (%): 1242 [M +

NH4]+ (0.5), 1189 [M - Cl]+ (1), 630 [M/2 + NH4]+ (20), 595 [(M/2 + NH4) - Cl] + (10), 577

[M/2 - Cl]+ (100); mp: 205°C ; elemental analysis calcd (%) for C30H41BClP2Rh: C 58.80, H

6.74; found: C 58.99, H 7.11.

-S14-

Page 16: 69451 Weinheim, Germany - Wiley-VCHResults The structural parameters for the model complex 4* were determined at different levels of theory. The BP86 functional led to a significantly

B

P

P

Rh

12

34

5

7

8

12

9

11

10

6

Cl

N

13

1716

15

14

N

12

34

5

6

4: 31P{1H} NMR (CDCl3) δ = 66.8 (dd, 1JP-Rh = 169.8 Hz, 2JP-P = 31.0 Hz), 65.3 (dd, 1JP-Rh =

144.5 Hz, 2JP-P = 31.0 Hz); 13C{1H} NMR (CDCl3) δ = 169.1 (d, 2JC-P = 35.9 Hz, C1B), 166.9

(d, 2JC-P = 40.8 Hz, C1A), 154.6 (s br, C7); 153.2 (s, C15), 150.0 (s, C17), 148.8 (s, C13), 141.0

(s, C8), 140.9 (d, 1JC-P = 47.7 Hz, C2B), 139.9 (d, 1JC-P = 48.2 Hz, C2A), 135.7 (s, C12), 132.2 (d, 3JC-P = 21.1 Hz, C6A), 131.2 (d, 3JC-P = 20.7 Hz, C6B), 128.6 (s, C3A and C3B), 128.5 (s, C4A or

5A), 128.0 (s, C9), 127.5 (d, JC-P = 2.3 Hz, C4B or 5B), 126.0 (s, C11), 125.4 (s, C10), 123.7 (d, JC-P

= 6.2 Hz, C4A or 5A), 123.6 (d, JC-P = 6.5 Hz, C4B or 5B), 107.3 (s,C16), 106.0 (s, C14), 39.0 (s,

N(CH3)2), 29.7 (d, 1JC-P = 20.4 Hz, PACHCH3), 28.2 (d, 1JC-P = 28.4 Hz, PBCHCH3), 27.7 (d, 1JC-P = 21.3 Hz, PACHCH3), 26.2 (d, 2JC-P = 5.0 Hz, PACHCH3), 26.1 (s, PBCHCH3), 25.1 (d, 1JC-P = 18.6 Hz, PBCHCH3), 21.7 (d, 2JC-P = 6.2 Hz, PBCHCH3), 21.5 (d, 2JC-P = 6.8 Hz,

PACHCH3), 21.3 (d, 2JC-P = 4.9 Hz, PBCHCH3), 21.1 (d, 2JC-P = 7.3 Hz, PACHCH3), 18.8 (s,

PBCHCH3), 17.5 (s, PACHCH3); 1H NMR (CDCl3) δ = 8.42 (d, 1H, 3JH-H = 6.8 Hz, H13), 8.40

(d, 1H, 3JH-H = 7.2 Hz, H8), 7.61 (pseudo-t, 1H, 3JH-H = 6.7, 3JH-P = 6.7 Hz, H3A), 7.51 (dd, 1H, 3JH-H = 7.0 Hz,3JH-P = 7.3 Hz, H3B ), 7.41 (d, 1H, 3JH-H = 7.3 Hz, H6B), 7.29 (pseudo-t, 1H, 3JH-

H = 7.2 Hz, H9), 7.25 (pseudo-t, 1H, 3JH-H = 7.2 Hz, H10), 7.18 (pseudo-t, 1H, 3JH-H = 7.3 Hz,

H4B or 5B), 7.14 (pseudo-t, 1H, 3JH-H = 7.2 Hz, H11), 7.04 (m, 4H, H4A, H5A, H6A and H4B or 5B),

6.97 (d, 1H, 3JH-H = 7.2 Hz, H12), 6.38 (dd, 1H, 3JH-H = 6.8 Hz, 4JH-H = 3.2 Hz, H14), 5.94 (d,

1H, 3JH-H = 5.3 Hz, 4JH-H = 3.2 Hz, H16), 5.22 (d, 1H, 3JH-H = 5.3 Hz, H17), 3.58 ( sept.d, 1H, 2JH-P = 10.8 Hz, 3JH-H = 7.3 Hz, PBCHCH3), 2.91 (s, 6H, N(CH3)2), 2.45 (sept.d, 1H, 2JH-P =

7.5 Hz, 3JH-H = 7.5 Hz, PACHCH3), 2.21 (sept.d, 1H, 2JH-P = 7.6 Hz, 3JH-H = 7.6 Hz,

PACHCH3), 1.94 (dd, 3H, 3JH-P = 17.1 Hz, 3JH-H = 7.5 Hz, PACHCH3), 1.91 (dd, 3H, 3JH-P =

16.6 Hz, 3JH-H = 7.3 Hz, PBCHCH3), 1.77 (dd, 3H, 3JH-P = 10.0 Hz, 3JH-H = 7.5 Hz,

PACHCH3), 1.74 (dd, 3H, 3JH-P = 11.3 Hz, 3JH-H = 7.3 Hz, PBCHCH3), 1.28 (m, 1H,

PBCHCH3), 1.18 (dd, 3H, 3JH-P = 12.9 Hz, 3JH-H = 7.2 Hz, PBCHCH3), 1.10 (dd, 3H, 3JH-P =

12.1 Hz, 3JH-H = 7.6 Hz, PACHCH3), 0.47 (dd, 6H, 3JH-P = 13.1 Hz, 3JH-H = 7.6 Hz, PACHCH3

and PBCHCH3); 11B NMR (CDCl3) δ = 19.4; 103Rh NMR (CDCl3) δ = -7552.2; mp: 137°C.

-S15-