6240-15-1e itt intermetallaitendo3.sakura.ne.jp/aitendo_data/product_img/...2 itt intermetall all...

205
Transistors 6240-15-1E ITT INTERMETALL

Upload: others

Post on 25-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Transistors

    6240-15-1E ITT INTERMETALL

  • 2 ITT INTERMETALL

    All information and data contained in this data book are with-out any commitment, are not to be considered as an offerfor conclusion of a contract nor shall they be construed asto create any liability. Any new issue of this data book, orindividual product data sheets, invalidate previous issues.Product availability and delivery dates are exclusively sub-ject to our respective order confirmation form; the sameapplies to orders based on development samples delivered.By this publication, INTERMETALL does not assume respon-sibility for patent infringements or other rights of third partieswhich may result from its use.Reprinting is generally permitted, indicating the source.However, our prior consent must be obtained in all cases.

    Printed in GermanyImprimé dans la République Fédérale d’Allemagne byRombach GmbH Druck- und Verlagshaus, 79115 Freiburg

    Edition September 1996 • Order No. 6240-15-1E

  • ITT INTERMETALL 3

    Page Contents

    195 to 199 Bias Resistor Transistors

    201 to 204 Addresses

    Alphanumerical List of Types

    4 List of Types

    189 to 193 Darlington Transistors

    5 to 17 Technical Information

    19 to 65 Small-Signal Transistors (NPN)

    67 to 113 Small-Signal Transistors (PNP)

    115 to 157 DMOS Transistors (N-Channel)

    159 to 187 DMOS Transistors (P-Channel)

  • 4 ITT INTERMETALL

    Type Page

    Small-Signal Transistors(NPN)

    2N3904 202N4124 24BC337-16, -25, -40 30BC338-16, -25, -40 30BC546-A, -B 36BC547-A, -B, -C 36BC548-A, -B, -C 36BC549-B, -C 36BC817-16, -25, -40 42BC818-16, -25, -40 42BC846-A, -B 48BC847-A, -B, -C 48BC848-A, -B, -C 48BC849-B, -C 48BF420 54BF422 54BF820 56BF822 56MMBT3904 58MMBTA42 62MMBTA43 62MPSA42 64MPSA43 64

    DMOS Transistors(N-Channel)

    2N7000 1162N7002 122BS108 128BS109 134BS123 136BS170 138BS623 136BS809 144BS828 146BS870 152

    Darlington Transistors

    BCV27 190BCV26 192

    Type Page

    Small-Signal Transistors(PNP)

    2N3906 682N4126 72BC327-16, -25, -40 78BC328-16, -25, -40 78BC556-A, -B 84BC557-A, -B, -C 84BC558-A, -B, -C 84BC559-A, -B, -C 84BC807-16, -25, -40 90BC808-16, -25, -40 90BC856-A, -B 96BC857-A, -B, -C 96BC858-A, -B, -C 96BC859-A, -B, -C 96BF421 102BF423 102BF821 104BF823 104MMBT3906 106MMBTA92 110MMBTA93 110MPSA92 112MPSA93 112

    DMOS Transistors(P-Channel)

    BS208 160BS209 166BS223 168BS250 170BS723 176BS808 178BS829 180BS850 182

    Bias Resistor Transistors

    DTC114EK 196DTC124XK 198

    List of Types

  • ITT INTERMETALL 5

    Technical Information

  • 6 ITT INTERMETALL

    Technical Information

    Index of Symbols

    b Imaginary part of y-Parametersbf Imaginary part of forward

    transconductance yfbi Imaginary part of input admittance yibo Imaginary part of output admittance yobr Imaginary part of reverse

    transconductance yrB Base connectionBG Imaginary part of generator (source)

    impedanceC Capacitance; junction capacitance;

    collector connectionCi Input capacitance (bi/2 π f)Co Output capacitance (bo/2 π f)CCBO Collector-Base capacitance (open emitter)CEBO Emitter-base capacitance (open collector)Ciss Input capacitanceCr Feedback capacitance (br/2 π f)E Emitter connectionf FrequencyfT Gain-bandwidth productF Noise figureFc Noise figure in mixer stagesg Real part of y-parametersgf Real part of forward transconductance yfgi Real part of input admittance yigm Forward transconductancego Real part of output admittance yogr Real part of reverse transconductance yrgs Generator conductanceGC Current gainGP Power gainGP av Available power gainGP max Max. available power gainGV Voltage gainh Parameters of h- (hybrid) matrixhf Small-signal current gainhi Input impedanceho Output admittancehr Reverse voltage transfer ratiohFE DC current gain, common emitterIB Base currentIBM Peak base currentIB1 Turn-on currentIB2 Turn-off currentIC Collector currentICAV Average collector currentICBO Collector-base cutoff current (open emitter)ICEO Collector-emitter cutoff current (open base)ICER Collector-emitter cutoff current (specified

    resistance between base and emitter)

    ICES Collector-emitter cutoff current (base short-circuited to emitter)

    ICEV Collector-emitter cutoff current (specified voltage between base and emitter)

    ICM Peak collector currentID Drain currentIDSS Drain cutoff currentIE Emitter currentIEBO Emitter-base cutoff current (open collector)IGSS Gate-body leakage currentKV Thermal resistance correction factorPtot Power dissipationPD Continuous power dissipationPI Pulse power dissipationrb’ · CC Collector-base time constantrDS (ON) Drain-source-on resistancerthA Pulse thermal resistance junction

    to ambient airrthC Pulse thermal resistance junction to caseR Resistance; resistorRBE Resistance between base and emitterRG Generator impedance; source impedanceRG opt Optimum (matched) generator resistanceRL Load resistanceRL opt Optimum (matched) load resistanceRS Series resistanceRth Thermal resistanceRthA Thermal resistance junction to ambient airRthC Thermal resistance junction to case

    resp. mounting baseRthC/S Thermal resistance case or mounting base

    to heat sinkRthS Thermal resistance heat sink to ambient airt Timetd Delay timetf Fall Timetoff Turn-off time (ts + tf)ton Turn-on time (td + tr)tp Pulse durationtpd Propagation delay timetr Rise timets Storage timettotal Total switching time (ton + toff)T Temperature; duration of one periodTamb Ambient temperatureTj Junction temperatureTC Case temperatureTS Storage temperatureTSB Temperature of substrate backsideV VoltageVBB Base supply voltageVBE Base-emitter voltageVBE sat Base-emitter saturation voltage

  • ITT INTERMETALL 7

    Technical Information

    V(BR)CBO Collector-base breakdown voltage(open emitter)

    V(BR)CEO Collector-emitter breakdown voltage(open base)

    V(BR)CER Collector-emitter breakdown voltage(specified resistance between base and emitter)

    V(BR)CES Collector-emitter breakdown voltage(emitter short-circuited to base)

    VDGS Drain-gate voltageVDSS Drain-source voltageV(BR)DSS Drain-source breakdown voltageV(BR)EBO Emitter-base breakdown voltage

    (open collector)VCB Collector-base voltageVCBO Collector-base voltage (open emitter)VCC Collector supply voltageVCE Collector-emitter voltageVCEO Collector-emitter voltage (open base)VCER Collector-emitter voltage (specified

    resistance between base and emitter)VCES Collector-emitter voltage (emitter short-

    circuited to base)VCE sat Collector-emitter saturation voltageVCEV Collector-emitter voltage (specified voltage

    between base and emitter)VEBO Emitter-base voltage (open collector)VEE Emitter supply voltageVGS(TO) Gate threshold voltageVi Input voltageVo Output voltagey Parameters of y- (admittance) matrixyf Forward transconductanceyi Input admittanceyo Output admittanceyr Reverse transconductanceys Generator admittanceZ1 Input impedanceZ2 Output impedanceϕ Phase angle of y-parametersτs Storage time constantν Duty cycle (tp/T)

  • 8 ITT INTERMETALL

    Technical Information

    Characteristics and Maximum Ratings

    The electrical performance of a semiconductor deviceis usually expressed in terms of its characteristics andmaximum ratings.

    Characteristics are those which can be measured byuse of suitable measuring instruments and circuits,and provide information on the performance of thedevice under specified operating conditions (at a givenbias, for example). Depending on requirements, theyare quoted either as typical (Typ.) values or guaranteed(Min., Max.) values.

    Typical values are expressed as figures or as one ormore curves, and are subject to spreads. Occasionallya typical curve is accompanied by another curve, thisbeing a 95%, or, in a few cases, a maximum spreadlimit curve.

    Maximum Ratings give the values which cannot beexceeded without risk of damage to the device.Changes in supply voltage and in the tolerances ofother components in the circuit must also be taken intoconsideration. No single maximum rating should everbe exceeded, even when the device is operated wellwithin the other maximum ratings. The inclusion of theword “admissible” in a title means that the associatedcurve defines the maximum ratings.

    An exception to this rule are data on collector current.The collector current, quoted as one of the criticaltransistor values, is a maximum value recommendedby the manufacturer which should be noted in connec-tion with the other characteristics valid for this collec-tor current (e.g. collector and saturation voltages,current gain etc.) when selecting a transistor. In certaincases, the quoted collector current may be exceededwithout the transistor being destroyed. The absolutelimit for the collector current is determined by themaximum admissible power dissipation of the tran-sistor.

    Assembly and Soldering Instructions

    To prevent transistors from being damaged duringmounting, observe the following points:

    All semiconductor devices are extremely sensitive totheir maximum admissible junction temperature beingexceeded. When planning the layout of the equipment,the distance between heat sources and semiconduc-tor elements should be sufficiently large.

    Semiconductor elements may be mounted in anydesired position.

    From the experience gained in soldering semiconduc-tor elements the following rules have emerged:

    For transistors in plastic case TO-92 the maximum sol-dering time is 8 s, at soldering temperatures between230 and 260 °C. Here, the distance between solderedjoint and case should be at least 4 mm. During solder-ing, the leads should not be subjected to mechanicalstress.

    For transistors in plastic case SOT-23 the maximumsoldering time is 8 s, at maximum soldering tempera-tures between 230 and 260 °C.

  • Technical Information

    Admissible Power Dissipation

    The indicated maximum admissible junction temper-ature must not be exceeded because this coulddamage or cause the destruction of the transistorcrystal. Since the user cannot measure this temper-ature, data sheets also reveal the maximum admissiblepower dissipation Ptot usually in the form of a deratingcurve (see diagram).

    If power dissipation is kept within these limits themaximum junction temperature will not be exceeded.This can easily be checked by using the equation

    Tj = Tamb + Ptot · Rth

    ITT INTERMETALL

    Admissible power dissipationversus ambient temperature

    mW500

    Ptot

    300

    200

    10000

    100

    Tamb

    200 °C

    400

    For the thermal resistance Rth the junction to ambientthermal resistance RthA is usually substituted in thecase of small transistors (in the TO-18 or TO-92 pack-age). In the case of power transistors (in the TO-202 orsimilar packages) which are usually mounted on a cool-ing fin or heat sink for the purpose of heat dissipation,the sum of the junction to case thermal resistance RthCplus the heat sink to ambient thermal resistance RthSplus – for more accurate calculations – the mountingsurface to heat sink thermal resistance, is substitutedfor the thermal resistance in this equation. In order tokeep the mounting surface to heat sink thermal resis-tance low, a heat conducting compound (siliconegrease) is to be applied to the mounting surface beforethe transistor is screwed on. If a mica insulation isused, the thermal resistance of the mica washer mustbe added, which amounts to about 0.5 K/W.

    Directions for determining the thermal resistance RthSfor cooling fins can be found on page 11.

    Since the distribution of heat in the transistor crystal isnot uniform and depends on voltage and current,some transistors are accompanied by derating curvesshowing Ptot as a function of TC and Tamb with the col-lector voltage VCE as parameter (see diagram below).

    VCE

    8 V

    Admissible power dissipationversus temperature

    W5

    Ptot

    3

    2

    10000

    1

    Tamb,

    200 °C

    4

    TC

    thAR = 200 K/W

    40 V

    20 V

    10 V

    = 0...7 V

    RthC = 35 K/W

    9

  • 10 ITT INTERMETALL

    Technical Information

    For some power transistors the data sheets also con-tain a diagram giving “admissible collector current” or“permissible operating range” which gives furtherinformation on admissible power dissipation. Oneexample is illustrated in the diagram left.

    These diagrams are based on continuous power dissi-pation. However, pulse power dissipation may usuallyexceed continuous power dissipation. To ascertainmaximum admissible pulse power dissipation PI, refer-ence is made to the pulse junction to case thermalresistance rthC or the pulse junction to ambient thermalresistance rthA whose value can be derived from therth = f(tp) diagram below.

    Use the equation

    Tj = Tamb + PI · rthA

    or, if the continuous power dissipation PD is to betaken into consideration:

    Tj = Tamb + PD · RthA + PI · rthA

    If the transistor is mounted on a cooling fin then theequation becomes:

    Tj = Tamb + Ptot · RthS + PI · rthC

    wherein Ptot is the mean value of the pulse power dis-sipation PI. Where continuous power dissipation mustbe considered in addition, the equation is expandedaccordingly:

    Tj = Tamb + Ptot · RthS + PD · RthC + PI · rthC

    wherein Ptot is the mean value of the total power dissi-pation.

    The thermal resistance and pulse thermal resistancevalues derived from the data sheets apply without limi-tation only to small collector-emitter voltages VCE,between about 5 and 10 V. For higher voltages thesethermal resistance values have to be multiplied by acorrection factor KV which has to be calculated fromthe previously mentioned derating curves. The admis-sible power dissipation Ptot max, applicable to low col-lector voltages, must be divided by the admissiblepower dissipation Ptot V for the higher collector voltageV:

    The complete equation for Tj then reads:

    Tj = Tamb + Ptot · RthS + PD · KV · RthC + PI · KV · rthC

    KvPtot maxPtot V

    -----------------=

    Pulse thermal resistanceversus pulse duration

    K/W

    rthC

    1

    tp

    2

    103

    5

    102

    5

    2

    10

    5

    2

    5

    2

    10-1

    10-6 10-4 10-2 1 10 s2

    0.5

    0.1

    0.05

    0.02

    0.01

    tpν = tp

    T PI

    T

    ν = 0

    10-5 10-3 10-1 10

    0.2

    0.005

    10

    5

    5

    1011

    2

    V10 V

    2

    2

    10

    2 5 2 52

    * for single nonrepetitive pulse

    TC = 25 °C

    ICmax (continuous)

    50 µs100 µs

    1 ms= 100 mstp

    DC Operation

    Admissible collector currentversus collector emitter voltage

    A

    IC

    CE

    Pulse Operation* 30 µs

  • ITT INTERMETALL 11

    Technical Information

    Heat Removal from Transistors

    The operation of any semiconductor device involvesthe dissipation of power with a consequent rise injunction temperature. Because the maximum admis-sible junction temperature must not be exceeded,careful circuit design with due regard not only to theelectrical, but also the thermal performance of a semi-conductor circuit, is essential.

    If the dissipated power is low, then sufficient heat isradiated from the surface of the case; if the dissipationis high, however, additional steps may have to betaken to promote this process by reducing the thermalresistance between the junction and the ambient air.This can be achieved either by pushing a star- or flag-shaped heat dissipator over the case, or by bolting thesemiconductor device to a heat sink.

    P, the power to be dissipated, Tj the junction tempera-ture, and Tamb, the ambient temperature are related bythe formula

    where RthA is the total thermal resistance betweenjunction and ambient air. The total thermal resistancein turn comprises an internal thermal resistance RthCbetween the junction and the mounting base, and anouter thermal resistance RthS between the case andthe surrounding air (or any other cooling medium). Itshould be noted that only the outer thermal resistanceis affected by the design of the heat sink. To determinethe size of the heat sink required to meet given operat-ing conditions, proceed as follows: First calculate theouter thermal resistance by use of the formula

    and then, by use of the diagrams, determine the size ofthe heat sink which provides the calculated RthS-value.To determine the maximum admissible device dissipa-tion and ambient temperature limit for a given heatsink, proceed in the reverse order to that describedabove.

    The calculations are based on the following assump-tions: Use of a squareshaped heat sink without anyfinish, mounted in a vertical position; semiconductordevice located in the centre of the sink; heat sinkoperated in still air and not subjected to any additionalheat radiation. The calculated area should be in-creased by a factor of 1.3 if the sink is mounted hori-zontally, and can be reduced by a factor of approxi-mately 0.7 if a black finish is used.

    The curves give the thermal to ambient resistance ofsquare vertical heat sinks as a function of side length.It is assumed that the heat is applied at the center ofthe square.

    PTj Tamb–

    RthA--------------------

    Tj Tamb–

    RthC RthS+--------------------------= =

    RthSTj Tamb–

    P-------------------- RthC–<

    Aluminium Cooling Fin

    K/W100

    RthS

    7

    1001

    Length of edge S20 cm

    Al

    70

    504030

    20

    10

    54

    3

    2

    2 4 6 8 12 14 16 18

    1

    52

    0.5

    Thickness mm

    Steel Cooling Fin

    K/W100

    RthS

    7

    1001

    Length of edge S20 cm

    Fe

    70

    504030

    20

    10

    54

    3

    2

    2 4 6 8 12 14 16 18

    1

    5

    2

    0.5

    Thickness mm

  • 12 ITT INTERMETALL

    Technical Information

    Basic Circuits

    There are three basic transistor circuits. They arecalled according to that electrode (emitter, base, col-lector) which is common to both input and output cir-cuit.

    Common Emitter

    Common Base

    Common Collector

    Properties of the three basic circuits:

    CommonEmitter

    CommonBase

    CommonCollector

    Inputimpedance medium small high

    Outputimpedance medium high small

    Current gain high less than 1 high

    Upperfrequency limit low high low

    Four-Pole-Symbols of h-Matrix

    A transistor can be considered as an active four-polenetwork. When driven with small low-frequency signalsits properties can be described by the four character-istic values of the h- (hybrid) matrix, which are as-sumed to be real.

    v1 = hi · i1 + hr · v2

    i2 = hf · i1 + ho · v2

    If expressed this in matrix form we obtain:

    Explanation of h-Parameters

    Input impedance (shorted output, v2 = 0):

    Reverse voltage transfer ratio (open input, i1 = 0):

    Small-signal current gain (shorted output, v2 = 0):

    Output admittance (open input, i1 = 0):

    A frequently used abbreviation is the determinant:

    ∆h = hi · ho – hr · hf

    For all three basic circuit configurations the circuitillustrated below represents the equivalent four-polecircuit using h-parameters.

    In the transistor data sheets the h-parameters areusually quoted for the common emitter configurationand for a given operating point (bias). The latter isdetermined by the collector voltage, the emitter or col-lector current and by the ambient temperature. For dif-ferent operating points, correction factors are neededwhich can be gathered from the relevant curves. Forcommon base or common collector transistor stagecalculations, the appropriate h-parameters are ascer-tained from those of the common emitter configurationby using the following conversion formulas.

    v1i2

    h( )i1v2

    ""dfoisdufoifus h( )hiahrhfaho

    = =

    hiv1i1----=

    hrv1v2----=

    hfi2i1---=

    hoi2v2----=

    v1

    i1

    i2

    v2

    v1

    i1 i2

    v2

    v1

    i1

    i2

    v2

    v1

    i1 i2

    v2Transistor

    four pole

    v1

    i1 i2

    v2hf · i1hr · v2

    hohi

  • 13 ITT INTERMETALL

    CommonEmitter

    CommonBase

    CommonCollector

    Input impedance hie –hic = hie

    Reverse voltage transfer ratio hre –hrc = 1 – hre

    Small-signal current gain hfe –hfc = 1 + hfe

    Output admittance hoe –hoc = hoe

    hibhie

    1 hfe+---------------=

    hrbhie hoe⋅

    1 hfe+------------------ hre–=

    hfbhfe

    1 hfe+---------------–=

    hobhoe

    1 hfe+---------------=

    Technical Information

    Calculation of a Transistor Stage

    Input impedance

    Output impedance

    Current gain

    Voltage gain

    Power gain

    Max. available power gain, input and output matchedwith RG opt resp. RL opt

    Z1v1i1----

    hi RL hD⋅+

    1 ho RL⋅+-------------------------= =

    Z2v2i2----

    hi RG+

    hD ho RG⋅+---------------------------= =

    Gci2i1---

    hf1 ho RL⋅+-----------------------= =

    Gvv2v1----

    hf– RL⋅

    hi RL hD⋅+-------------------------= =

    Gpv2 i2⋅

    v1 i1⋅------------

    hf2 RL⋅

    1 ho RL⋅+( ) hi RL hD⋅+( )---------------------------------------------------------= =

    Gp max

    hf

    hD hi ho⋅+--------------------------------

    2

    =

    RG opthi hD⋅

    ho--------------= RL opt

    hiho hD⋅---------------=

    Four-Pole Symbols of y-Matrix

    Whereas the network behaviour of of low-frequencytransistors could be described by using the h- (hybrid)matrix, the y- (admittance) matrix is usually employedfor high frequency transistors.

    i1 = yi · v1 + yr · v2

    i2 = yf · v1 + yo · v2

    In matrix form we obtain:

    The y-parameters are complex values which can beexpressed as

    yik = gik + jbik with bik = ωCik or with bik =

    Often, the following notation is expedient:

    yik = l yik l exp jϕik

    By adding the suffix e, b, or c it is possible to indicateto which of the three basic circuit configurations theparameters are valid.

    Explanation of y-Parameters

    Input admittance (shorted output, v2 = 0)

    Reverse transconductance (shorted input, v1 = 0)

    i1

    i2

    y( )=V1

    V2

    y( )yi yryf yo

    =

    1

    ωLik---------–

    yii1v1----=

    yri1v2----=

    v1 v2Transistor

    four poleZ1

    RG

    Z2RL

    i1 i2

    v1

    i1 i2

    v2Transistorfour pole

    v1

    i1 i2

    v2

    y r· v

    2y f

    · v1

    yoyi

  • 14 ITT INTERMETALL

    Technical Information

    Forward transconductance (shorted output, v2 = 0)

    Output admittance (shorted input, v1 = 0)

    The determinant reads Dy = yi · yo – yr · yf

    Conversion from y-Parameters to h-Parameters

    Calculation of a Transistor Stage

    Input impedance

    Output impedance

    Current gain

    Voltage gain

    Power gain

    Available power gain, input matched with RG opt

    Max. available power gain, input and output matchedwith RG opt resp. RL opt

    Max. available power gain will be attained if input andoutput are matched, where:

    and:

    Dy = yi · yo – yr · yf

    yfi2v1----=

    yoi2v2----=

    hi1yi---= hr

    yryi----–= hD

    yoyi-----=

    hfyfyi---= ho

    yD

    yi------=

    Z1v1i1----

    1 yo RL⋅+

    yi yD RL⋅+-------------------------= =

    Z2v2i2----

    1 yi RG⋅+

    yo yD RG⋅+---------------------------= =

    Gci2i1---

    yfyi yD RL⋅+-------------------------= =

    Gvv2v1----

    yf– RL⋅

    1 yo RL⋅+-----------------------= =

    Gpv2 i2⋅

    v1 i1⋅------------

    yf2 RL⋅

    1 yo RL⋅+( ) yi yD RL⋅+( )---------------------------------------------------------= =

    Gp av4 yf

    2 RG RL⋅ ⋅ ⋅

    y1 yD RL) RG 1 yo RL⋅+ +⋅ ⋅+([ ]2--------------------------------------------------------------------------=

    Gp maxyf

    yD yi yo⋅+-------------------------------

    2

    =

    RL optyoyi----- 1

    yD------⋅=

    RG optyiyo----- 1

    yD------⋅=

    v1

    i1 i2

    v2Transistor

    four poleZ1

    RGZ2 RL

  • ITT INTERMETALL 15

    Technical Information

    Switching Times

    Definitions for the various times which make up thetotal switching time can be gathered from the diagrambelow in which the switching characteristic of a tran-sistor in common-emitter configuration is illustrated.

    td Delay timetr Rise timets Storage timetf Fall timeton = td + tr Turn-on timetoff = ts + tf Turn-off time

    The duration of the switching times depends upon thetransistor type and very much on the circuit arrange-ment.

    With increasing saturation of the transistor the turn-ontime decreases and the turn-off time increases. An in-crease of the turn-off current lB2 shortens the turn-offtime.

    The switching times depend on the duration of theturn-on pulse. It is only when the duration of this pulseis a multiple of the switching times that the latterremain constant. If the pulse is shorter, especially thestorage time decreases. With a pulse duration in theregion of the turn-on time the transistor is no longerfully saturated. The collector voltage then exhibits acharacteristic such as is qualitatively represented inthe diagram below.

    )

    IB1

    Ic

    IB2

    RL

    IB ≈≈

    I B1

    I B2

    IC

    t

    ≈≈

    tstrtd tft

    I C

    0.1

    I C

    0.9 I

    C

    VCC

    VCE

    VCEmin

    tp ts tf

    0.1

    V

    V

    0.9

    V

  • 16 ITT INTERMETALL

    Quality

    ITT INTERMETALL’ s Quality Assurance and Reliability System

    Our View of Quality and Reliability

    ITT INTERMETALL gives the highest priority to de-veloping, manufacturing, and delivering products thatsatisfy all our customers with respect to product per-formance, quality, reliability, on-time delivery, and com-petitive prices. Therefore, ITT INTERMETALL has im-plemented quality and reliability assurance activities inall phases of the product cycle from business devel-opment through product design, mass production, ship-ment, and marketing. Each department is responsiblefor the quality of its output and also each individual forthe quality of his/her work. The quality system is basedon the ISO 9000 concept. The system and the proces-ses are continuously improved so that a steady pro-gress in product quality can be achieved.

    Quality Assurance during Product Development

    The quality and reliability of a product are “built-in” dur-ing the product development and design phase. In ICdevelopment, functional simulations, design rule checks,and detailed resource planning are performed to getgood quality products to the market in time.Design reviews control the progress of developmentprojects by measuring performance data against thetargeted specification. The product release for produc-tion is determined by the results of extensive productperformance evaluation as well as quality and reliabilitytesting on prototypes.

    Quality Assurance during Mass Production

    In a manufacturing line, processes are controlled bymonitoring the relevant process parameters (SPC).Variations in processes are continuously reduced toincrease yield, product performance, quality, and relia-bility. State-of-the-art production equipment and stableprocesses are essential for good quality products atcompetitive prices. In order to achieve these goals, a wide variety of de-sign and process changes are made after productionrelease. Detailed qualification procedures ensure thatthese changes maintain or improve the quality andreliability of the products.

    Quality Control of Outgoing Products

    Although the quality and reliability is “built into” the pro-ducts during products development and production, it isalso verified by inspections.Outgoing inspection of samples generates quality datathat is fed back to previous processes for correctiveactions.A reliability monitoring program is installed to verify pro-duct reliability. Failure analysis is performed to find theroot cause. The documented information is fed back todevelopment and production departments for furtherproduct improvements. Reliability data is also used topredict product lifetime under specific environmentalconditions.

    Quality Control in the Market

    Close contacts with key customers enable ITT INTER-METALL to collect quality information from the market.If a customer returns a failing product, it is subjected todetailed failure analysis until root causes are found.The history of the product, the results of the failure ana-lysis, and the root causes are entered into a QualityData Base (QDB). The evaluation of the data base isused to prioritize corrective action programs in alldepartments.

  • Quality

    ITT Semiconductors 17

    Product Quality and Assurance System

    Planning

    Design

    PilotProduction

    VolumeProduction

    Market

    Marketing Development Engineering Quality Manufacturing

    Market Research

    Decision on Project Start

    Definition of Pro-duct Specifications

    (Pflichtenheft)

    Quality Standard

    Design of Product and Process

    Design Review

    Evaluation of Partsand Material

    Prototype Production / Performance Evaluation

    Quality and Reliability Evaluation on Prototype

    Design Approval

    Qualification Testing / Quality and Reliability

    Standardization of Material and Process

    Production Release

    ContinuousImprovement ofTechnology and

    Performance

    • Supplier Ranking• Incoming Inspection• Reliability Monitoring• Q-Training and Education• Internal Audits

    • Process Control• Facility Control• Assurance of

    Quality, Cost andDelivery

    Delivery and Shipment

    Corrective Actions

    CustomerService

    QualityInformation andFailure Analysis

    Process

  • 18 ITT INTERMETALL

  • ITT INTERMETALL 19

    Small-Signal Transistors (NPN)

  • 20 ITT INTERMETALL

    2N3904

    NPN Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

    As complementary type, the PNP transistor 2N3906 isrecommended.

    On special request, this transistor is also manufacturedin the pin configuration TO-18.

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage VCBO 60 V

    Collector-Emitter Voltage VCEO 40 V

    Emitter-Base Voltage VEBO 6 V

    Collector Current IC 100 mA

    Peak Collector Current ICM 200 mA

    Power Dissipation at Tamb = 25 °C Ptot 5001) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    0.55∅ max.

    2.5

    B

    CE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

  • ITT INTERMETALL 21

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = 1 V, IC = 0.1 mAat VCE = 1 V, IC = 1 mAat VCE = 1 V, IC = 10 mAat VCE = 1 V, IC = 50 mAat VCE = 1 V, IC = 100 mA

    hFEhFEhFEhFEhFE

    40701006030

    –––––

    ––300––

    –––––

    Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

    Collector Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

    VCEsatVCEsat

    ––

    ––

    0.20.3

    VV

    Base Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

    VBEsatVBEsat

    ––

    ––

    0.850.95

    VV

    Collector-Emitter Cutoff CurrentVEB = 3 V, VCE = 30 V

    ICEV – – 50 nA

    Emitter-Base Cutoff CurrentVEB = 3 V, VCE = 30 V

    IEBV – – 50 nA

    Collector-Base Breakdown Voltageat IC = 10 µA, IE = 0

    V(BR)CBO 60 – – V

    Collector-Emitter Breakdown Voltageat IC = 1 mA, IB = 0

    V(BR)CEO 40 – – V

    Emitter-Base Breakdown Voltageat IE = 10 µA, IC = 0

    V(BR)EBO 6 – – V

    Gain-Bandwidth Productat VCE = 20 V, IC = 10 mA, f = 100 MHz

    fT 300 – – MHz

    Collector-Base Capacitanceat VCB = 5 V, f = 100 kHz

    CCBO – – 4 pF

    Emitter-Base Capacitanceat VEB = 0.5 V, f = 100 kHz

    CEBO – – 8 pF

    Input Impedanceat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hie 1 – 10 kΩ

    Voltage Feedback Ratioat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hre 0.5 · 10–4 – 8 · 10–4 –

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    2N3904

    Characteristics at Tamb = 25 °C

  • 22 ITT INTERMETALL

    2N3904

    Characteristics, continuation

    Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

    * total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

    Symbol Min. Typ. Max. Unit

    Small-Signal Current Gainat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hfe 100 – 400 –

    Output Admittanceat VCE = 1 V, IC = 1 mA, f = 1 kHz

    hoe 1 – 40 µS

    Noise Figureat VCE = 5 V, IC = 100 µA, RG = 1 kΩ,f = 10…15000 Hz

    – – – 5 dB

    Delay Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

    td – – 35 ns

    Rise Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

    tr – – 35 ns

    Storage Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

    ts – – 200 ns

    Fall Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

    tf – – 50 ns

    10 < t < 500 msDUTY CYCLE = 2%

    0

    + 10.9 V

    - 9.1V

    + 3.0 V275

    10 K

    C < 4.0 pF*3

    t11

    < 1.0 ns

    300 nsDUTY CYCLE = 2%

    - 0.5 V

    + 10.9 V

    < 1.0 ns

    + 3.0 V275

    10 K

    C < 4.0 pF*3

  • ITT INTERMETALL 23

    2N3094

  • 24 ITT INTERMETALL

    2N4124

    NPN Silicon Epitaxial Transistorfor switching and amplifier applications.Especially suitable for AF-driver andlow-power output stages.

    As complementary type, the PNP transistor 2N4126 isrecommended.

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage VCEO 25 V

    Collector-Base Voltage VCBO 30 V

    Emitter-Base Voltage VEBO 5 V

    Collector Current IC 200 mA

    Peak Collector Current ICM 800 mA

    Base Current IB 50 mA

    Power Dissipation at Tamb = 25 °C Ptot 6251) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65 to +150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    0.55∅ max.

    2.5

    B

    CE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

  • ITT INTERMETALL 25

    2N4124

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = 1 V, IC = 2.0 mAat VCE = 1 V, IC = 50 mA

    hFEhFE

    120–

    –60

    360–

    ––

    Collector-Base Cutoff Currentat VCB = 20 V

    ICBO – – 50 nA

    Emitter-Base Cutoff Currentat VEB = 3 V

    IEBO – – 50 nA

    Collector Saturation Voltageat IC = 50 mA, IB = 5 mA

    VCESAT – – 0.3 V

    Base Saturation Voltageat IC = 50 mA, IB = 5 mA

    VBESAT – – 0.95 V

    Collector-Emitter Breakdown Voltageat IC = 1 mA

    V(BR)CEO 25 – – V

    Collector-Base Breakdown Voltageat IC = 10 µA

    V(BR)CBO 30 – – V

    Emitter-Base Breakdown Voltageat IE = 10 µA

    V(BR)EBO 5 – – V

    Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

    fT – 200 – MHz

    Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

    CCBO – 12 – pF

    Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

  • 26 ITT INTERMETALL

    Pulse thermal resistanceversus pulse duration

    K/W

    rthA

    1

    tp

    Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

    2N4124

    2

    103

    5

    102

    5

    2

    10

    5

    2

    5

    2

    10-1

    10-6 10-4 10-2 1 10 s2

    0.5

    0.2

    0.1

    0.05

    tpν = tp

    T PI

    T

    10-5

    ν = 0

    0.005

    10-3 10-1 10

    0.02

    0.01

    Gain-bandwidth productversus collector current

    MHz10

    10

    IC

    3

    7

    2

    2

    101

    2N4124

    5

    4

    3

    7

    2

    5

    4

    3

    2 5 10 2 5 102 2 5 103 mA

    Tamb= 25 °Cf = 20 MHz

    VCE = 5 V

    1 V

    fT

    Collector currentversus base-emitter voltage

    mA10

    10IC

    10

    1

    VBE

    3

    5

    2

    2

    5

    2

    5

    2

    5

    2

    10-10 1 2 V

    2N4124

    -50 °C

    25 °C

    150 °C

    typical

    at T = 25 °Camblimits

    Admissible power dissipationversus ambient temperature

    W1

    Ptot

    0.6

    0.4

    10000

    0.2

    Tamb200 °C

    Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

    2N4124

    0.8

    2N4124

  • ITT INTERMETALL 27

    Common emittercollector characteristics

    500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    I = 0.2 mAB

    2N4124

    0.8

    0.6

    0.4

    1.4

    1.2

    1

    1.6

    1.82

    2.4

    2.83.2

    mA

    Base saturation voltageversus collector current

    V2

    1

    10100

    I

    2N4124

    V

    I

    -1 1 102 310

    typical

    limitsat

    BEsat

    = 25 °CTambC

    IB= 10

    150 °C

    25 °C

    -50 °C

    C

    mA

    -1

    DC current gainversus collector current

    1000

    hFE

    100

    10

    IC

    700

    500

    400

    300

    200

    70

    50

    40

    30

    20

    10 1 10 102 10 3

    2N4124

    -50 °C

    V = 1 VCE

    150 °C

    T = 25 °Camb

    Collector saturation voltageversus collector current

    V0.5

    10100

    I

    2N4124

    V

    I

    -1 1 102 310

    typical

    limitsat

    CEsat

    = 25 °CTambC

    IB= 10

    150 °C25 °C

    -50 °C

    C

    mA

    0.4

    0.3

    0.2

    0.1

    2N4124

  • 28 ITT INTERMETALL

    Common emittercollector characteristics

    mA100

    IC

    1000

    VCE

    20 V

    80

    60

    40

    200.1

    0.2

    0.3

    2N4124

    I = 0.05 mAB

    0.15

    0.25

    0.35

    Common emittercollector characteristics

    mA500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    0.8

    2N4124

    0.75

    0.850.9

    V = 0.7 VBE

    2N4124

  • ITT INTERMETALL 29

    2N4124

  • 30 ITT INTERMETALL

    BC337, BC338

    NPN Silicon Epitaxial Planar Transistorsfor switching and amplifier applications. Especially suit-able for AF-driver stages and low power output stages.

    These types are also available subdivided into threegroups -16, -25, and -40, according to their DC currentgain. As complementary types, the PNP transistorsBC327 and BC328 are recommended.

    On special request, these transistors are also manu-factured in the pin configuration TO-18.

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage BC337BC338

    VCESVCES

    5030

    VV

    Collector-Emitter Voltage BC337BC338

    VCEOVCEO

    4525

    VV

    Emitter-Base Voltage VEBO 5 V

    Collector Current IC 800 mA

    Peak Collector Current ICM 1 A

    Base Current IB 100 mA

    Power Dissipation at Tamb = 25 °C Ptot 6251) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65 to +150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    0.55∅ max.

    2.5

    B

    EC

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

  • ITT INTERMETALL 31

    BC337, BC338

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = 1 V, IC = 100 mA

    Current Gain Group -16-25-40

    at VCE = 1 V, IC = 300 mACurrent Gain Group -16

    -25-40

    hFEhFEhFE

    hFEhFEhFE

    100160250

    60100170

    160250400

    130200320

    250400630

    –––

    –––

    –––

    Collector-Emitter Cutoff Currentat VCE = 45 V BC337at VCE = 25 V BC338at VCE = 45 V, Tamb = 125 °C BC337at VCE = 25 V, Tamb = 125 °C BC338

    ICESICESICESICES

    ––––

    22––

    1001001010

    nAnAµAµA

    Collector-Emitter Breakdown Voltageat IC = 10 mA BC338

    BC337V(BR)CEOV(BR)CEO

    2045

    ––

    ––

    VV

    Collector-Emitter Breakdown Voltageat IC = 0.1 mA BC338

    BC337V(BR)CESV(BR)CES

    3050

    ––

    ––

    VV

    Emitter-Base Breakdown Voltageat IE = 0.1 mA

    V(BR)EBO 5 – – V

    Collector Saturation Voltageat IC = 500 mA, IB = 50 mA

    VCEsat – – 0.7 V

    Base-Emitter Voltageat VCE = 1 V, IC = 300 mA

    VBE – – 1.2 V

    Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

    fT – 100 – MHz

    Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

    CCBO – 12 – pF

    Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    ITT INTERMETALL 31

  • 32 ITT INTERMETALL

    BC337, BC338

    Admissible power dissipationversus ambient temperature

    W1

    Ptot

    0.6

    0.4

    10000

    0.2

    Tamb200 °C

    Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

    BC337, BC338

    0.8

    Pulse thermal resistanceversus pulse duration

    K/W

    rthA

    1

    tp

    Valid provided that leads are kept at ambient temperatureat a distance of 2 mm from case

    BC337, BC338

    2

    103

    5

    102

    5

    2

    10

    5

    2

    5

    2

    10-1

    10-6 10-4 10-2 1 10 s2

    0.5

    0.2

    0.1

    0.05

    tpν = tp

    T PI

    T

    10-5

    ν = 0

    0.005

    10-3 10-1 10

    0.02

    0.01

    Collector currentversus base-emitter voltage

    mA10

    10IC

    10

    1

    VBE

    3

    5

    2

    2

    5

    2

    5

    2

    5

    2

    10-10 1 2 V

    BC337, BC338

    -50 °C

    25 °C

    150 °C

    typical

    at T = 25 °Camblimits

    Gain-bandwidth productversus collector current

    MHz10

    10

    IC

    3

    7

    2

    2

    101

    BC337, BC338

    5

    4

    3

    7

    2

    5

    4

    3

    2 5 10 2 5 102 2 5 103 mA

    Tamb= 25 °Cf = 20 MHz

    VCE = 5 V

    1 V

    fT

  • ITT INTERMETALL 33

    BC337, BC338

    Collector saturation voltageversus collector current

    V0.5

    10100

    I

    BC337, BC338

    V

    I

    -1 1 102 310

    typical

    limitsat

    CEsat

    = 25 °CTambC

    IB= 10

    150 °C25 °C

    -50 °C

    C

    mA

    0.4

    0.3

    0.2

    0.1

    Base saturation voltageversus collector current

    V2

    1

    10100

    I

    BC337, BC338

    V

    I

    -1 1 102 310

    typical

    limitsat

    BEsat

    = 25 °CTambC

    IB= 10

    150 °C

    25 °C

    -50 °C

    C

    mA

    -1

    DC current gainversus collector current

    1000

    hFE

    100

    10

    IC

    700

    500

    400

    300

    200

    70

    50

    40

    30

    20

    10 1 10 102 10 3

    BC337, BC338

    -50 °C

    V = 1 VCE

    150 °C

    T = 25 °Camb

    Common emittercollector characteristics

    500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    I = 0.2 mAB

    BC337, BC338

    0.8

    0.6

    0.4

    1.4

    1.2

    1

    1.6

    1.82

    2.4

    2.83.2

    mA

  • 34 ITT INTERMETALL

    BC337, BC338

    Common emittercollector characteristics

    mA100

    IC

    1000

    VCE

    20 V

    80

    60

    40

    200.1

    0.2

    0.3

    BC337, BC338

    I = 0.05 mAB

    0.15

    0.25

    0.35

    Common emittercollector characteristics

    mA500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    0.8

    BC337, BC338

    0.75

    0.850.9

    V = 0.7 VBE

  • ITT INTERMETALL 35

    BC337, BC338

  • 36 ITT INTERMETALL

    BC546 … BC549

    NPN Silicon Epitaxial Planar Transistors

    These transistors are subdivided into three groups A, Band C according to their current gain. The type BC546is available in groups A and B, however, the typesBC547 and BC548 can be supplied in all three groups.The BC549 is a low-noise type and available in groupsB and C. As complementary types, the PNP transistorsBC556 … BC559 are recommended.

    On special request, these transistors are also manu-factured in the pin configuration TO-18.

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage BC546BC547

    BC548, BC549

    VCBOVCBOVCBO

    805030

    VVV

    Collector-Emitter Voltage BC546BC547

    BC548, BC549

    VCESVCESVCES

    805030

    VVV

    Collector-Emitter Voltage BC546BC547

    BC548, BC549

    VCEOVCEOVCEO

    654530

    VVV

    Emitter-Base Voltage BC546, BC547BC548, BC549

    VEBOVEBO

    65

    VV

    Collector Current IC 100 mA

    Peak Collector Current ICM 200 mA

    Peak Base Current IBM 200 mA

    Peak Emitter Current –IEM 200 mA

    Power Dissipation at Tamb = 25 °C Ptot 5001) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    0.55∅ max.

    2.5

    B

    EC

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

  • ITT INTERMETALL 37

    BC546 … BC549

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    h-Parameters at VCE = 5 V, IC = 2 mA,f = 1 kHz,Small Signal Current Gain

    Current Gain Group ABC

    Input Impedance Current Gain Group ABC

    Output Admittance Current Gain Group ABC

    Reverse Voltage Transfer RatioCurrent Gain Group A

    BC

    hfehfehfehiehiehiehoehoehoe

    hrehrehre

    –––1.63.26–––

    –––

    2203306002.74.58.7183060

    1.5 · 10–42 · 10–43 · 10–4

    –––4.58.5153060110

    –––

    –––kΩkΩkΩµSµSµS

    –––

    DC Current Gainat VCE = 5 V, IC = 10µA

    Current Gain Group ABC

    at VCE = 5 V, IC = 2 mACurrent Gain Group A

    BC

    at VCE = 5 V, IC = 100 mACurrent Gain Group A

    BC

    hFEhFEhFE

    hFEhFEhFE

    hFEhFEhFE

    –––

    110200420

    –––

    90150270

    180290500

    120200400

    –––

    220450800

    –––

    –––

    –––

    –––

    Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

    Collector Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

    VCEsatVCEsat

    ––

    80200

    200600

    mVmV

    Base Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

    VBEsatVBEsat

    ––

    700900

    ––

    mVmV

    Base-Emitter Voltageat VCE = 5 V, IC = 2 mAat VCE = 5 V, IC = 10 mA

    VBEVBE

    580–

    660–

    700720

    mVmV

    Collector-Emitter Cutoff Currentat VCE = 80 V BC546at VCE = 50 V BC547

    at VCE = 30 V BC548, BC549

    at VCE = 80 V, Tj = 125 °C BC546at VCE = 50 V, Tj = 125 °C BC547

    ICESICES

    ICES

    ICESICES

    ––

    ––

    0.20.2

    0.2

    ––

    1515

    15

    44

    nAnA

    nA

    µAµA

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

  • 38 ITT INTERMETALL

    Symbol Min. Typ. Max. Unit

    at VCE = 30 V, Tj = 125 °C BC548, BC549 ICES – – 44

    µAµA

    Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 100 MHz

    fT – 300 – MHz

    Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

    CCBO – 3.5 6 pF

    Emitter-Base Capacitanceat VEB = 0.5 V, f = 1 MHz

    CEBO – 9 – pF

    Noise Figureat VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC546, BC547

    BC548BC549

    at VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC549

    F

    F

    F

    2

    1.2

    1.4

    10

    4

    4

    dB

    dB

    dB

    BC546 … BC549

    Admissible power dissipationversus temperature

    mW500

    Ptot

    300

    200

    10000

    100

    Tamb

    200 °C

    Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

    BC546...BC549

    400

    Pulse thermal resistanceversus pulse duration

    K/W

    rthA

    1

    tp

    Valid provided that leads are kept at ambienttemperature at a distance of 2 mm from case

    BC546...BC549

    2

    103

    5

    102

    5

    2

    10

    5

    2

    5

    2

    10-1

    10-6 10-4 10-2 1 10 s2

    0.2

    0.1

    0.05

    0.02

    0.01

    0.005

    tpν = tp

    T PI

    T

    ν = 0

    Characteristics, continuation

  • ITT INTERMETALL 39

    BC546 … BC549

    DC current gainversus collector current

    10

    5

    hFE

    101

    IC

    3BC546...BC549

    4

    3

    2

    102

    5

    4

    3

    2

    10

    54

    3

    2

    -2 10-1 101 102 mA

    -50 °C

    VCE = 5 V

    100 °C

    Tamb = 25 °C

    Collector current versusbase-emitter voltage

    mA10

    5

    IC

    10

    1

    010

    VBE

    BC546...BC5492

    4

    3

    2

    5

    4

    3

    2

    5

    4

    3

    2

    -1

    0.5 1 V

    Tamb = 100 °C -50 °C

    25 °C

    VCE = 5 V

    Collector-base cutoff currentversus ambient temperature

    nA

    ICBO

    10

    1000

    1

    Tamb200 °C

    BC546...BC549

    103

    104

    102

    10-1

    Test voltage V :equal to the givenmaximum value

    typicalmaximum

    VCES

    CBO

    Collector saturation voltageversus collector current

    V0.5

    0.4

    VCEsat

    0.3

    0.2

    10

    0.1

    IC

    BC546...BC549

    102 5 2 5 2 510-1 10 mA2

    -50 °C

    25 °C

    Tamb= 100 °C

    I C = 20I B

  • 40 ITT INTERMETALL

    Noise figureversus collector current

    dB20

    F

    12

    8

    100

    6

    IC10 mA

    BC549

    18

    16

    14

    10

    4

    2

    -3 10-2 10-1 1

    V = 5 VCEf = 120 Hz

    amb

    G

    500 V

    1kV

    T = 25 °C

    R = 1 MV 100 kV 10 kV 1 kV

    BC546 … BC549

    Collector-base capacitance,Emitter-base capacitanceversus reverse bias voltage

    pF10

    6

    4

    10.10

    2

    VCBO,

    10 V

    BC546...BC549

    8

    VEBO

    0.2 0.5 2 5

    CCBOCEBO

    CCBO

    CEBO

    T = 25 °Camb

    Gain-bandwidth productversus collector current

    MHz10

    fT

    0.1IC

    100 mA

    BC546...BC5493

    7

    5

    4

    3

    2

    102

    7

    5

    4

    3

    2

    102 5 1 2 5 10 2 5

    T = 25 °Camb

    V = 10 VCE

    5 V

    2 V

    Relative h-parametersversus collector current

    10

    110

    1

    IC10 mA

    BC546...BC549102

    6

    4

    2

    6

    4

    2

    6

    4

    2

    -1

    10-1 2 4 2 4

    h (I = 2 mA)e C

    h (I )e C

    hie

    hoe

    hre

    hfe

    V = 5 VCET = 25 °Camb

  • ITT INTERMETALL 41

    BC546 … BC549

    Noise figureversus collector current

    dB20

    F

    12

    8

    100

    6

    IC10 mA

    BC549

    18

    16

    14

    10

    4

    2

    -3 10-2 10-1 1

    V = 5 VCEf = 1 kHz

    amb

    500 V

    1kV

    500 V

    T = 25 °C

    GR = 1 MV 100kV 10 kV

    Noise figureversus collector emitter voltage

    dB20

    F

    12

    8

    100

    6

    VCE

    10 V

    BC549

    18

    16

    14

    10

    4

    2

    -12 1 2

    I = 0.2 mAC

    f = 1 kHz

    ambT = 25 °C

    R = 2 kVG

    Df = 200 Hz

    5 5 10 2 5 2

  • 42 ITT INTERMETALL

    BC817, BC818

    NPN Silicon Epitaxial Planar Transistorsfor switching, AF driver and amplifier applications.

    Especially suited for automatic insertion in thick- andthin-film circuits.

    These transistors are subdivided into three groups -16,-25 and -40 according to their current gain.As complementary types, the PNP transistors BC807and BC808 are recommended.

    Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

    Marking code

    Type Marking

    BC817-16-25-40

    BC818-16-25-40

    6A6B6C

    6E6F6G

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage BC817BC818

    VCESVCES

    5030

    VV

    Collector-Emitter Voltage BC817BC818

    VCEOVCEO

    4525

    VV

    Emitter-Base Voltage VEBO 5 V

    Collector Current IC 800 mA

    Peak Collector Current ICM 1000 mA

    Peak Base Current IBM 200 mA

    Peak Emitter Current –IEM 1000 mA

    Power Dissipation at TSB = 50 °C Ptot 3101) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Device on fiberglass substrate, see layout

    0.4

    0.95 0.95

    3

    0.4 0.4

    +0.1

    1

    2 3

    Top View

    SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

    2.45+0.1

  • ITT INTERMETALL 43

    BC817, BC818

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = 1 V, IC = 100 mA

    Current Gain Group-16-25-40

    at VCE = 1 V, IC = 300 mA -16-25-40

    hFEhFEhFEhFEhFEhFE

    10016025060100170

    ––––––

    250400600–––

    ––––––

    Thermal Resistance Junction SubstrateBackside

    RthSB – – 3201) K/W

    Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

    Collector Saturation Voltageat IC = 500 mA, IB = 50 mA

    VCEsat – – 0.7 V

    Base-Emitter Voltageat VCE = 1 V, IC = 300 mA

    VBE – – 1.2 V

    Collector-Emitter Cutoff Currentat VCE = 45 V BC817at VCE = 25 V BC818at VCE = 25 V, Tj = 150 °C

    ICESICESICES

    –––

    –––

    1001005

    nAnAµA

    Emitter-Base Cutoff Currentat VEB = 4 V

    IEBO – – 100 nA

    Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 50 MHz

    fT – 100 – MHz

    Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

    CCBO – 12 pF

    1) Device on fiberglass substrate, see layout

    Layout for RthA testThickness: Fiberglass 1.5 mm

    Copper leads 0.3 mm

    15 12

    5

    0.8

    7.5

    3

    1

    1.5

    5.1

    2

    2

    1

  • 44 ITT INTERMETALL

    BC817, BC818

    Admissible power dissipationversus temperature of substrate backside

    mW500

    Ptot

    300

    200

    10000

    100

    TSB

    200 °C

    Device on fiberglass substrate, see layout

    BC817, BC818

    400

    Pulse thermal resistanceversus pulse duration (normalized)

    10

    10

    RthSB

    tp

    Device on fiberglass substrate, see layout

    0

    5

    3

    -1

    5

    2

    4

    2

    10-310-7 10-6 10-5 10-4 10-3 10-2 1 s

    BC817, BC818

    tptpT

    ν =PI

    T

    0.1

    0.05

    0.02

    0.01

    ν = 0

    4

    2

    4

    3

    5

    3

    10-1

    5 -3

    0.2

    0.5

    rthSB

    10-2

    Collector currentversus base-emitter voltage

    mA10

    10IC

    10

    1

    VBE

    3

    5

    2

    2

    5

    2

    5

    2

    5

    2

    10-10 1 2 V

    BC817, BC818

    -50 °C

    25 °C

    typical

    at T =25 °Camblimits

    150 °C

    Gain-bandwidth productversus collector current

    MHz10

    10

    IC

    3

    7

    2

    2

    101

    BC817, BC818

    5

    4

    3

    7

    2

    5

    4

    3

    2 5 10 2 5 102 2 5 103 mA

    Tamb = 25 °Cf = 20 MHz

    VCE = 5 V

    1 V

    fT

  • ITT INTERMETALL 45

    BC817, BC818

    Collector saturation voltageversus collector current

    V0.5

    10100

    I

    BC817, BC818

    V

    I

    -1 1 102 310

    typical

    limitsat

    CEsat

    = 25 °CTamb

    C

    IB= 10

    150 °C25 °C

    -50 °C

    C

    mA

    0.4

    0.3

    0.2

    0.1

    Base saturation voltageversus collector current

    V2

    1

    10100

    I

    BC817, BC818

    V

    I

    -1 1 102 310

    typical

    limitsat

    BEsat

    = 25 °CTamb

    CIB

    = 10

    150 °C

    25 °C

    -50 °C

    C

    mA

    -1

    DC current gainversus collector current

    1000

    hFE

    100

    10

    IC

    700

    500

    400

    300

    200

    70

    50

    40

    30

    20

    10 1 10 102 10 mA3

    BC817, BC818

    -50 °C

    V =1 VCE

    150 °C

    T = 25 °Camb

    Common emittercollector characteristics

    500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    I = 0.2 mAB

    BC817, BC818

    0.8

    0.6

    0.4

    1.4

    1.2

    1

    1.6

    1.82

    2.4

    2.83.2

    mA

  • 46 ITT INTERMETALL

    BC817, BC818

    Common emittercollector characteristics

    mA100

    IC

    1000

    VCE

    20 V

    80

    60

    40

    200.1

    0.2

    0.3

    BC817, BC818

    I = 0.05 mAB

    0.15

    0.25

    0.35

    Common emittercollector characteristics

    mA500

    400

    IC

    300

    200

    100

    100

    VCE

    2 V

    0.8

    BC817, BC818

    0.75

    0.850.9

    V = 0.7 VBE

  • ITT INTERMETALL 47

    BC817, BC818

  • 48 ITT INTERMETALL

    BC846 … BC849

    NPN Silicon Epitaxial Planar Transistorsfor switching and AF amplifier applications.

    Especially suited for automatic insertion in thick- andthin-film circuits.

    These transistors are subdivided into three groups A, Band C according to their current gain. The type BC846is available in groups A and B, however, the typesBC847 and BC848 can be supplied in all three groups.The BC849 is a low noise type available in groups Band C. As complementary types, the PNP transistorsBC856…BC859 are recommended.

    Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

    Marking code

    Type Marking

    BC846AB

    BC847ABC

    1A1B

    1E1F1G

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage BC846BC847

    BC848, BC849

    VCBOVCBOVCBO

    805030

    VVV

    Collector-Emitter Voltage BC846BC847

    BC848, BC849

    VCESVCESVCES

    805030

    VVV

    Collector-Emitter Voltage BC846BC847

    BC848, BC849

    VCEOVCEOVCEO

    654530

    VVV

    Emitter-Base Voltage BC846, BC847BC848, BC849

    VEBOVEBO

    65

    VV

    Collector Current IC 100 mA

    Peak Collector Current ICM 200 mA

    Peak Base Current IBM 200 mA

    Peak Emitter Current –IEM 200 mA

    Power Dissipation at TSB = 50 °C Ptot 3101) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Device on fiberglass substrate, see layout

    Type Marking

    BC848ABC

    BC849BC

    1J1K1L

    2B2C

    0.4

    0.95 0.95

    3

    0.4 0.4

    +0.1

    1

    2 3

    Top View

    SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

    2.45+0.1

  • ITT INTERMETALL 49

    BC846 … BC849

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    h-Parameters at VCE = 5 V, IC = 2 mA,f = 1 kHz, Small-Signal Current Gain

    Current Gain Group ABC

    Input Impedance Current Gain Group ABC

    Output Admittance Current Gain Group ABC

    Reverse Voltage Transfer RatioCurrent Gain Group A

    BC

    hfehfehfehiehiehiehoehoehoe

    hrehrehre

    –––1.63.26–––

    –––

    2203306002.74.58.7183060

    1.5 · 10–42 · 10–43 · 10–4

    –––4.58.5153060110

    –––

    –––kΩkΩkΩµSµSµS

    –––

    DC Current Gainat VCE = 5 V, IC = 10 µA

    Current Gain Group ABC

    at VCE = 5 V, IC = 2 mACurrent Gain Group A

    BC

    hFEhFEhFE

    hFEhFEhFE

    –––

    110200420

    90150270

    180290520

    –––

    220450800

    –––

    –––

    Thermal Resistance Junction to SubstrateBackside

    RthSB – – 3201) K/W

    Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

    Collector Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

    VCEsatVCEsat

    ––

    90200

    250600

    mVmV

    Base Saturation Voltageat IC = 10 mA, IB = 0.5 mAat IC = 100 mA, IB = 5 mA

    VBEsatVBEsat

    ––

    700900

    ––

    mVmV

    Base-Emitter Voltageat VCE = 5 V, IC = 2 mAat VCE = 5 V, IC = 10 mA

    VBEVBE

    580–

    660–

    700720

    mVmV

    Collector-Emitter Cutoff Currentat VCE = 80 V BC846at VCE = 50 V BC847at VCE = 30 V BC848, BC849at VCE = 80 V, Tj = 125 °C BC846at VCE = 50 V, Tj = 125 °C BC847at VCE = 30 V, Tj = 125 °C BC848, BC849

    ICESICESICESICESICESICES

    ––––––

    0.20.20.2–––

    151515444

    nAnAnAµAµAµA

    Gain-Bandwidth Productat VCE = 5 V, IC = 10 mA, f = 100 MHz

    fT – 300 – MHz

    1) Device on fiberglass substrate, see layout

  • 50 ITT INTERMETALL

    BC846 … BC849

    Symbol Min. Typ. Max. Unit

    Collector-Base Capacitanceat VCB = 10 V, f = 1 MHz

    CCBO – 3.5 6 pF

    Emitter-Base Capacitanceat VEB = 0.5 V, f = 1 MHz

    CEBO – 9 – pF

    Noise Figureat VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 1 kHz, ∆f = 200 Hz BC846, BC847, BC848

    BC849

    at VCE = 5 V, IC = 200 µA, RG = 2 kΩ,f = 30…15000 Hz BC849

    FF

    F

    ––

    21.2

    1.4

    104

    4

    dBdB

    dB

    Characteristics, continuation

    Layout for RthA testThickness: Fiberglass 1.5 mm

    Copper leads 0.3 mm

    15 12

    5

    0.8

    7.5

    3

    1

    1.5

    5.1

    2

    2

    1

  • ITT INTERMETALL 51

    Admissible power dissipationversus temperature of substrate backside

    mW500

    Ptot

    300

    200

    10000

    100

    TSB200 °C

    Device on fiberglass substrate, see layout

    BC846...BC849

    400

    Pulse thermal resistanceversus pulse duration (normalized)

    10

    10

    RthSB

    tp

    Device on fiberglass substrate, see layout

    0

    5

    3

    -1

    5

    2

    4

    2

    10-310-7 10-6 10-5 10-4 10-3 10-2 1 s

    BC846...BC849

    tptpT

    ν =PI

    T

    0.1

    0.05

    0.02

    0.01

    ν = 0

    4

    2

    4

    3

    5

    3

    10-1

    5 -3

    0.2

    0.5

    rthSB

    10-2

    DC current gainversus collector current

    10

    5

    hFE

    101

    IC

    3BC846...BC849

    4

    3

    2

    102

    5

    4

    3

    2

    10

    54

    3

    2

    -2 10-1 101 102 mA

    -50 °C

    VCE = 5 V

    100 °C

    Tamb = 25 °C

    Collector-Base cutoff currentversus ambient temperature

    nA

    ICBO

    10

    1000

    1

    Tamb200 °C

    BC846...BC849

    103

    104

    102

    10-1

    Test voltage V :equal to the givenmaximum value

    typicalmaximum

    VCES

    CBO

    BC846 … BC849

  • 52 ITT INTERMETALL

    Collector current versusbase-emitter voltage

    mA10

    5

    IC

    10

    1

    010

    VBE

    BC846...BC8492

    4

    3

    2

    5

    4

    3

    2

    5

    4

    3

    2

    -1

    0.5 1 V

    Tamb = 100 °C -50 °C

    25 °C

    VCE = 5 V

    Collector saturation voltageversus collector current

    V0.5

    0.4

    VCEsat

    0.3

    0.2

    10

    0.1

    IC

    BC846...BC849

    102 5 2 5 2 510-1 10 mA2

    -50 °C

    25 °C

    Tamb= 100 °C

    I C = 20I B

    BC846 … BC849

    Collector base capacitance,Emitter base capacitanceversus reverse bias voltage

    pF10

    6

    4

    10.10

    2

    VCBO,

    10 V

    BC846...BC849

    8

    VEBO

    0.2 0.5 2 5

    CCBOCEBO

    CCBO

    CEBO

    T = 25 °Camb

    Relative h-parametersversus collector current

    10

    110

    1

    IC

    10 mA

    BC846...BC849102

    6

    4

    2

    6

    4

    2

    6

    4

    2

    -1

    10-1 2 4 2 4

    h (I = 2 mA)e C

    h (I )e C

    hie

    hoe

    hre

    hfe

    V = 5 VCET = 25 °Camb

  • ITT INTERMETALL 53

    Noise figureversus collector current

    dB20

    F

    12

    8

    100

    6

    IC

    10 mA

    BC846...BC849

    18

    16

    14

    10

    4

    2

    -3 10-2 10-1 1

    V = 5 VCEf = 120 Hz

    amb

    G

    500 V

    1 kV

    T = 25 °C

    R = 1 MV 100 kV 10 kV 1 kV

    Noise figureversus collector emitter voltage

    dB20

    F

    12

    8

    100

    6

    VCE

    10 V

    BC846, BC849

    18

    16

    14

    10

    4

    2

    -12 1 2

    I = 0.2 mAC

    f = 1 kHz

    ambT = 25 °C

    R = 2 kVG

    Df = 200 Hz

    5 5 10 2 5 2

    Noise figureversus collector current

    dB20

    F

    12

    8

    100

    6

    IC

    10 mA

    BC846, BC849

    18

    16

    14

    10

    4

    2

    -3 10-2 10-1 1

    V = 5 VCEf = 1 kHz

    amb

    500 V

    1kV

    500 V

    T = 25 °C

    GR = 1 MV 100kV 10 kV

    BC846 … BC849

    Gain-bandwidth productversus collector current

    MHz10

    fT

    0.1IC

    100 mA

    BC846...BC8493

    7

    5

    4

    3

    2

    102

    7

    5

    4

    3

    2

    102 5 1 2 5 10 2 5

    T = 25 °Camb

    V = 10 VCE

    5 V

    2 V

  • BF420, BF422

    NPN Silicon Epitaxial Planar Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

    As complementary types, the PNP transistorsBF421 and BF423 are recommended

    0.55∅ max.

    2.5

    C

    BE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage BF420BF422

    VCBOVCBO

    300250

    VV

    Collector-Emitter Voltage BF422 VCEO 250 V

    Collector-Emitter Voltage BF420 VCER 300 V

    Emitter-Base Voltage VEBO 5 V

    Collector Current IC 50 mA

    Peak Collector Current ICM 100 mA

    Power Dissipation at Tamb = 25 °C Ptot 8301) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    54 ITT INTERMETALL

  • BF420, BF422

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    Collector-Base Breakdown Voltage BF420at IC = 100 µA, IB = 0 BF422

    V(BR)CBOV(BR)CBO

    300250

    ––

    ––

    VV

    Collector-Emitter Breakdown Voltage BF422at IC = 10 mA, IE = 0

    V(BR)CEO 250 – – V

    Collector-Emitter Breakdown Voltage BF420at RBE = 2.7 kΩ, IC = 10 mA

    V(BR)CER 300 – – V

    Emitter-Base Breakdown Voltageat IE = 100 µA, IB = 0

    V(BR)EBO 5 – – V

    Collector-Base Cutoff Currentat VCB = 200 V, IE = 0

    ICBO – – 10 nA

    Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, VCE = 250 Vat RBE = 2.7 kΩ, VCE = 200 V, Tj = 150 °C

    ICERICER

    5010

    nAµA

    Collector Saturation Voltageat IC = 30 mA, IB = 5 mA

    VCEsat – – 0.6 V

    DC Current Gainat VCE = 20 V, IC = 25 mA

    hFE 50 – – –

    Gain-Bandwidth Productat VCE = 10 V, IC = 10 mA

    fT 60 – – MHz

    Feedback Capacitanceat VCE = 30 V, IC = 0, f = 1 MHz

    Cre – – 1.6 pF

    Thermal Resistance Junction to Ambient Air RthA – – 1501) K/W

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

    ITT INTERMETALL 55

  • BF820, BF822

    NPN Silicon Epitaxial Planar Transistorsespecially suited for application in class-Bvideo output stages of TV receivers and monitors.

    As complementary types, the PNP transistors BF821 and BF823 are recommended.

    Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

    Marking codeBF820 = 1VBF822 = 1X

    0.4

    0.95 0.95

    3

    0.4 0.4

    +0.1

    1

    2 3

    Top View

    SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

    2.45+0.1

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage BF820BF822

    VCBOVCBO

    300250

    VV

    Collector-Emitter Voltage BF822 VCEO 250 V

    Collector-Emitter Voltage BF820 VCER 300 V

    Emitter-Base Voltage VEBO 5 V

    Collector Current IC 50 mA

    Peak Collector Current ICM 100 mA

    Power Dissipation at TSB = 50 °C Ptot 3001) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Device on fiberglass substrate, see layout

    56 ITT INTERMETALL

  • BF820, BF822

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    Collector-Base Breakdown Voltage BF820at IC = 100 µA, IB = 0 BF822

    V(BR)CBOV(BR)CBO

    300250

    ––

    ––

    VV

    Collector-Emitter Breakdown Voltage BF822at IC = 10 mA, IE = 0

    V(BR)CEO 250 – – V

    Collector-Emitter Breakdown Voltage BF820at RBE = 2.7 kΩ, IC = 10 mA

    V(BR)CER 300 – – V

    Emitter-Base Breakdown Voltageat IE = 100 µA, IB = 0

    V(BR)EBO 5 – – V

    Collector-Base Cutoff Currentat VCB = 200 V, IE = 0

    ICBO – – 10 nA

    Collector-Emitter Cutoff Currentat RBE = 2.7 kΩ, VCE = 250 Vat RBE = 2.7 kΩ, VCE = 200 V, Tj = 150 °C

    ICERICER

    5010

    nAµA

    Collector Saturation Voltageat IC = 30 mA, IB = 5 mA

    VCEsat – – 0.6 V

    DC Current Gainat VCE = 20 V, IC = 25 mA

    hFE 50 – – –

    Gain-Bandwidth Productat VCE = 10 V, IC = 10 mA

    fT 60 – – MHz

    Feedback Capacitanceat VCE = 30 V, IC = 0, f = 1 MHz

    Cre – – 1.6 pF

    Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

    1) Device on fiberglass substrate, see layout

    Layout for RthA testThickness: Fiberglass 1.5 mm

    Copper leads 0.3 mm

    15 12

    5

    0.8

    7.5

    3

    1

    1.5

    5.1

    2

    2

    1

    ITT INTERMETALL 57

  • MMBT3904

    NPN Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

    As complementary type, the PNP transistor MMBT3906 is recommended.

    Pin configuration1 = Collector, 2 = Base, 3 = Emitter.

    Marking code1N

    0.4

    0.95 0.95

    3

    0.4 0.4

    +0.1

    1

    2 3

    Top View

    SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

    2.45+0.1

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage VCBO 60 V

    Collector-Emitter Voltage VCEO 40 V

    Emitter-Base Voltage VEBO 6 V

    Collector Current IC 100 mA

    Peak Collector Current ICM 200 mA

    Power Dissipation at TSB = 50 °C Ptot 3101) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Device on fiberglass substrate, see layout

    58 ITT INTERMETALL

  • MMBT3904

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = 1 V, IC = 0.1 mAat VCE = 1 V, IC = 1 mAat VCE = 1 V, IC = 10 mAat VCE = 1 V, IC = 50 mAat VCE = 1 V, IC = 100 mA

    hFEhFEhFEhFEhFE

    40701006030

    –––––

    ––300––

    –––––

    Thermal Resistance Junction to SubstrateBackside

    RthSB – – 3201) K/W

    Thermal Resistance Junction to Ambient Air RthA – – 4501) K/W

    Collector Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

    VCEsatVCEsat

    ––

    ––

    0.20.3

    VV

    Base Saturation Voltageat IC = 10 mA, IB = 1 mAat IC = 50 mA, IB = 5 mA

    VBEsatVBEsat

    ––

    ––

    0.850.95

    VV

    Collector-Emitter Cutoff CurrentVEB = 3 V, VCE = 30 V

    ICEV – – 50 nA

    Emitter-Base Cutoff CurrentVEB = 3 V, VCE = 30 V

    IEBV – – 50 nA

    Collector-Base Breakdown Voltageat IC = 10 µA, IE = 0

    V(BR)CBO 60 – – V

    Collector-Emitter Breakdown Voltageat IC = 1 mA, IB = 0

    V(BR)CEO 40 – – V

    Emitter-Base Breakdown Voltageat IE = 10 µA, IC = 0

    V(BR)EBO 6 – – V

    Gain-Bandwidth Productat VCE = 20 V, IC = 10 mA, f = 100 MHz

    fT 300 – – MHz

    Collector-Base Capacitanceat VCB = 5 V, f = 100 kHz

    CCBO – – 4 pF

    Emitter-Base Capacitanceat VEB = 0.5 V, f = 100 kHz

    CEBO – – 8 pF

    Input Impedanceat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hie 1 – 10 kΩ

    1) Device on fiberglass substrate, see layout

    ITT INTERMETALL 59

  • Characteristics, continuation

    MMBT3904

    Symbol Min. Typ. Max. Unit

    Voltage Feedback Ratioat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hre 0.5 · 10–4 – 8 · 10–4 –

    Small-Signal Current Gainat VCE = 10 V, IC = 1 mA, f = 1 kHz

    hfe 100 – 400 –

    Output Admittanceat VCE = 1 V, IC = 1 mA, f = 1 kHz

    hoe 1 – 40 µS

    Noise Figureat VCE = 5 V, IC = 100 µA, RG = 1 kΩ,f = 10…15000 Hz – – – 5 dB

    Delay Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

    td – – 35 ns

    Rise Time (see Fig. 1)at IB1 = 1 mA, IC = 10 mA

    tr – – 35 ns

    Storage Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

    ts – – 200 ns

    Fall Time (see Fig. 2)at –IB1 = IB2 = 1 mA, IC = 10 mA

    tf – – 50 ns

    10 < t < 500 msDUTY CYCLE = 2%

    0

    + 10.9 V

    - 9.1V

    + 3.0 V275

    10 K

    C < 4.0 pF*3

    t11

    < 1.0 ns

    300 nsDUTY CYCLE = 2%

    - 0.5 V

    + 10.9 V

    < 1.0 ns

    + 3.0 V275

    10 K

    C < 4.0 pF*3

    Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

    * total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

    60 ITT INTERMETALL

    Layout for RthA testThickness: Fiberglass 1.5 mm

    Copper leads 0.3 mm

    15 12

    5

    0.8

    7.5

    3

    1

    1.5

    5.1

    2

    2

    1

  • ITT INTERMETALL 61

    MMBT3904

  • MMBTA42, MMBTA43

    NPN Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

    As complementary types, the PNP transistors MMBTA92and MMBTA93 are recommended.

    Pin Configuration1 = Collector, 2 = Base, 3 = Emitter

    Marking CodeMMBTA42 = 1DMMBTA43 = 1E

    0.4

    0.95 0.95

    3

    0.4 0.4

    +0.1

    1

    2 3

    Top View

    SOT-23 Plastic PackageWeight approx. 0.008 gDimensions in mm

    2.45+0.1

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage MMBTA42MMBTA43

    VCEOVCEO

    300200

    VV

    Collector-Base Voltage MMBTA42MMBTA43

    VCBOVCBO

    300200

    VV

    Emitter-Base Voltage VEBO 6 V

    Collector Current IC 500 mA

    Power Dissipation1) at TSB = 50 °C Ptot 3001) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Device on fiberglass substrate, see layout

    62 ITT INTERMETALL

  • MMBTA42, MMBTA43

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    Collector-Emitter Breakdown Voltage MMBTA42IC = 10 mA, IB = 0 MMBTA43

    V(BR)CEOV(BR)CEO

    300200

    ––

    ––

    VV

    Collector-Base Breakdown Voltage MMBTA42IC = 100 µA, IE = 0 MMBTA43

    V(BR)CBOV(BR)CBO

    300200

    ––

    ––

    VV

    Emitter-Base Breakdown VoltageIE = 100 µA, IC = 0

    V(BR)EBO 6 – – V

    Collector-Base Cutoff CurrentVCB = 200 V, IE = 0 MMBTA42VCB = 160 V, IE = 0 MMBTA43

    ICBOICBO

    ––

    ––

    100100

    nAnA

    Emitter-Base Cutoff CurrentVEB = 6 V, IC = 0 MMBTA42VEB = 4 V, IC = 0 MMBTA43

    IEBOIEBO

    ––

    ––

    100100

    nAnA

    DC Current GainIC = 1 mA, VCE = 10 VIC = 10 mA, VCE = 10 VIC = 30 mA, VCE = 10 V

    hFEhFEhFE

    254040

    –––

    –––

    –––

    Collector-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

    VCEsat – – 500 mV

    Base-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

    VBEsat – – 900 mV

    Gain-Bandwidth ProductIE = 10 mA, VCE = 20 V, f = 100 MHz

    fT 50 – – MHz

    Collector-Base Capacitance MMBTA42VCB = 20 V, IE = 0, f = 1 MHz MMBTA43

    CCBOCCBO

    ––

    ––

    34

    pFpF

    Thermal Resistance Junction to Ambient Air RthA – – 4301) K/W

    1) Device on fiberglass substrate, see layout

    Layout for RthA testThickness: Fiberglass 1.5 mm

    Copper leads 0.3 mm

    15 12

    5

    0.8

    7.5

    3

    1

    1.5

    5.1

    2

    2

    1

    ITT INTERMETALL 63

  • MPSA42, MPSA43

    NPN Silicon Epitaxial Planar Transistorsespecially suited as line switch in telephone subsetsand in video output stages of TV receivers and moni-tors.

    As complementary types, the PNP transistors MPSA92and MPSA93 are recommended.

    0.55∅ max.

    2.5

    B

    CE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage MPSA42MPSA43

    VCEOVCEO

    300200

    VV

    Collector-Base Voltage MPSA42MPSA43

    VCBOVCBO

    300200

    VV

    Emitter-Base Voltage VEBO 6 V

    Collector Current IC 500 mA

    Power Dissipation at Tamb = 25 °C Ptot 6251) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    64 ITT INTERMETALL

  • MPSA42, MPSA43

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    Collector-Emitter Breakdown Voltage MPSA42IC = 10 mA, IB = 0 MPSA43

    V(BR)CEOV(BR)CEO

    300200

    ––

    ––

    VV

    Collector-Base Breakdown Voltage MPSA42IC = 100 µA, IE = 0 MPSA43

    V(BR)CBOV(BR)CBO

    300200

    ––

    ––

    VV

    Emitter-Base Breakdown VoltageIE = 100 µA, IC = 0

    V(BR)EBO 6 – – V

    Collector-Base Cutoff CurrentVCB = 200 V, IE = 0 MPSA42VCB = 160 V, IE = 0 MPSA43

    ICBOICBO

    ––

    ––

    100100

    nAnA

    Emitter-Base Cutoff CurrentVEB = 6 V, IC = 0 MPSA42VEB = 4 V, IC = 0 MPSA43

    IEBOIEBO

    ––

    ––

    100100

    nAnA

    DC Current GainIC = 1 mA, VCE = 10 VIC = 10 mA, VCE = 10 VIC = 30 mA, VCE = 10 V

    hFEhFEhFE

    254040

    –––

    –––

    –––

    Collector-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

    VCEsat – – 500 mV

    Base-Emitter Saturation VoltageIC = 20 mA, IB = 2 mA

    VBEsat – – 900 mV

    Gain-Bandwidth ProductIE = 10 mA, VCE = 20 V, f = 100 MHz

    fT 50 – – MHz

    Collector-Base Capacitance MPSA42VCB = 20 V, IE = 0, f = 1 MHz MPSA43

    CCBOCCBO

    ––

    ––

    34

    pFpF

    Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

    1) Valid provided that lead are kept at ambient temperature at a distance of 2 mm from case.

    ITT INTERMETALL 65

  • 66 ITT INTERMETALL

  • ITT INTERMETALL 67

    Small-Signal Transistors (PNP)

  • 2N3906

    PNP Silicon Epitaxial Planar Transistorfor switching and amplifier applications.

    As complementary type, the NPN transistor 2N3904 isrecommended.

    On special request, this transistor is also manufacturedin the pin configuration TO-18.

    0.55∅ max.

    2.5

    B

    CE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Base Voltage –VCBO 40 V

    Collector-Emitter Voltage –VCEO 40 V

    Emitter-Base Voltage –VEBO 5 V

    Collector Current –IC 100 mA

    Peak Collector Current –ICM 200 mA

    Power Dissipation at Tamb = 25 °C Ptot 5001) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65…+150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    68 ITT INTERMETALL

  • 2N3906

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat –VCE = 1 V, –IC = 0.1 mAat –VCE = 1 V, –IC = 1 mAat –VCE = 1 V, –IC = 10 mAat –VCE = 1 V, –IC = 50 mAat –VCE = 1 V, –IC = 100 mA

    hFEhFEhFEhFEhFE

    60801006030

    –––––

    ––300––

    –––––

    Thermal Resistance Junction to Ambient Air RthA – – 2501) K/W

    Collector Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

    –VCEsat–VCEsat

    ––

    ––

    0.250.4

    VV

    Base Saturation Voltageat –IC = 10 mA, –IB = 1 mAat –IC = 50 mA, –IB = 5 mA

    –VBEsat–VBEsat

    ––

    ––

    0.850.95

    VV

    Collector-Emitter Cutoff Currentat –VEB = 3 V, –VCE = 30 V

    –ICEV – – 50 nA

    Emitter-Base Cutoff Currentat –VEB = 3 V, –VCE = 30 V

    –IEBV – – 50 nA

    Collector-Base Breakdown Voltageat –IC = 10 µA, IE = 0

    –V(BR)CBO 40 – – V

    Collector-Emitter Breakdown Voltageat –IC = 1 mA, IB = 0

    –V(BR)CEO 40 – – V

    Emitter-Base Breakdown Voltageat –IE = 10 µA, IC = 0

    –V(BR)EBO 5 – – V

    Gain-Bandwidth Product at –VCE = 20 V, –IC = 10 mA, f = 100 MHz

    fT 250 – – MHz

    Collector-Base Capacitanceat –VCB = 5 V, f = 100 kHz

    CCBO – – 4.5 pF

    Emitter-Base Capacitanceat –VEB = 0.5 V, f = 100 kHz

    CEBO – – 10 pF

    Input Impedanceat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

    hie 1 – 10 kΩ

    Voltage Feedback Ratioat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

    hre 0.5 · 10–4 – 8 · 10–4 –

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    ITT INTERMETALL 69

  • 2N3906

    Characteristics, continuation

    Fig. 1: Test circuit for delay and rise time Fig. 2: Test circuit for storage and fall time

    * total shunt capacitance of test jig and connectors * total shunt capacitance of test jig and connectors

    Symbol Min. Typ. Max. Unit

    Small-Signal Current Gainat –VCE = 10 V, –IC = 1 mA, f = 1 kHz

    hfe 100 – 400 –

    Output Admittanceat –VCE = 1 V, –IC = 1 mA, f = 1 kHz

    hoe 1 – 40 µS

    Noise Figureat –VCE = 5 V, –IC = 100 µA, RG = 1 kΩ,f = 10 … 15000 Hz

    F – – 4 dB

    Delay Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

    td – – 35 ns

    Rise Time (see Fig. 1)at –IB1 = 1 mA, –IC = 10 mA

    tr – – 35 ns

    Storage Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

    ts – – 225 ns

    Fall Time (see Fig. 2)at IB1 = –IB2 = 1 mA, –IC = 10 mA

    tf – – 75 ns

    300 nsDUTY CYCLE = 2%

    - 0.5 V

    - 10.6 V

    < 10 ns- 3.0 V

    27510 K

    C < 4.0 pF*3

    0

    + 9.1V - 3.0 V275

    10 K

    C < 4.0 pF*3

    10 < t < 500 msDUTY CYCLE = 2%

    - 10.9 Vt11

    < 1.0 ns

    70 ITT INTERMETALL

  • ITT INTERMETALL 71

    2N3906

  • 2N4126

    Absolute Maximum Ratings

    Symbol Value Unit

    Collector-Emitter Voltage –VCEO 25 V

    Collector-Base Voltage –VCBO 25 V

    Emitter-Base Voltage –VEBO 4 V

    Collector Current –IC 200 mA

    Peak Collector Current –ICM 800 mA

    Base Current –IB 50 mA

    Power Dissipation at Tamb = 25 °C Ptot 6251) mW

    Junction Temperature Tj 150 °C

    Storage Temperature Range TS –65 to +150 °C

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    PNP Silicon Epitaxial Transistorfor switching and amplifier applications. Especially suit-able for AF-driver and low-power output stages.

    As complementary type, the NPN transistor 2N4124 isrecommended.

    72

    0.55∅ max.

    2.5

    B

    CE

    4.6 3.6

    TO-92 Plastic PackageWeight approx. 0.18 gDimensions in mm

    ITT INTERMETALL

  • 2N4126

    Characteristics at Tamb = 25 °C

    Symbol Min. Typ. Max. Unit

    DC Current Gainat VCE = –1 V, IC = –2.0 mAat VCE = –1 V, IC = –50 mA

    hFEhFE

    120–

    –60

    360–

    ––

    Collector Cutoff Currentat VCB = –20 V

    –ICBO – – 50 nA

    Emitter Cutoff Currentat VEB = –3 V

    –IEBO – – 50 nA

    Collector Saturation Voltageat IC = –50 mA, IB = –5 mA

    –VCESAT – – 0.4 V

    Base Saturation Voltageat IC = –50 mA, IB = –5 mA

    –VBESAT – – 0.95 V

    Collector-Emitter Breakdown Voltageat IC = –1 mA

    –V(BR)CEO 25 – – V

    Collector-Base Breakdown Voltageat IC = –10 µA

    –V(BR)CBO 25 – – V

    Emitter-Base Breakdown Voltageat IE = –10 µA

    –V(BR)EBO 4 – – V

    Gain-Bandwidth Productat VCE = –5 V, IC = –10 mA, f = 50 MHz

    fT – 200 – MHz

    Collector-Base Capacitanceat VCB = –10 V, f = 1 MHz

    CCBO – 12 – pF

    Thermal Resistance Junction to Ambient Air RthA – – 2001) K/W

    1) Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

    ITT INTERMETALL 73

  • 74 ITT INTERMETALL

    Collector-emitter cutoff currentversus ambient temperature

    nA

    -ICES

    Tamb

    2N4126

    2

    104

    5

    103

    5

    2

    10

    5

    2

    5

    2

    10 100 200 °C

    10

    2

    -V = 25 VCE

    typicalmaximum

    Pulse thermal resistanceversus pulse duration

    K/W

    rthA

    1

    tp

    Valid pro