6.02 fall 2014 lecture #11 - mitweb.mit.edu/6.02/www/currentsemester/handouts/l11_slides.pdf ·...

29
6.02 Fall 2014 Lecture 11, Slide #1 6.02 Fall 2014 Lecture #11 Convolu’on

Upload: others

Post on 04-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • 6.02 Fall 2014 Lecture 11, Slide #1

    6.02 Fall 2014�Lecture #11�

    •  Convolu'on  

  • 6.02 Fall 2014 Lecture 11, Slide #2

    Unit Step

    A simple but useful discrete-time signal is the unit step signal or function, u[n], defined as

    u[n]= 0, n < 01, n ≥ 0

    "#$

    %$

  • 6.02 Fall 2014 Lecture 11, Slide #3

    Unit Sample

    Another simple but useful discrete-time signal is the unit sample signal or function, δ[n], defined as

    δ[n]= u[n]−u[n−1]= 0, n ≠ 01, n = 0

    #$%

    &%

  • 6.02 Fall 2014 Lecture 11, Slide #4

    Unit Sample and Unit Step Responses

    S δ[n] h[n]

    Unit sample Unit sample response

    The unit sample response of a system S is the response of the system to the unit sample input. We will always denote the unit sample response as h[n]. For a causal linear system, h[n] = 0 for n < 0.

    S u[n] s[n]

    Unit step Unit step response

    Similarly, the unit step response s[n]:

  • 6.02 Fall 2014 Lecture 11, Slide #5

    δ[n]= u[n]−u[n−1] h[n]= s[n]− s[n−1]

    Relating h[n] and s[n] of an LTI System

    S u[n] s[n]

    Unit step signal Unit step response

    S δ[n] h[n]

    Unit sample signal Unit sample response

    from which it follows that (assuming , e.g., a causal LTI system; more generally, assuming a “right-sided” unit sample response)

    s[n]= h[k]k=−∞

    n

    ∑s[−∞]= 0

  • 6.02 Fall 2014 Lecture 11, Slide #6

    h[n] s[n]

  • 6.02 Fall 2014 Lecture 11, Slide #7

    h[n] s[n]

  • 6.02 Fall 2014 Lecture 11, Slide #8

    h[n] s[n]

  • 6.02 Fall 2014 Lecture 11, Slide #9

    Unit Step Decomposition

    “Rectangular-wave” digital signaling waveforms, of the sort we have been considering, are easily decomposed into time-shifted, scaled unit steps --- each transition corresponds to another shifted, scaled unit step. e.g., if x[n] is the transmission of 1001110 using 4 samples/bit:

    x[n]

    = u[n]

    −u[n− 4]

    +u[n−12]

    −u[n− 24]

  • 6.02 Fall 2014 Lecture 11, Slide #10

    … so the corresponding response is

    y[n]

    = s[n]

    − s[n− 4]

    + s[n−12]

    − s[n− 24]

    x[n]

    = u[n]

    −u[n− 4]

    +u[n−12]

    −u[n− 24]

    Note how we have invoked linearity and time invariance!

  • 6.02 Fall 2014 Lecture 11, Slide #11

    Example

  • 6.02 Fall 2014 Lecture 11, Slide #12

    Transmission Over a Channel

  • 6.02 Fall 2014 Lecture 11, Slide #13

    Receiving the Response

    Digitization threshold = 0.5V

  • 6.02 Fall 2014 Lecture 11, Slide #14

    Faster Transmission

    Noise margin? 0.5 − y[28]

  • 6.02 Fall 2014 Lecture 11, Slide #15

    Step response of audiocom channel�

  • 6.02 Fall 2014 Lecture 11, Slide #16

    Unit Sample Decomposition�

    A  discrete-‐'me  signal  can  be  decomposed  into  a  sum  of  'me-‐shi9ed,  scaled  unit  samples.    Example:  in  the  figure,  x[n]  is  the  sum  of    x[-‐2]δ[n+2]  +  x[-‐1]δ[n+1]  +  …  +  x[2]δ[n-‐2].    In  general:  

    x[n]= x[k]δ[n− k]k=−∞

    For  any  par'cular  index,  only  one  term  of  this  sum  is  non-‐zero  

  • 6.02 Fall 2014 Lecture 11, Slide #17

    If  system  S  is  both  linear  and  'me-‐invariant  (LTI),  then  we  can  use  the  unit  sample  response  to  predict  the  response  to  any  input  waveform  x[n]:                  Indeed,  the  unit  sample  response  h[n]  completely  characterizes  the  LTI  system  S,  so  you  o9en  see  

    S x[n]= x[k]δ[n− k]k=−∞

    ∑ y[n]= x[k]h[n− k]k=−∞

    Sum of shifted, scaled unit samples Sum of shifted, scaled responses

    Modeling LTI Systems�

    h[.] x[n] y[n]

    CONVOLUTION SUM

  • 6.02 Fall 2014 Lecture 11, Slide #18

    Evalua'ng  the  convolu'on  sum        for  all  n  defines  the  output  signal  y  in  terms  of  the  input  x  and  unit-‐sample  response  h.  Some  constraints  are  needed  to  ensure  this  infinite  sum  is  well  behaved,  i.e.,  doesn’t  “blow  up”  -‐-‐-‐  we’ll  discuss  this  later.    We  use          to  denote  convolu'on,  and  write  y=x      h.  We  can  then  write  the  value  of  y  at  'me  n,  which  is  given  by  the  above  sum,  as                                                                                                                                                                                                                                                                                                                  or                                                                                                                                              

    y[n]= x[k]h[n− k]k=−∞

    Convolution�

    ∗ ∗

    y[n]= (x∗h)[n] y[n]= x∗h[n]

    Instead  you’ll  find  people  wri'ng                                                                                ,  where  the  poor  index  n  is  doing  double  or  triple  duty.  This  is  lousy  nota'on,  but  a  super-‐majority  of  engineering  professors  (including  at  MIT)  will  inflict  it  on  their  students.  

    y[n]= x[n]∗h[n]

  • 6.02 Fall 2014 Lecture 11, Slide #19

    Properties of Convolution�

    (x∗h)[n]≡ x[k]h[n− k]k=−∞

    ∑ = h[m]x[n−m]m=−∞

    The  second  equality  above  establishes  that  convolu'on  is  commuta've:        Convolu'on  is  associa've:        Convolu'on  is  distribu've:        (Some  condi'ons  needed,  typically  guaranteeing  that  the  individual  convolu'ons  are  well-‐behaved.)  

    x∗h = h∗ x

    x∗ (h1 ∗h2 ) = x∗h1( )∗h2

    x∗ h1 + h2( ) = (x∗h1)+ (x∗h2 )

  • 6.02 Fall 2014 Lecture 11, Slide #20

    Series Interconnection of LTI Systems�

    h1[.]  x[n]   h2[.]  

    y[n]  

    y = h2 ∗w = h2 ∗ h1 ∗ x( ) = h2 ∗h1( )∗ x

    (h2∗h1)[.]  x[n]   y[n]  

    w[n]  

    (h1∗h2)[.]  x[n]   y[n]  

    h2[.]  x[n]   h1[.]  

    y[n]  

  • 6.02 Fall 2014 Lecture 11, Slide #21

    Parallel Interconnection of LTI Systems�

    h1[.]  

    x[n]  

    y1[n]  

    h2[.]  

    +

    y2[n]  

    y[n]  

    (h1+h2)[.]  x[n]   y[n]  

    y = y1 + y2 = (h1 ∗ x)+ (h2 ∗ x) = h1 + h2( )∗ x

  • 6.02 Fall 2014 Lecture 11, Slide #22

    Unit Sample Response of a �Scale-&-Delay System�

    S  x[n]   y[n]=Ax[n-‐D]  

    If  S  is  a  system  that  scales  the  input  by  A  and  delays  it  by  D  'me  steps  (nega've  ‘delay’  D  =  advance),  is  the  system    

                 'me-‐invariant?      

                 linear?  

                                                                                                     Yes!                                                                                  Yes!    Unit  sample  response  is  h[n]=Aδ[n-‐D]  

    General  unit  sample  response                h[n]=…  +  h[-‐1]δ[n+1]  +  h[0]δ[n]  +  h[1]δ[n-‐1]+…      for  an  LTI  system  can  be  thought  of  as  resul'ng  from    many  scale-‐&-‐delays  in  parallel  

  • 6.02 Fall 2014 Lecture 11, Slide #23

    y[n]= h[m]x[n−m]m=−∞

    h[.]  x[n]= x[k]δ[n− k]k=−∞

    ∑ y[n]= x[k]h[n− k]k=−∞

    A Complementary View of Convolution�

    h[.]=…+h[-‐1]δ[n+1]+h[0]δ[n]+h[1]δ[n-‐1]+…            x[n]           y[n]  

    So  instead  of  the  picture:  

    we  can  consider  the  picture:  

    from  which  we  get    

  • 6.02 Fall 2014 Lecture 11, Slide #24

    (side by side)�y[n]=

    (x∗h)[n]= x[k]h[n− k]k=−∞

    ∑ = h[m]x[n−m]= (h∗ x)[n ]m=−∞

    Input  term  x[0]  at  'me  0  launches    scaled  unit  sample  response  x[0]h[n]  at    output    Input  term  x[k]  at  'me  k  launches    scaled  shi9ed  unit    sample  response    x[k]h[n-‐k]  at  output    

    Unit  sample  response  term  h[0]  at  'me  0    contributes  scaled  input  h[0]x[n]  to  output      Unit  sample  response    term  h[m]  at  'me  m    contributes  scaled  shi9ed  input  h[m]x[n-‐m]    to  output    

  • 6.02 Fall 2014 Lecture 11, Slide #25

    To Convolve (but not to “Convolute”!)

    A  simple  graphical  implementa'on:    Plot  x[.]  and  h[.]  as  a  func'on  of  the  dummy  index    (k  or  m  above)    Flip  (i.e.,  reverse)  one  signal  in  'me,    slide  it  right  by  n  (slide  le9  if  n  is  –ve),  take  the  dot.product  with  the  other.    This  yields  the  value  of  the  convolu'on  at    the  single  'me  n.      ‘flip  one    &  slide  by  n  ….  dot.product  with  the  other’      

    x[k]h[n− k]k=−∞

    ∑ = h[m]x[n−m]m=−∞

  • 6.02 Fall 2014 Lecture 11, Slide #26

    Example �•  From  the  unit  sample  response  h[n]  to  the  unit  step  response    

                                                                               s[n]  =  (h∗u)[n]    •  Flip  u[k]  to  get  u[-‐k]  •  Slide  u[-‐k]  n  steps  to  right  (i.e.,  delay  u[-‐k])  to  get  u[n-‐k]),            place  over  h[k]  •  Dot  product  of  h[k]  and  u[n-‐k]  wrt  k:  

    s[n]= h[k]k=−∞

    n

  • 6.02 Fall 2014 Lecture 11, Slide #27

    Channels as LTI Systems�

    Many  transmission  channels  can  be  effec'vely  modeled  as  LTI  systems.    When  modeling  transmissions,  there  area    few  simplifica'ons  we  can  make:    

    y[n]= x[k]h[n− k]k=−∞

    ∑ = x[k]h[n− k]k=0

    ∑ = x[k]h[n− k]k=0

    n

    ∑ = x[n− j]h[ j]j=0

    n

    These  two  observa'ons  allow  us  to  rework  the  convolu'on  sum  when  it’s  used  to  describe  transmission  channels:  

     •  We’ll  call  the  'me  transmissions  start  t=0;  the  signal  before  the  start  is  

    0.    So  x[m]  =  0  for  m  <  0.      

    •  Real-‐word  channels  are  causal:  the  output  at  any  'me  depends  on  values  of  the  input  at  only  the  present  and  past  'mes.    So  h[m]  =  0  for  m  <  0.  

    j=n-k start at t=0 causal

  • 6.02 Fall 2014 Lecture 11, Slide #28

    “Deconvolving”  Output  of  Echo  Channel  

    Channel,        h1[.]  

    Receiver  filter,    h2[.]  

    x[n]   y[n]   z[n]  

    Suppose  channel  is  LTI  with      

     h1[n]=δ[n]+0.8δ[n-‐1]      Find  h2[n]  such  that  z[n]=x[n]  

    Good  exercise  in  applying    Flip/Slide/Dot.Product  

    (h2*h1)[n]=δ[n]  

  • 6.02 Fall 2014 Lecture 11, Slide #29

    “Deconvolving” Output of�Channel with Echo �

    Channel, h1[.]

    Receiver filter, h2[.]

    x[n] y[n] + w[n]

    z[n]+v[n]

    Even  if  channel  was  well  modeled  as  LTI  and  h1[n]    was  known,  noise  on  the  channel  can  greatly  degrade  the  result,  so  this  is  usually  not  prac'cal.