6.003: signals and systemsweb.mit.edu/6.003/f11/www/handouts/lec20.pdf · lowpass filtering let the...

43
6.003: Signals and Systems Applications of Fourier Transforms November 17, 2011

Upload: others

Post on 21-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

6.003: Signals and Systems

Applications of Fourier Transforms

November 17, 2011

Page 2: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering

Notion of a filter.

LTI systems

• cannot create new frequencies.

• can only scale magnitudes and shift phases of existing components.

Example: Low-Pass Filtering with an RC circuit

+−

vi

+

vo

R

C

Page 3: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filter

Calculate the frequency response of an RC circuit.

+−

vi

+

vo

R

C

KVL: vi(t) = Ri(t) + vo(t)C: i(t) = Cv̇o(t)Solving: vi(t) = RCv̇o(t) + vo(t)

Vi(s) = (1 + sRC)Vo(s)

H(s) = Vo(s)Vi(s)

= 11 + sRC

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|H(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠H

(jω

)|

Page 4: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filtering

Let the input be a square wave.

t

12

−12

0 T

x(t) =∑k odd

1jπk

e jω0kt ; ω0 = 2πT

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|X(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠X

(jω

)|

Page 5: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filtering

Low frequency square wave: ω0 << 1/RC.

t

12

−12

0 T

x(t) =∑k odd

1jπk

e jω0kt ; ω0 = 2πT

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|H(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠H

(jω

)|

Page 6: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filtering

Higher frequency square wave: ω0 < 1/RC.

t

12

−12

0 T

x(t) =∑k odd

1jπk

e jω0kt ; ω0 = 2πT

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|H(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠H

(jω

)|

Page 7: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filtering

Still higher frequency square wave: ω0 = 1/RC.

t

12

−12

0 T

x(t) =∑k odd

1jπk

e jω0kt ; ω0 = 2πT

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|H(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠H

(jω

)|

Page 8: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Lowpass Filtering

High frequency square wave: ω0 > 1/RC.

t

12

−12

0 T

x(t) =∑k odd

1jπk

e jω0kt ; ω0 = 2πT

0.01

0.1

1

0.01 0.1 1 10 100ω

1/RC

|H(jω

)|

0

−π20.01 0.1 1 10 100

ω

1/RC

∠H

(jω

)|

Page 9: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Source-Filter Model of Speech Production

Vibrations of the vocal cords are “filtered” by the mouth and nasal

cavities to generate speech.

buzz fromvocal cords

speechthroat and

nasal cavities

Page 10: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering

LTI systems “filter” signals based on their frequency content.

Fourier transforms represent signals as sums of complex exponen-

tials.

x(t) = 12π

∫ ∞−∞

X(jω)e jωtdω

Complex exponentials are eigenfunctions of LTI systems.

e jωt → H(jω)e jωt

LTI systems “filter” signals by adjusting the amplitudes and phases

of each frequency component.

x(t) = 12π

∫ ∞−∞

X(jω)e jωtdω → y(t) = 12π

∫ ∞−∞

H(jω)X(jω)e jωtdω

Page 11: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering

Systems can be designed to selectively pass certain frequency bands.

Examples: low-pass filter (LPF) and high-pass filter (HPF).

LPF HPF

LPF

HPF

t

t

t

Page 12: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering Example: Electrocardiogram

An electrocardiogram is a record of electrical potentials that are

generated by the heart and measured on the surface of the chest.

0 10 20 30 40 50 60−1

012

t [s]

x(t) [mV]

ECG and analysis by T. F. Weiss

Page 13: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering Example: Electrocardiogram

In addition to electrical responses of heart, electrodes on the skin

also pick up other electrical signals that we regard as “noise.”

We wish to design a filter to eliminate the noise.

filterx(t) y(t)

Page 14: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering Example: Electrocardiogram

We can identify “noise” using the Fourier transform.

0 10 20 30 40 50 60−1

012

t [s]

x(t) [mV]

0.01 0.1 1 10 100

1000

100

10

1

0.1

0.01

0.001

0.0001

f = ω

2π [Hz]

|X(jω

)|[µ

V]

low-freq.noise cardiac

signal high-freq.noise

60 Hz

Page 15: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering Example: Electrocardiogram

Filter design: low-pass flter + high-pass filter + notch.

0.01 0.1 1 10 100

1

0.1

0.01

0.001

f = ω

2π [Hz]

|H(jω

)|

Page 16: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Electrocardiogram: Check Yourself

Which poles and zeros are associated with

• the high-pass filter?

• the low-pass filter?

• the notch filter?s-plane

( )( )( )222

Page 17: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Electrocardiogram: Check Yourself

Which poles and zeros are associated with

• the high-pass filter?

• the low-pass filter?

• the notch filter?s-plane

( )( )( )222 high-passlow-pass

notch

notch

Page 18: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Filtering Example: Electrocardiogram

Filtering is a simple way to reduce unwanted noise.

Unfiltered ECG

0 10 20 30 40 50 600

1

2

t [s]

x(t

)[mV

]

Filtered ECG

0 10 20 30 40 50 600

1

t [s]

y(t

)[mV

]

Page 19: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

A diffraction grating breaks a laser beam input into multiple beams.

Demonstration.

Page 20: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

Multiple beams result from periodic structure of grating (period D).

gra

tin

g

θ

λ

D

sin θ = λ

D

Viewed at a distance from angle θ, scatterers are separated by D sin θ.

Constructive interference if D sin θ = nλ, i.e., if sin θ = nλD

→ periodic array of dots in the far field

Page 21: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

CD demonstration.

Page 22: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

CD demonstration.

laser pointer

λ = 500 nm

CDscreen

3 feet

1 feet

What is the spacing of the tracks on the CD?

1. 160 nm 2. 1600 nm 3. 16µm 4. 160µm

Page 23: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

What is the spacing of the tracks on the CD?

grating tan θ θ sin θ D = 500 nm

sin θ manufacturing spec.

CD 13 0.32 0.31 1613 nm 1600 nm

Page 24: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

Demonstration.

laser pointer

λ = 500 nm

CDscreen

3 feet

1 feet

What is the spacing of the tracks on the CD? 2.

1. 160 nm 2. 1600 nm 3. 16µm 4. 160µm

Page 25: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

DVD demonstration.

Page 26: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

DVD demonstration.

laser pointer

λ = 500 nm

DVDscreen

1 feet

1 feet

What is track spacing on DVD divided by that for CD?

1. 4× 2. 2× 3. 12× 4. 1

Page 27: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

What is spacing of tracks on DVD divided by that for CD?

grating tan θ θ sin θ D = 500 nm

sin θ manufacturing spec.

CD 13 0.32 0.31 1613 nm 1600 nm

DVD 1 0.78 0.71 704 nm 740 nm

Page 28: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Check Yourself

DVD demonstration.

laser pointer

λ = 500 nm

DVDscreen

1 feet

1 feet

What is track spacing on DVD divided by that for CD? 3

1. 4× 2. 2× 3. 12× 4. 1

Page 29: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

Macroscopic information in the far field provides microscopic (invis-

ible) information about the grating.

θ

λ

D

sin θ = λ

D

Page 30: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Crystallography

What if the target is more complicated than a grating?

target

image?

Page 31: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Crystallography

Part of image at angle θ has contributions for all parts of the target.

target

image?

θ

Page 32: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Crystallography

The phase of light scattered from different parts of the target un-

dergo different amounts of phase delay.

θx sin θ

x

Phase at a point x is delayed (i.e., negative) relative to that at 0:

φ = −2πx sin θλ

Page 33: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Crystallography

Total light F (θ) at angle θ is integral of light scattered from each

part of target f(x), appropriately shifted in phase.

F (θ) =∫f(x) e−j2π

x sin θλ dx

Assume small angles so sin θ ≈ θ.

Let ω = 2π θλ , then the pattern of light at the detector is

F (ω) =∫f(x) e−jωxdx

which is the Fourier transform of f(x) !

Page 34: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transforms in Physics: Diffraction

Fourier transform relation between structure of object and far-field

intensity pattern.

· · ·· · ·

grating ≈ impulse train with pitch D

t0 D

· · ·· · ·

far-field intensity ≈ impulse train with reciprocal pitch ∝ λD

ω0 2π

D

Page 35: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Impulse Train

The Fourier transform of an impulse train is an impulse train.

· · ·· · ·

x(t) =∞∑

k=−∞δ(t− kT )

t0 T

1

· · ·· · ·

ak = 1T ∀ k

k

1T

· · ·· · ·

X(jω) =∞∑

k=−∞

2πTδ(ω − k2π

T)

ω0 2π

T

2πT

Page 36: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Two Dimensions

Demonstration: 2D grating.

Page 37: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

An Historic Fourier Transform

Taken by Rosalind Franklin, this image sparked Watson and Crick’s

insight into the double helix.

Page 38: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

An Historic Fourier Transform

This is an x-ray crystallographic image of DNA, and it shows the

Fourier transform of the structure of DNA.

Page 39: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

An Historic Fourier Transform

High-frequency bands indicate repeating structure of base pairs.

b1/b

Page 40: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

An Historic Fourier Transform

Low-frequency bands indicate a lower frequency repeating structure.

h 1/h

Page 41: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

An Historic Fourier Transform

Tilt of low-frequency bands indicates tilt of low-frequency repeating

structure: the double helix!

θ

θ

Page 42: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Simulation

Easy to calculate relation between structure and Fourier transform.

Page 43: 6.003: Signals and Systemsweb.mit.edu/6.003/F11/www/handouts/lec20.pdf · Lowpass Filtering Let the input be a square wave. t 1 2 1 2 0 T x(t) = X k odd 1 jπk ejω0kt; ω0 = 2π

Fourier Transform Summary

Represent signals by their frequency content.

Key to “filtering,” and to signal-processing in general.

Important in many physical phenomenon: x-ray crystallography.