60 mhz nmr applications smash 2012

1
Practical Applications of Compact, Cryogen-Free High-Resolution 60 MHz Permanent Magnet NMR Systems for Reaction Monitoring and Online/At-Line Process Control Observing 1 H, 19 F, and 31 P John C. Edwards*, Tal Cohen, Paul J. Giammatteo* *Process NMR Associates, LLC, 87A Sand Pit Rd, Danbury, CT 06810 USA, Aspect AI, Shoham, Israel For the past two decades high resolution 1 H NMR at 60 MHz has been utilized to monitor the chemical physical properties of refinery and petrochemical feedstreams and products 1 . These approaches involve the use of partial least squares regression modelling to correlate NMR spectral variability with ASTM and other official test methods, allowing the NMR to predict results of physical property tests or GC analysis. The analysis is performed in a stop flow environment where solenoid valves are closed at the beginning of the NMR experiment. This approach allows up to 5 or 6 different sample streams to be sent to the sample in order to maximize the impact of the instrument. The current work with these permanent magnet NMR systems is to utilize them as chemistry detectors for bench-top reaction monitoring, mixing monitoring, dilution monitoring, or conversion monitoring. In the past use of NMR for these applications has been limited by the need to bring the “reaction” to the typical "superconducting” NMR lab. A compact high resolution NMR system will be described that can be situated on the bench-top or in the fume hood to be used as a continuous or stop-flow detector and/or an “in-situ” reaction monitoring system. The system uses a unique 1.4 Tesla permanent magnet that can accommodate sample diameters of 3-10 mm with half-height resolution approaching 1-3 Hz (depending on the sample size) and excellent single pulse sensitivity. Reaction monitoring can be performed using a simple flow cell analyzing total system volumes of 2 to 5 mL depending on the length and diameter of the transfer tubing. Further, detection limits of analytes in the 200+ ppm range are possible without the use of typical deuterated NMR solvents. Analysis times of 5 to 20 seconds are also possible at flow rates of 1 to 20+ ml/minute. Reaction monitoring directly in standard 5-10 mm NMR tubes using conventional (non-deuterated) reactants, solvents and analytes will also be described. Examples of 1 H, 19 F and 31 P analyses will be described. 1. Process NMR Spectroscopy: Technology and On-line Applications” John C. Edwards , and Paul J. Giammatteo, in Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2 nd Ed., Editor Katherine Bakeev, Blackwell-Wiley, 2010 Abstract Example Application: Steam Cracking Optimization Installed at BASF, Ludwigshaven 2000 Cracker Facility Capacity: 600,000 Tonnes per Year Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization NMR Analysis: 3-4 Minute Cycle (Single Stream) NMR PLS Outputs: Naphtha Detailed Hydrocarbon PONA Analysis, Density C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes 1 st Generation NMR Analyzer Invensys Foxboro - 1998-2003 2 nd Generation NMR Analyzer Qualion Ltd. 2003-2011 Typical NMR Analyzer Environment Shelter House at Base of Vaccuum Tower Sample system providing 2 conditioned streams to NMR Analyzer 3 rd Generation NMR Analyzer Modcon-Xentaur-Aspect AI Actual Toluene (Wt%) Predicted Toluene (Wt%) ( F9 C1 ) PLS Model for Toluene Wt% by PIONA GC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 49 50 51 53 54 56 58 59 62 63 66 68 69 70 71 73 75 76 77 78 79 80 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 101 102 103 104 105 106 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 471 472 473 477 478 481 482 483 484 485 489 490 493 494 495 496 -.5 1 2.5 4 5.5 0 1.5 3 4.5 Spectral Units ( ) Beta Coefficient ( F9 C1 ) 0 10 40 70 100 130 -1.5 1.5 10 40 70 100 130 Cyclopentane Date Wt% GC NMR 0 2 4 6 8 10 12 14 16 1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753 iso-C5 iso-C6 iso-C7 iso-C8 iso-C9 4 Month Comparison of Online NMR Prediction and Laboratory GC Analysis Predictive Vector for Toluene PLS Model 96 Hours of Online Variability Observed by NMR Analyzer for iso-paraffin components 0 0.5 1 1.5 2 2.5 3 3.5 4 1 167 333 499 665 831 997 1163 1329 1495 1661 Benzene Toluene Ethyl-Benzene Xylenes 96 Hours of Online Variability Observed by NMR Analyzer for aromatic components Examples of the expected resolution obtained on various essential oils at 60 MHz 2.5 2.0 1.5 1.0 ppm C H 3 CH 3 C H 3 O O CH 3 C H 3 CH 3 CH 3 OH O H O CH 3 A B C D C H 3 O O O CH 3 E E B D A C 2.5 2.0 1.5 1.0 ppm 60 MHz NMR Reaction 5mm NMR Tube T-Butyl Alcohol Reacting with Acetic Anhydride In the presence of dilute acid. Aspect 60 MHz NMR System Sucrose Hydrolysis Sucrose a-glucose b-glucose Esterification of t-BuOH Integral Graph And Integration Plot Esterification of t-BuOH Superimposed Spectrum Plot 1-Propanol Esterification with Acetic Anhydride Pure Solution No Solvent No Acid Catalyst 8 Hour Reaction Profile AcAn (7) AcAn Acetic Acid T-BuOH T-Bu-Ester Ac-Ester O H O CH 3 C H 3 O O O CH 3 O O C H 3 C H 3 C H 3 OH 1,2 1 2 3 3 4 4 5 5 6 6 7 7 8 8,9 9 Esterification of 1-Propanol by Acetic Anhydride Integral Plots for Reaction Profile Ac-Ester Acetic Acid 1-Pr-Ester 1-PrOH

Upload: john-edwards

Post on 29-Aug-2014

251 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: 60 MHz NMR Applications   SMASH 2012

Practical Applications of Compact, Cryogen-Free High-Resolution 60 MHz Permanent Magnet NMR Systems for Reaction Monitoring and Online/At-Line Process Control Observing 1H, 19F, and 31P

John C. Edwards*, Tal Cohenⱡ, Paul J. Giammatteo* *Process NMR Associates, LLC, 87A Sand Pit Rd, Danbury, CT 06810 USA, ⱡ Aspect AI, Shoham, Israel

For the past two decades high resolution 1H NMR at 60 MHz has been utilized to monitor the chemical physical properties of refinery and petrochemical feedstreams and products1. These approaches involve the use of partial least squares regression modelling to correlate NMR spectral variability with ASTM and other official test methods, allowing the NMR to predict results of physical property tests or GC analysis. The analysis is performed in a stop flow environment where solenoid valves are closed at the beginning of the NMR experiment. This approach allows up to 5 or 6 different sample streams to be sent to the sample in order to maximize the impact of the instrument. The current work with these permanent magnet NMR systems is to utilize them as chemistry detectors for bench-top reaction monitoring, mixing monitoring, dilution monitoring, or conversion monitoring. In the past use of NMR for these applications has been limited by the need to bring the “reaction” to the typical "superconducting” NMR lab. A compact high resolution NMR system will be described that can be situated on the bench-top or in the fume hood to be used as a continuous or stop-flow detector and/or an “in-situ” reaction monitoring system. The system uses a unique 1.4 Tesla permanent magnet that can accommodate sample diameters of 3-10 mm with half-height resolution approaching 1-3 Hz (depending on the sample size) and excellent single pulse sensitivity. Reaction monitoring can be performed using a simple flow cell analyzing total system volumes of 2 to 5 mL depending on the length and diameter of the transfer tubing. Further, detection limits of analytes in the 200+ ppm range are possible without the use of typical deuterated NMR solvents. Analysis times of 5 to 20 seconds are also possible at flow rates of 1 to 20+ ml/minute. Reaction monitoring directly in standard 5-10 mm NMR tubes using conventional (non-deuterated) reactants, solvents and analytes will also be described. Examples of 1H, 19F and 31P analyses will be described. 1. “Process NMR Spectroscopy: Technology and On-line Applications” John C. Edwards, and Paul J. Giammatteo, in Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd Ed., Editor Katherine Bakeev, Blackwell-Wiley, 2010

Abstract

Example Application: Steam Cracking Optimization Installed at BASF, Ludwigshaven 2000 Cracker Facility Capacity: 600,000 Tonnes per Year Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization NMR Analysis: 3-4 Minute Cycle (Single Stream) NMR PLS Outputs: Naphtha – Detailed Hydrocarbon PONA Analysis, Density C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes

1st Generation NMR Analyzer Invensys –Foxboro - 1998-2003

2nd Generation NMR Analyzer Qualion Ltd. 2003-2011

Typical NMR Analyzer Environment Shelter House at Base of Vaccuum Tower

Sample system providing 2 conditioned streams to NMR Analyzer

3rd Generation NMR Analyzer Modcon-Xentaur-Aspect AI

Actual Toluene (Wt%)

Pre

dic

ted

To

luen

e (W

t%)

( F9

C1

)

PLS Model for Toluene Wt% by PIONA GC

1

2 3

4 5

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23 25

26

27 28

29 30

31

32

33

34

35

36

37

38 39 40

41 42

43

44

45

46

49 50

51

53

54 56

58

59

62 63

66

68

69

70

71

73

75

76

77

78

79

80

82

83

84

85

86

87

88

90

91

92 93 94

95

96 97

98

99

101

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118 119 120

121

122 123

124

125 126

127 128

129 130 131 132 133 134 135 136 137

138 139 140

141 142 143

144 145 146

147 148 149

150 151 152

156 157 158 159 160 161

162 163 164

165 166 167 168 169 170

171 172 173

174 175 176

177 178 179

180 181 182

183 184 185 186 187 188

189 190 191

192 193 194 195 196 197

198 199 200

201 202 203

204 205 206

207 208 209 210 211 212

213 214 215

216 217 218 219 220 221 222 223 224

225 226 227 228 229 230

231 232 233

234 235 236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

252 253 254

255 256 257 258 259 260 261 262 263

264 265 266

267 268 269 270 271 272

273 274 275

279 280 281 282

283 284 285

286 287 288

289 290 291

292 293 294

295 296 297 298 299 300

301 302 303

304 305 306

307 308 309

310 311 312

313 314 315

319 320 321

322 323 324 325 326 327

328 329 330

331 332 333 334 335 336

337 338 339

340 341 342 343 344 345

346 347 348 349 350 351

352 353 354

355 356 357 358 359 360

361 362 363 364 365 366 367 368 369

370 371 372

373 374 375

376 377 378

379 380 381 382 383 384 385 386 387

388 389 390 391 392 393

394 395 396 397 398 399 400 401 402

403 404 405

406 407 408

409 410 411

412 413 414

427 428 429 430 431 432 433 434 435

436 437 438

439 440 441

445 446 447

448 449 450

451 452 453 454 455 456

457 458 459

460 461 462

463 464

465 466 467

471 472 473

477 478

481 482

483 484 485 489 490 493 494 495 496

-.5

1

2.5

4

5.5

0 1.5 3 4.5

Spectral Units ( )

Bet

a C

oef

fici

ent

( F9

C1

)

0

10 40 70 100 130

-1.5

1.5

10 40 70 100 130

Cyclopentane

Date

Wt%

GC

NMR

0

2

4

6

8

10

12

14

16

1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753

iso-C5

iso-C6

iso-C7

iso-C8

iso-C9

4 Month Comparison of Online NMR Prediction and Laboratory GC Analysis

Predictive Vector for Toluene PLS Model

96 Hours of Online Variability Observed by NMR Analyzer for iso-paraffin components

0

0.5

1

1.5

2

2.5

3

3.5

4

1 167 333 499 665 831 997 1163 1329 1495 1661

Benzene

Toluene

Ethyl-Benzene

Xylenes

96 Hours of Online Variability Observed by NMR Analyzer for aromatic components

Examples of the expected resolution obtained on various essential oils at 60 MHz

2.5 2.0 1.5 1.0 ppm

CH3

CH3

CH3

O

O

CH3

CH3

CH3

CH3

OH

OH

O

CH3

A

B

C

D

CH3

O

O

O

CH3E

E

B

D

A

C

2.5 2.0 1.5 1.0 ppm

60 MHz NMR Reaction 5mm NMR Tube T-Butyl Alcohol Reacting with Acetic Anhydride In the presence of dilute acid.

Aspect 60 MHz NMR System

Sucrose Hydrolysis

Sucrose a-glucose

b-glucose

Esterification of t-BuOH Integral Graph And Integration Plot

Esterification of t-BuOH Superimposed Spectrum Plot

1-Propanol Esterification with Acetic Anhydride Pure Solution – No Solvent – No Acid Catalyst 8 Hour Reaction Profile

AcAn (7)

AcAn

Acetic Acid

T-BuOH

T-Bu-Ester

Ac-Ester

OH

O

CH3

CH3

O

O

O

CH3

O

O

CH3

CH3

CH3

OH

1,2

1

2 3

3

4

4

5

5 6

6

7

7

8 8,9

9

Esterification of 1-Propanol by Acetic Anhydride Integral Plots for Reaction Profile

Ac-Ester Acetic Acid

1-Pr-Ester

1-PrOH