6 summary and conclusion - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · •...

131
118 6 SUMMARY AND CONCLUSION The study deals with a rapid and reproducible protocol for the micropropagation of selected explants (nodal and shoot tip) of A. javanica and A. lanata by direct and indirect organogenesis. Optimal regeneration was achieved in MS medium containing 0.5 mg/L SPM hormone (A. javanica) and 0.5 + 0.5 mg/L BAP + KIN (A. lanata). In vit ro flowering was obtained in the same hormonal concentration. Somatic embryos were developed in the 2, 4 D + SPM at 2.0 + 0.5 mg/L. The embryos were transformed into mature plantlets or sprouts in 1.0 + 0.5 mg/L BAP + GA 3 (A. javanica) and 1.0 + 0.5 mg/L BAP + TDZ (A. lanat a) Higher concentrations of IBA + IAA (1.0 + 1.0 mg/L) produced maximum root length and more roots in A. javanica and A. lanata was produced highest number of roots at 2.0 mg/L IBA. The rate of successful acclimatization was 90% for both A. javanica and A. lanata species. About 113 and 126 scorable bands (using four random primers) were observed in the PCR amplified DNA of A. javanica, and A. lanat a. About 98 monomorphic and 15 polymorphic bands were reported in A. javanica with lowest percentage of polymorphic variations (13.27 % in all samples of in vivo, in vitro leaf and callus). Percentage of polymorphic changes in the samples of A. lanata were 10.56 % (110 bands were monomorphic and 13 were polymorphic bands).

Upload: others

Post on 11-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

118

6

SUMMARY AND CONCLUSION

• The study deals with a rapid and reproducible protocol for the

micropropagation of selected explants (nodal and shoot tip) of A. javanica and

A. lanata by direct and indirect organogenesis.

• Optimal regeneration was achieved in MS medium containing 0.5 mg/L SPM

hormone (A. javanica) and 0.5 + 0.5 mg/L BAP + KIN (A. lanata). In vitro

flowering was obtained in the same hormonal concentration.

• Somatic embryos were developed in the 2, 4 D + SPM at 2.0 + 0.5 mg/L. The

embryos were transformed into mature plantlets or sprouts in 1.0 + 0.5 mg/L

BAP + GA3 (A. javanica) and 1.0 + 0.5 mg/L BAP + TDZ (A. lanata)

• Higher concentrations of IBA + IAA (1.0 + 1.0 mg/L) produced maximum

root length and more roots in A. javanica and A. lanata was produced highest

number of roots at 2.0 mg/L IBA.

• The rate of successful acclimatization was 90% for both A. javanica and

A. lanata species.

• About 113 and 126 scorable bands (using four random primers) were observed

in the PCR amplified DNA of A. javanica, and A. lanata.

• About 98 monomorphic and 15 polymorphic bands were reported in A.

javanica with lowest percentage of polymorphic variations (13.27 % in all

samples of in vivo, in vitro leaf and callus).

• Percentage of polymorphic changes in the samples of A. lanata were 10.56 %

(110 bands were monomorphic and 13 were polymorphic bands).

Page 2: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

119

• Jaccard’s similarity and distance coefficient values have shown similarity of

1.000 and distance of 0 scales among the samples.

• Based on the results of monomorphic bands occurred in the DNA samples, the

uniform distribution of secondary metabolites contents (for in vivo, in vitro

leaf and callus materials) is ensured.

• Little/few polymorphic variations occurred in gDNA within the samples

indicates the improved secondary metabolites contents in plants.

• The antimicrobial activity of A. javanica showed that most of the extracts

exhibited broad spectrum (higher to moderate range) of inhibition against the

tested bacterial and fungal pathogens.

• Highest inhibition was observed in the callus and in vitro leaf methanolic

extracts against S. aureus, E. faecalis, B. subtilis, and S. typhi followed by

chloroform, acetone and ethyl acetate extracts. A. niger and Fusarium was

found to be inhibited by the extracts tested.

• Callus and in vitro leaf extracts (ethyl acetate, methanol, and chloroform

solvents) of A. lanata was able to inhibit the tested pathogens i.e. S. aureus,

S. typhi, B. subtilis, E. coli, S. boydii, and P. vulgaris. Similarly, all the

extracts were found to have some inhibitory effects against the fungus namely

C. albicans and A. niger.

• The MIC values of methanolic extract of plant samples were found to be in the

range of 18 – 22 µg/mL (in vivo extracts), 15 – 22 µg/mL (in vitro extracts)

and 16 – 24 µg/mL (callus extracts) against the tested pathogens.

• MIC of methanolic extracts of A. lanata was reported in the range of 19 – 28

µg/mL (in vivo), 21 – 25 µg/mL (in vitro) and 12 – 17 µg/mL (callus). Colony

Page 3: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

120

count of MBC plate from the respective MIC tubes also show clear or

negligible amount of colonies.

• Fractions separated from A. javanica and A. lanata by TLC was tested against

both Gram positive and negative organisms, (S. aureus and S. typhi). Fractions

of AJ-IL-F1, AJ-FL-F1, AJ-CA-F1 were found to inhibit the growth of

organisms.

• The qualitative phytochemical analysis of results shows the presence of

flavonoids, phenolic contents, tannins and carbohydrates in all the extracts of

tested plants. Alkaloids, saponins, terpenoids and fats and oils were found to

be present in most of the extracts of both plants.

• The methanol and aqueous extracts of A. javanica were reported to contain

higher amount of phenolics (196.68 ± 10.45 mg GAE/g), tannins (116.08 ±

3.71 mg GAE/g), flavonoids (177.54 ± 1.8 mg RE/g) and carbohydrates (139.0

± 5.1 mg GE/g).

• The extracts of A. lanata extracts was reported to contain higher amount of

phenols (193.98 ± 10.58 mg GAE/g), tannins (109.41 ± 9.42 mg GAE/g),

flavonoids (151.45 ± 6.97 mg RE/g) and carbohydrates (58.60 ± 3.6 mg GE/g)

from in vitro leaf extracts followed by in vivo and callus extracts.

• Antioxidant activity was tested by different assays. The DPPH assay results

showed lower IC50 values (87.02, 113.45, 71.54 µg/mL) which were recorded

in the methanol extracts (in vivo, in vitro leaf and callus) followed by acetone

and aqueous extracts in A. javanica.

Page 4: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

121

• The antioxidant potential of A. lanata recorded least IC50 values (53.77 and

64.42 µg/mL) from in vivo and in vitro leaf methanol extracts followed by

aqueous extracts (DPPH assay).

• The total antioxidant potential of A. javanica was tested by

phosphomolybdenum, ferric reducing power and metal chelation assay. It was

observed that the methanolic extracts possessed higher antioxidant potential

followed by aqueous and ethyl acetate extracts.

• The in vitro leaf has higher antioxidant content based on FRAP and

phosphomolybdenum assay. In vivo leaf extracts has higher antioxidant

potential in metal chelation assay. Similarly, callus extracts also possessed

equal amount of total antioxidant content when compared with in vivo and in

vitro plants.

• Total antioxidant activity of A. lanata was tested by FRAP,

phosphomolybdenum and metal chelation assay which showed higher activity

in methanol extracts (in vitro and in vivo leaf extracts and callus extracts). Rest

of the solvent extracts (in vivo, in vitro leaf and callus) showed considerable

activity. Among them, the in vitro leaf and callus extracts were found to have

promising antioxidant property.

• The methanolic extract having higher antioxidant potential (by in vivo, in vitro

leaf and callus extracts) was further tested for anticancer activity on MCF – 7

cell line (cytotoxic potential) which showed better anticancer activity than the

commercial compound (5 - FU) with least IC50 values (AJ-FL = 114.43,

AJ-IL = 11.89, AJ-CA = 27.18 µg/mL) from A. javanica. The IC50 values of

A. lanata was recorded as AL-FL = 43.89, AL-IL = 167.77, and AL-CA =

Page 5: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

122

22.45 µg/mL. Further DNA fragmentation assay results showed the digestion

of DNA damaged during the process of apoptosis.

• Preparative TLC of in vivo, in vitro leaf and callus methanol extracts produced

6 fractions (in vivo – 03, in vitro – 02, and callus 01) in A. javanica and

9 fractions (4 - in vivo leaf, 3 - in vitro leaf and 2 - callus) from A. lanata

extracts.

• Based on the Rf value, fractions separated from the extracts is found to belong

to the polyphenolic group of compounds.

• The fractions also confirmed the presence of phenolic and flavonoids

compounds as interpreted by the peaks obtained in the HPLC chromatogram

along with the standards (gallic acid, epicatechin, catechin, quercetin, vanillin,

chlorogenic acid, ferulic acid and resveratrol). Contents of the fractions were

quantified and expressed as the amount of standard equivalents.

• During UV spectral analysis, the absorbance peak was noticed at 248 nm (for

in vivo fraction) and 264 nm (for in vitro and callus fractions) for A. javanica.

• A. lanata also showed the highest absorbance peak at 283 nm (in vivo

fraction), 240 nm (in vitro fractions) and 268 nm (callus fraction) by UV

spectral analysis.

• GC – MS analysis of A. javanica showed 19 compounds from in vivo leaf and

9 from in vitro and callus extracts. About 16 compounds were identified (GC –

MS) in A. lanata, in vivo leaf and 6 compounds from in vitro and callus

extracts.

• The chemical library analysis results showed that the stigmasterol compound

(a polyphenolic group) was found in all the extracts and Methyl-methyl

Page 6: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

123

deconate was the abundant compound present in the tested extracts, followed

by Hentriacontane, a major compound present in both plant extracts.

• Functional groups of the compounds were found and the presence of

C-H, C=O, O-N, -NH3, stretching, deformation and bending’s along with

aldehyde, ketone, amide and peptide linkages were found in the

identified compounds of A. javanica and A. lanata. Similar type of functional

group and chemical bonds were also reported in isolated fractions from both

plants.

• Based on the mass spectral analysis (by LC – MS) for the isolated

fractions, the molecular weight as follows (AJ FL F1 – 313.23, AJ IL F1 –

251.25, AJ CA F1 – 299.23, AL FL F1 – 343.22, AL IL F1 – 251.25, and

AL CA F1 – 439.18 kDa) from A. javanica and A. lanata respectively is

recorded.

• In a nutshell it is stated that micropropagation of A. javanica, anticancer

activity of in vivo, in vitro leaf and callus materials of both plants (A. javanica

and A. lanata) against human breast cancer cell line and LC – MS

spectral analysis of the fractions of both plants are reported for the first time.

• Based on the outcome of this study, it is confirmed that, the in vitro

leaf and callus materials from both the test plants can be efficiently used

for mass production of pharmaceutical drugs compared to the in vivo test

plant.

Page 7: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

124

SUGGESTIONS AND FUTURE RECOMMENDATIONS

• Purification and in vivo trails (with animal model) for the isolated fractions.

• Analysis of Nuclear Magnetic Resonance of the compounds for

identification of its molecular structure i.e., elemental analysis.

• Molecular docking of the isolated compounds for prediction with

commercial compounds.

• Pharmacological aspects of isolated compounds.

Page 8: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

with (Soliman, infections, swelling (Garg et al., 1975) 5-methylmellein

matted 2006) 1980; Qasim et al., 2013). (Claydon et al., 1985),

hairs Leaves Kaempferol-3-O-β-D-

Aerva javanica (Burm.f.) Juss. (Khare, Ulcer in animals, cattle fodder glucopyranosyl-(1→2)-α-

ex Schult. 2007) (Qureshi and Bhatti, 2009) L-rhamnopyranoside-7-O-

Seeds α-L-rhamnopyranoside

1.1. Description of plants

1.9.1. Description of Aerva javanica

Plant name/ Taxonomic

Botanical description Ethnobotanical/ pharmacological

position Habit Leaves Flowers aspects Phytochemical nature

Kingdom : Plantae

Division : Magnoliophyta

Class : Magnoliopsida

Order : Caryophyllales

Family : Amaranthaceae

Genus : Aerva

Species : javanica (Burm. f.)

Juss. ex Schult

Perennial

herb,

Grows

up to

1.6m

(Khare,

2007)

Pale green,

20 – 40mm

long,

Alternate,

Lanceolate,

Shortly

petiolate,

Covered

White woody,

Raceme

inflorescence,

Flowering

period

January to

May

Roots and flowers

Rheumatism, Kidney problems,

tooth ache, wound bleeding, control

eye disease, (Mossa et al., 1987;

Abbas et al., 1992; Ghazanfar,

1994)

Whole plant

Dysentery, gonorrhoea, cutaneous Head ache, rheumatism (Srivivan

and Reddy, 2008)

Pharmacological properties

Antiplasmodial,

(Joanofarc and Vamsadhara, 2003;

Cytogentical and cytotoxic

(Soliman, 2006; Fatimi, 2007),

antihyperglycaemic (Reddy and

Reddy, 2009), antidiarrhoeal

properties (Ahmed et al., 2010)

Antimicrobial (Sharif et al., 2011).

Flavonoids,

steroids, triterpenoids and

carbohydrates (Reddy

and Reddy 2009; Sharif et

al., 2011)

Isolated compounds

Apigenin 7-O-glucuronide

(Kenneth and Lawrence (Kucukislamoglu et al.,

2000), Isoquercetrin

(Guvenalp, and Demirezer,

2005), 7-(1’hydroxyethyl)-

2-(2″-hydroxyethyl)-3,4-

dihydrobenzopyran

(Donnell et al., 2006),

2-hydroxy-3-O-β-

primeveroside naphthalene-

1,4-dione (Ozgen et al.,

2009),

Page 9: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

1.9.2. Description of Aerva lanata Botanical description Ethno botanical/ pharmacological

Plant name/ Taxonomic position

Habit Leaves Flowers aspects Phytochemical nature

Aerva lanata (L.) A. L. Juss. ex

Schultes

Kingdom : Plantae

Division : Magnoliophyta

Class : Magnoliopsida

Order : Caryophyllales

Family : Amaranthaceae

Genus : Aerva

Species : lanata (L.) A. L. Juss. ex

Schultes

Prostrate,

decumbent,

sometimes

erect herb,

30-60 cm in

height,

woolly

tomentose

(Khare 2007;

Rajesh et al.,

2011)

Leaves are

simple,

alternate

and short,

petiolated,

densely

tomentose

Small and

hairy

white

colour,

sessile,

bisexual,

clustered

spikes

(Rajesh et

al., 2011)

Whole plant

Cough, sore throat,

wounds, cataract of

bladder, animal

constipation nasal

bleeding, fractures,

spermatohorrhoea,

cough, scorpion stings

(Mukerjee et al., 1984;

Sikarwar and Kaushik,

1993; Girach et al.,

1994), burning sensation

during urination

(Venkataramana, 2008).

Flowers and Roots

Headache, scabies,

jaundice, diarrhoea and

kidney disorders (Bedi

and Patel, 1978; Muthu

et al., 2006;

Soundararajan et al.,

2006; Khare, 2007).

Alkaloids, flavonoid, steroid,

terpenoids, phenolic compounds,

tannins and carbohydrates (Aiyar

et al., 1973; Chandra and Sastry

1990)

Isolated compounds

Alkaloids

Canthin-6-one beta-carboline,

aervine (10-hydroxycanthin- 6-

one), methylaervine (10-

methoxycanthin-6-one),

aervoside (10-β-

dglucopyranosyloxycanthin-6-

one) and aervolanine (3-(6-

methyoxy-β-carbolin-1-yl)

propionic acid) (Zapesochnaya,

1992),

Contd...

Page 10: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Leaves

Eye complaints, diarrhoea,

treatment against guinea worm

Roots

Snake bite, hepatitis, urinary

strangury (Yamunadevi et al.,

2011).

Pharmacological properties

Diuretic (Chopra et al., 1956;

lithiatic, urolithiasis (Rao,

1985), Udupihille and Jiffry,

1986), antitumor activities

(Zapesochnaya et al., 1992).

Diabetes, anthelmintic,

demulcent lithiasis (Kirtikar

and Basu, 1996), anti-

inflammatory (Vetrichelavan

et al., 2000), antimicrobial and

cytotoxic (Dulay, 2002)

hepatoprotective and nephro

protective (Shirwaikar et al.,

2004).

Glycosides

Kaempferol 3 –

rahamnogalactoside,

kaempferol 3 – 6” p –

coumaryl O – glucoside

(Mallabev et al., 1989)

Flavonoids

Tiliroside, coumaryl

tiliroside, isorhamnetin

(Mallabev et al., 1989).

Page 11: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 16: Shooting and in vitro flowering response of A. javanica in different concentrations of cytokinins and polyamines in direct

and indirect organogenesis

Node explants Regenerat Shoot tip explants Regenerat In vitro

Hormone

Concentration

(mg/L)

Shoot length

(cm)

No. of Multiple

shoot-1 explant

ion rate

(%) Shoot length

(cm)

No. of Multiple

shoot-1 explant

ion rate

(%)

Flowerin

g (%)

Basal 0 - - - - - - -

BAP 0.5 2.15 ± 0.36ab 3.0 ± 1.06 ab 57.14 2.27 ± 0.51 ab 2.14 ± 0.91 ab 92.8 -

1.0*

4.80 ± 0.92abc

5.71 ± 1.03abc

100 3.67 ± 0.61 ab

4.57 ± 2.09abc

92.85 -

1.5 2.83 ± 0.89a

2.78 ± 1.08a

85.71 2.83 ± 0.24a

2.50 ± 0.50a

92.85 -

2.0 1.30 ± 0.14cd

2.14 ± 0.14cd

85.71 1.51 ± 0.18cd

2.35 ± 0.61cd

82.71 -

BAP + KIN 0.5 + 0.5 1.95 ± 0.42cd 1.42 ± 0.49cd 35.17 1.51 ± 0.47cd 0.42 ± 0.49e 42.85 -

1.0 + 0.5 2.38 ± 0.21a 1.92 ± 0.96cd 35.17 2.47 ± 0.41ac 1.0 ± 0e 57.17 -

1.5 + 0.5 1.22 ± 0.15cd

2.28 ± 1.09ac

85.71 1.08 ± 0.46cd

0.14 ± 0.51e

85.75 -

2.0 + 0.5 1.24 ± 0.14cd

1.92 ± 1.16cd

85.71 1.53 ± 0.28cd

3.35 ± 1.44 85.71 -

2.5 + 1.0 2.50 ± 0.37a

2.35 ± 1.39ac

78.57 2.60 ± 0.25 ac

3.0 ± 0 ab

71.42 -

3.0 + 1.0 1.50 ± 0.70cd 1.78 ± 0.67cd 85.71 1.65 ± 0.23cd 2.42 ± 0.62ab 92.85 -

4.0 + 0.5 2.25 ± 0.13a 1.57 ± 0.49cd 85.71 2.49 ± 0.15ac 2.49 ± 0.15ab 92.85 -

BAP + SPM 1.0 + 0.5 3.81 ± 1.04ab

2.0 ± 0.65a

92.85 3.57 ± 0.15ab

3.0 ± 0ab

78.57 -

SPM 0.3#

2.76 ± 1.59a

2.42 ± 1.67ab

92.85 4.16 ± 0.54abc

3.0 ± 0ab

100 -

0.4 3.59 ± 1.22ab

3.42 ± 0.90abc

85.71 2.75 ± 0.16a

3.0 ± 0ac

85.71 -

0.5# 3.70 ± 1.77ab 3.0 ± 1.77ac 85.71 4.23 ± 0.27abc 3.57 ± 1.04ab 100 57.14

BAP + GA3^ 1.0 + 0.2 3.41 ± 1.04ab 3.81 ± 1.03ab 92.85 3.14 ± 0.55ac 2.82 ± 1.40ac 64.2 -

1.0 + 0.5 3.38 ± 0.37ab

3.2 ± 0.71ab

85.71 3.0 ± 0.19ac

2.70 ± 0.60c

64.2 -

BAP + TDZ^

1.0 + 0.2 3.40 ± 0.71ab

3.0 ± 0.10ac

78.57 3.0 ± 0.40ab

3.84 ± 1.28ab

85.71 -

1.0 + 0.5 3.01 ± 0.54ab 3.1 ± 1.06ac 78.57 3.0 ± 0.40ab 3.74 ± 1.81ab 85.71 -

Values in the table are the mean ± SE of triplicates, n=14 explants, Superscript in the each row carrying different letters are

significantly different at P<0.05 or 0.01, *-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls Multiple Comparison Test.

^ - hormones used in shoot elongation of indirect organogenesis.

Page 12: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 3: In vitro regeneration and embryogenesis of A. javanica in different concentration of cytokinins and spermidine, A. Regenerated

shoot tip explant, B. nodal explant, C. callus regeneration, D. multiple shooting, E. in vitro flowering, F. shoot elongation, G. in vitro roots,

H. matured plants (hardened).

Page 13: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Rate of callus Callus morphology

formation

Rate of

embryo

Frequency of

embryos

No. of shoots/embryo

cultures

++ Pale brown fragile - - -

++ Pale brown fragile - - -

++ Pale yellow fragile - - -

+++ Pale yellow fragile - - -

++ Yellow with pinkish

soft

+

10.33 ± 0.47ab

-

++ Pale yellow green soft + 11.33 ± 0.47ab

-

++++ Yellow green with -

pinkish soft +++ 88.40 ± 2.62cd

Table 17: Embryogenesis and indirect organogenesis from embryos of A. javanica callus

Hormone Concentrations

2, 4 - D 0.5

1.0

2.0

3.0

2, 4 - D +

NAA 2.0 + 0.5

2.0 + 1.0

2, 4 - D + SPM 2.0 + 0.5*

2, 4 – D +

ABA 0.5 + 0.2

* +++

Pale yellow green hard

++ 55.47 ± 1.04d

-

cd ab

0.5 + 0.5* +++ Pale yellow green with

pinkish hard

+++ 88.46 ± 2.62 1.2 ± 0.47

2, 4 - D + BAP # ++++ +++ 88.40 ± 2.62

cd 13.8 ± 1.20

a

+ SPM 2.0 + 2.0 + 0.5

Green

+ rate of callus and embryo development, - no embryo or shoot development. Values in the table are the mean ± SE of triplicates, n=14

explants, Superscript in the each row carrying different letters are significantly different at P<0.05 or 0.01, *-Significance at 0.05,

# - Significance at 0.01 by Newman-Keuls Multiple Comparison Test

Page 14: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 4a: Embryogenesis of A. javanica at different concentrations of auxin and

spermidine, A. Greenish brown callus, B. embryo forming callus, C. matured

embryos, D. regeneration from embryo cells, E. sprouts/plantlets F. development of

multiple sprouts.

Figure 4b: Nature of different forms of callus in A. javanica, A. pale yellow green

callus, B. brown callus, C. yellow callus, D. greenish callus (Non embryo forming

cells)

Page 15: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 6: In vitro regeneration and embryogenesis of A. lanata, A. regeneration of nodal explants, B. shoot tip explants, C. multiple

shooting, D. shoot elongation, E. in vitro flowering, F. in vitro rooting, G. acclimatized plants.

Page 16: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 19: Shooting and in vitro flowering response of A. lanata different concentrations of cytokinins and polyamines in direct and

indirect organogenesis

Hormones

Concentration

of hormones

L Shoot tip explants

Regeneration

Node explants Regener

ation

In vitro

Flowering

(mg/L) Shoot length

(cm)

No. of Multiple shoot

-1 explant

rate (%) Shoot length (cm)

No. of Multiple shoot

-1 explant

rate (%) (%)

Basal MS basal - - - - -

BAP 0.5 2.72 ± 0.41ab

3.10 ± 0.32bc

64.2 1.21 ± 0.31bc

1.33 ± 0.31bc

46.8 -

0.75 4.50 ± 0abc

3.94 ± 0.18b

64.2 1.25 ± 0.40bc

3.9 ± 0.10b

57.1 -

1.0* 5.33 ± 0.41abc

5.76 ± 0.91abc 85.7 4.83 ± 1.4abc

3.98 ± 1.19b 92.8 78.5

1.5 3.20 ± 0.55b 3.42 ± 0.6b

78.5 3.12 ± 1.4bc 1.24 ± 0.6bc

85.7 -

2.0 4.0 ± 0.63abc 4.0 ± 0.6ab

71.4 3.40 ± 1.2bc 2.81 ± 1.41bc

78.5 36.7

BAP + KIN 0.5 + 0.5# 5.76 ± 0.85

abc 4.91 ± 1.42

abc 92.8 4.93 ±0.84

abc 5.81 ± 0.1

abc 100 92.8

0.5 +0.75 2.72 ± 0.34ab

2.62 ± 0.11b

64.2 1.77 ± 0.33bc

3.26 ± 0.61bc

78.5 -

0.5 + 1.0 3.61 ± 0.24b 3.52 ± 0.6b

71.4 2.81 ± 0.22b 3.05 ± 0.14b

78.5 -

1.0 + 1.0 3.54 ± 0.61b 3.52 ± 0.6b

78.5 3.35 ± 2.51b 3.0 ± 0b

71.4 -

BAP + SPM 1.0 + 1.0 2.21 ± 1.04ab 2.0 ± 1.51ab

92.8 2.29 ± 1.5c 2.40 ± 0.47b

85.7 -

SPM 0.3 2.0 ± 0ab

2.42 ± 0.61ab

78.4 2.16 ± 3.58c 1.10 ± 0.21

bc 54.7 -

0.4 1.59 ± 1.53bc

1.28 ± 1.96bc

54.7 1.50 ± 2.16bc

1.8 ± 0bc

54.7 -

0.5 2.70 ± 1.27ab 2.90 ± 1.21ab

64.2 2.32 ± 2.71c 2.25 ± 0.44b

64.2 -

BAP + GA3^ 1.0 + 0.2 2.11 ± 2.0ab 2.81 ± 1.0ab

71.4 2.14 ± 1.55abc 2.32 ± 0.40bc

64.2 78.4

1.0 + 0.5* 2.33 ± 0.3

ab 2.42 ± 0.7

ab 64.2 1.96 ± 1.19

bc 1.75 ± 1.60

bc 64.2 -

BAP + TDZ^ 1.0 + 0.2 2.10 ± 1.71ab

2.20 ± 0.61ab

57.1 2.92 ± 0.65abc 2.84 ± 1.28

ac 64.2 -

1.0 + 0.5*

2.51 ± 1.54ab

2.81 ± 1.46ab

85.7 2.87 ± 1.40abc

2.74 ± 1.81ac

85.7 71.4

Values in the table are the mean ± SE of triplicates, n=14 explants, Superscript in the each row carrying different letters are

significantly different at P<0.05 or 0.01, *-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls Multiple Comparison Test

^ - hormones used in shoot elongation of indirect organogenesis

Page 17: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 7: Embryogenesis of A. lanata in different concentration of auxins and spermidine A. Embryo forming callus, B. greenish embryo

cells, C. yellow brown embryo cells, D. yellow embryo cells, E. initiation of sprouts from yellow brown embryo cells, F. sprout maturation.

Page 18: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

abc

Table 20: Embryogenesis and indirect organogenesis from A. lanata No. of

Hormone Concentrations Rate of callus

formation Callus morphology

Rate of

embryo

Frequency of embryos

shoots/embryo

cultures

2, 4 – D 0.5 +++ Green soft - - -

1.0 +++ Greenish yellow soft - - -

1.5 +++ Yellow hard - - -

2.0 +++ Pale yellow soft - - -

2, 4 – D + NAA 0.5 + 0.5 ++ Pale yellow soft - - -

0.5 + 1.0 ++ Pale yellow soft - - -

0.5 + 1.5 +++ Pale yellow green hard - - -

0.5 + 2.0 ++++ Pale yellow green hard - - -

2, 4 - D + SPM 2.0 + 0.5*

+++

Yellow green with pinkish -

soft +++ 88.40 ± 2.62abc

ab

2,4 – D + ABA 0.5 + 0.2 +++ Pale yellow green hard ++ 45.74 ± 1.94 -

0.5 + 0.5#

++++ Pale yellow green with

pinkish hard

+++ 87.56 ± 1.28 -

2,4 – D + BAP + # +++ 92.40 ± 1.62

abc 58.82 ± 2.20

ab

SPM 2.0 + 2.0 + 0.5

++++ Green

+ rate of callus and embryo development, - no embryo or shoot development. Values in the table are the mean ± SE of triplicates, n=14

explants, Superscript in the each row carrying different letters are significantly different at P<0.05 or 0.01, * - Significance at 0.05,

# - Significance at 0.01 by Newman-Keuls Multiple Comparison Test

Page 19: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 21: In vitro rooting of A. lanata in different concentrations of auxins

Hormones

Concentration

of hormones

(mg/L)

Mean of root

length (cm)

Number of

multiple root/

stem

Rate of roots

formation (%)

IBA 0.5 2.7 ± 0.6c

2.5 ± 0.7c

50

1.0*

3.4 ± 0.9abc

3.3 ± 0.9ab

64.2

1.5 4.8 ± 1.1bc

5.0 ± 1.2abc

64.2

2.0#

6.8 ± 1.4abc

7.6 ± 0.4abc

100

IBA + IAA 0.5 + 0.5 4.1 ± 0.7bc

3.8 ± 0.6bc

64.2

0.5 + 1.0*

3.3 ± 0.5abc

2.9 ± 0.7bc

42.8

0.5 + 1.5*

3.2 ± 0.3abc

2.7 ± 0.5c

42.8

0.5 + 2.0*

3.2 ± 0.2abc

3.2 ± 0.5abc

42.3

IBA + NAA 0.5 + 0.5 2.6 ± 0.9c

2.5 ± 0.6c

57.14

0.5 + 1.0 3.0 ± 0.7bc

2.8 ± 0.7c

57.14

0.5 + 1.5 3.0 ± 0.8bc

3.0 ± 0.7bc

42.8

0.5 + 2.0 3.3 ± 0.4ab

3.2 ± 0.4ab

42.8

Values in the table are the mean ± SE of triplicates, n=14 explants, Superscript in

the each row carrying different letters are significantly different at P<0.05 or 0.01,

*-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls Multiple

Comparison Test

Figure 8: In vitro regenerated plants in polycups (after 4 weeks of acclimatization)

Page 20: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Plants

Primer

Total no. of

scorable

bands

No. of

monomorphic

bands

No. of

polymorphic

bands

Oligo 01 27 23 4

Oligo 02 28 25 3

A. Oligo 03 30 26 4

javanica Oligo 04 28 24 4

Table 24: RAPD-PCR amplification products of DNA extracted from different

samples (in vivo, in vitro leaf and callus) of A. javanica

% of

polymorphism

Overall 98

total 113

14.81

10.71

13.33

14.28 15 13.27

% of polymorphism = no. of polymorphic bands/ total no. of scorable bands X 100.

Table 25: Distribution and size of polymorphic bands of different samples (in vivo,

in vitro leaf and callus) materials of A. javanica

Primer Size of polymorphic

band (kb)

Distribution of polymorphic bands

In vivo leaf In vitro leaf callus

Oligo 01

Oligo 02

Oligo 03

Oligo 04

5.0 - + +

2.5 + - +

2.0 - - -

1.5 - - -

1.0 - - -

500 bp - - -

5.0 + - -

2.5 - - +

2.0 - - +

1.5 - - -

1.0 - - -

500 bp - - -

5.0 - - +

2.5 - - -

2.0 - - -

1.5 - - -

1.0 + - +

500 bp - + -

5.0 - - -

2.5 - - +

2.0 - - -

1.5 - - -

1.0 - + +

500 bp + - -

+ Present, – Absent of polymorphic band

Page 21: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 10: RAPD Profile of A. javanica DNA using different primers (Oligo 01, Oligo 02, Oligo 03, and Oligo 04), Sample I – in vivo

leaf, sample II – in vitro leaf, sample III – callus, L – Marker

Page 22: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 26: Similarity Matrix computed with Jaccard’s coefficient of A. javanica

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample 3R

Sample 1 1 0.204 0.416 1.000 0.204 0.416 Sample2 1 0.400 0.204 1.000 0.400

Sample 3 1 0.416 0.400 1.000

Sample 1R 1 0.204 0.416

Sample 2R 1 0.400

Sample 3R 1

Table 27: Distance Matrix based on Jaccard’s coefficient of A. javanica

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample3R

Sample 1 0 0.216 0.190 0.000 0.216 0.190

Sample 2 0 0.200 0.216 0.000 0.200

Sample 3 0 0.190 0.200 0.000

Sample 1R 0 0.216 0.190

Sample 2R 0 0.200

Sample 3R 0

Table 28: Distance matrix based on RMSD coefficient of A. javanica

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample3R

Sample 1 0 0.313 0.207 0.000 0.313 0.207

Sample 2 0 0.192 0.313 0.000 0.192

Sample 3 0 0.207 0.192 0.000

Sample 1R 0 0.313 0.207

Sample 2R 0 0.192

Sample 3R 0

Sample 1R - 3R – Repeat of Sample 1 – 3, Sample 1 = in vivo leaf;

Sample 2 = in vitro leaf; Sample 3 = in vitro callus

Figure 11: Phylogenetic Tree Analysis (Phenogram) of A. Javanica, Sample 1 = in

vivo plant leaf, Sample 2 = in vitro plant leaf, Sample 3 = in vitro callus.

Page 23: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

band (bp) In vivo plants In vitro plants callus

600 - + -

RBA 10 300 - - +

200 - + -

600 + - -

RBA 13 300 - + +

200 - - +

OPS 01 600 - + -

300 + - +

200 - - -

OPS 12 600 - - -

300 + - -

200 - + +

Table 29: RAPD-PCR amplification products of DNA extracted from different

samples (in vivo, in vitro leaf and callus) of A. lanata using four random primers

Plants Primer

Total no. of

scorable

bands

No. of

monomorphic

bands

No. of

polymorphic

bands

% of

polymorphism

A. lanata

RBA 10 28 25 3 10.71

RBA 13 34 30 4 11.76

OPS – 01 33 30 3 9.09

OPS – 12 28 25 3 10.71

Overall total 123 110 13 10.56

% of polymorphism = no. of polymorphic bands/ total no. of scorable bands X 100.

Table 30: Distribution and size of polymorphic bands of different samples from A. lanata

Primer Size of polymorphic Distribution of polymorphic bands

+ Present – Absent of polymorphic band

Page 24: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 12: RAPD Profile of A. lanata DNA using different primers, S1 – in vivo leaf, S2 – in vitro leaf, S3 – callus, M – Marker

Page 25: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 31: Similarity matrix computed with Jaccard’s coefficient of A. lanata

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample3R

Sample 1 1 0.414 0.237 1.000 0.414 0.237

Sample 2 1 0.200 0.414 1.000 0.200

Sample 3 1 0.237 0.200 1.000

Sample 1R 1 0.414 0.237

Sample 2R 1 0.200

Sample 3R 1

Table 32: Distance matrix based on Jaccard’s coefficient of A. lanata

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample3R

Sample 1 0 0.586 0.763 0.000 0.586 0.763

Sample 2 0 0.800 0.586 0.000 0.800

Sample 3 0 0.763 0.800 0.000

Sample 1R 0 0.586 0.763

Sample 2R 0 0.800

Sample 3R 0

Table 33: Distance matrix based on RMSD coefficient of A. lanata

Sample 1 Sample 2 Sample 3 Sample 1R Sample 2R Sample 3R

Sample 1 0 0.636 0.831 0.000 0.636 0.831

Sample 2 0 0.816 0.636 0.000 0.816

Sample 3 0 0.831 0.816 0.000

Sample 1R 0 0.636 0.831

Sample 2R 0 0.816

Sample 3R 0

Sample 1R - 3R – Repeat of Sample 1 – 3, Sample 1 = in vivo plant leaf; Sample 2 = in vitro

plant leaf; Sample 3 = in vitro callus

Figure 13: Phylogenetic Tree Analysis (Phenogram) of A. lanata, Sample 1 = in vivo

leaf, Sample 2 = in vitro leaf, Sample 3 = in vitro callus.

Page 26: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 34: Antibacterial activity of different solvents extracts A. javanica (in vitro, field leaf and callus)

Org name Method Hexane Chloroform Ethyl acetate

IL FL CA C IL FL CA C IL FL CA C S. aureus WELL 11.0±0 12.0±0 10.0±0 21.0±1.0 9.0±0 8.0±0 9.0±0 21.0±1.0 12.0±0 12.0±0 12.0±0 26.0±1.0

DISC 9.0±0 8.0±0 8.0±0 10.0±1.0 9.0±1.0 9.0±1.0 9.0±1.0 10.0±1.0 7.0±0 6.0±0 12.0±0 14.0±1.0

S. typhi WELL - 11.0±1.0 12.0±1.0 21.0±1.0 - - - 11.0±1.0 8.0±0 9.0±0 9.0±0 26.0±1.0

DISC - - - 21.0±1.0 9.0±1.0 9.0±1.0 9.0±0 13.0±1.0 9.0±1.0 9.0±0 9.0±0 14.0±1.0

C. diphtheriae WELL 10.0±1.0 8.0±1.0 8.0±1.0 26.0±1.0 12.0±1.0 12.0±0 14.0±1.0 26.0±1.0 11.0±0 11.0±1.0 11.0±1.0 26.0±1.0

DISC 9.0±0 6.0±0 8.0±1.0 21.0±1.0 6.0±0 8.0±0 8.0±0 17.0±1.0 8.0±0 9.0±0 12.0±1.0 14.0±1.0

P. vulgaris WELL 11.0±0 9.0±1.0 8.0±0 26.0±1.0 8.0±1.0 12.0±0 12.0±0 16.0±1.0 12.0±0 12.0±0 11.0±1.0 26.0±1.0

DISC 7.0±0 7.0±0 9.0±1.0 12.0±1.0 9.0±1.0 10.0±0 9.0±1.0 15.0±1.0 8.0±0 8.0±0 8.0±0 14.0±1.0

V. vulnificus WELL 9.0±1.0 9.0±1.0 - 26.0±1.0 8.0±1.0 8.0±0 9.0±1.0 26.0±1.0 - - - 26.0±1.0

DISC 7.0±1.0 7.0±0 8.0±0 12.0±1.0 8.0±0 8.0±0 8.0±0 15.0±1.0 - - - 10.0±1.0

S. dysenteriae WELL 8.0±0 12.±0 7.0±0 15.0±1.0 9.0±1.0 13.0±1.0 8.0±0 15.0±1.0 12.0±0 9.0±1.0 9.0±0 26.0±1.0

DISC - - - 17.0±1.0 8.0±0 8.0±0 7.0±0 15.0±1.0 10.0±0 9.0±1.0 10.0±0 12.0±1.0

E. coli WELL 8.0±0 13.0±1.0 8.0±0 21.0±1.0 9.0±1.0 13.0±0 9.0±1.0 21.0±1.0 - - - 21.0±1.0

DISC 6.0±0 8.0±0 12.0±1.0 16.0±1.0 7.0±0 7.0±0 7.0±0 15.0±1.0 - - - 16.0±1.0

E. faecalis WELL 11.0±1.0 12.0±0 - 26.0±1.0 10.0±1.0 12.0±0 12.0±0 26.0±1.0 14.0±0 13.0±1.0 12.0±0 26.0±1.0

DISC 6.0±0 6.0±0 6.0±0 12.0±1.0 - - - 15.0±1.0 9.0±1.0 8.0±1.0 12.0±0 12.0±1.0

L. acidophilus WELL 8.0±0 11.0±0 12.0±0 16.0±1.0 11±1.0 12.0±0 12.0±0 26.0±1.0 8.0±0 10.0±1.0 12.0±0 16.0±1.0

DISC 7.0±0 8.0±0 8.0±0 12.0±1.0 6.0±0 8.0±0 12.0±0 12.0±1.0 9.0±0 7.0±0 7.0±0 25.0±1.0

P. aeruginosa WELL 12.0±1.0 12.0±0 8.0±0 26.0±1.0 14.0±1.0 13.0±1.0 12.0±0 16.0±1.0 9.0±0 10.0±0 10.0±1.0 26.0±1.0

DISC 8.0±0 7.0±0 6.0±0 14.0±1.0 6.0±0 8.0±0 12.0±0 12.0±1.0 8.0±0 8.0±0 8.0±0 21.0±1.0

S. flexneri WELL 11.0±1.0 11.0±1.0 12.0±0 26.0±1.0 11±1.0 10.0±0 15.0±1.0 16.0±1.0 11.0±1.0 10.0±1.0 12.0±1.0 26.0±1.0

DISC 8.0±0 8.0±0 8.0±0 14.0±1.0 8.0±0 8.0±0 13.0±1.0 12.0±1.0 9.0±0 8.0±0 9.0±0 22.0±1.0

B. subtilis WELL 7.0±0 11.0±0 12.0±0 21.0±1.0 7.0±0 8.0±0 6.0±0 21.0±1.0 7.0±0 11.0±1.0 12.0±0 21.0±1.0

DISC 8.0±0 8.0±0 8.0±0 14.0±1.0 9.0±1.0 9.0±0 10.0±1.0 12.0±1.0 9.0±0 9.0±0 8.0±0 12.0±1.0

S. boydii WELL 12.0±1.0 12.0±0 12.0±0 21.0±1.0 14.0±1.0 15.0±1.0 14.0±1.0 26.0±1.0 14.0±0 12.0±0 12.0±0 21.0±1.0

DISC 9.0±1.0 8.0±0 7.0±0 16.0±1.0 8.0±0 8.0±0 8.0±0 12.0±1.0 9.0±0 9.0±0 9.0±0 12.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control. Contd...

Page 27: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Org name Method Acetone Methanol Aqueous IL FL CA C IL FL CA C IL FL CA C

S. aureus WELL 8.0±0 8.0±0 8.0±0 26.0±1.0 11.0±1.0 12.0±1.0 12.0±1.0 16.0±1.0 12.0±0 10.0±0 10.0±0 23.0±1.0

DISC 10.0±1.0 11.0±1.0 11.0±0 14.0±1.0 12.0±1.0 16.0±1.0 14.0±1.0 16.0±1.0 6.0±0 6.0±0 6.0±0 12.0±1.0

S. typhi WELL 8.0±0 12.0±1.0 12±0 26.0±1.0 12.0±1.0 11.0±1.0 11.0±1.0 21.0±1.0 - - - 23.0±1.0

DISC - - - 25.0±1.0 13.0±1.0 12.0±1.0 11.0±1.0 14.0±1.0 8.0±0 7.0±0 8.0±0 12.0±1.0

C. diphtheriae WELL 11.0±0 12.0±1.0 10.0±0 26.0±1.0 10.0±0 8.0±0 8.0±0 21.0±1.0 11.0±0 12.0±0 11.0±0 23.0±1.0

DISC 8.0±0 9.0±0 10.0±0 12.0±1.0 14.0±1.0 14.0±0 10.0±1.0 15.0±1.0 8.0±0 10.0±0 12.0±0 11.0±1.0

P. vulgaris WELL - 9.0±0 11.0±0 21.0±1.0 11.0±1.0 9.0±0 9.0±0 21.0±1.0 10.0±0 10.0±0 13.0±0 23.0±1.0

DISC - 7.0±0 7.0±0 10.0±1.0 16.0±1.0 16.0±0 12.0±0 16.0±1.0 9.0±0 10.0±0 11.0±0 11.0±1.0

V. vulnificus WELL 7.0±0 7.0±0 9.0±0 21.0±1.0 9.0±0 9.0±0 9.0±0 21.0±1.0 8.0±0 9.0±0 10.0±0 16.0±1.0

DISC 6.0±0 6.0±0 - 15.0±1.0 21.0±0 20.0±0 20.0±0 20.0±1.0 8.0±0 9.0±0 9.0±0 11.0±1.0

S. dysenteriae WELL 10±1.0 9.0±0 8.0±0 21.0±1.0 9.0±0 11.0±0 12.0±0 18.0±1.0 9.0±0 12.0±0 11.0±0 16.0±1.0

DISC 6.0±0 6.0±0 - 12.0±1.0 8.0±0 7.0±0 8.0±0 12.0±1.0 - - - 25.0±1.0

E. coli WELL - - - 21.0±1.0 10.0±0 8.0±0 13.0±0 26.0±1.0 8.0±0 9.0±0 12.0±0 16.0±1.0

DISC 9.0±0 10.0±1.0 10.0±0 12.0±1.0 8.0±0 8.0±0 8.0±0 11.0±1.0 9.0±0 8.0±0 8.0±0 10.0±1.0

E. faecalis WELL 10.0±0 10.0±1.0 10.0±0 26.0±1.0 16.0±0 13.0±0 15.0±0 26.0±1.0 - - - 16.0±1.0

DISC - - - 14.0±1.0 14.0±1.0 17.0±1.0 11.0±0 19.0±1.0 - 9.0±0 10.0±0 10.0±1.0

L. acidophilus WELL 8.0±0 8.0±0 7.0±0 26.0±1.0 10.0±1.0 12.0±0 15.0±0 21.0±1.0 9.0±0 9.0±0 9.0±0 23.0±1.0

DISC 9.0±0 8.0±0 8.0±0 10.0±1.0 13.0±1.0 12.0±0 12.0±0 12.0±1.0 12±0 8.0±0 12.0±0 10.0±1.0

P. aeruginosa WELL 9.0±0 10.0±1.0 11.0±1.0 26.0±1.0 17.0±1.0 16.0±1.0 13.0±1.0 26.0±1.0 8.0±0 12.0±0 11.0±0 23.0±1.0

DISC 6.0±0 6.0±0 6.0±0 14.0±1.0 15.0±1.0 15.0±1.0 13.0±1.0 10.0±1.0 10.0±0 8.0±0 12.0±0 10.0±1.0

S. flexneri WELL 8.0±0 12.0±1.0 11.0±1.0 16.0±1.0 10.0±1.0 9.0±1.0 11.0±1.0 21.0±1.0 - - - 26.0±1.0

DISC 7.0±0 7.0±0 6.0±0 14.0±1.0 9.0±1.0 9.0±1.0 13.0±1.0 20.0±1.0 12.0±1.0 8.0±0 12.0±0 10.0±1.0

B. subtilis WELL 9.0±0 12.0±0 11.0±0 16.0±1.0 14.0±1.0 13.0±1.0 11.0±1.0 21.0±1.0 - - - 21.0±1.0

DISC 9.0±0 7.0±0 7.0±0 14.0±1.0 10.0±0 9.0±0 9.0±0 15.0±1.0 10.0±0 8.0±0 8.0±0 12.0±1.0

S. boydii WELL 8.0±0 8.0±0 8.0±0 16.0±1.0 9.0±0 8.0±0 7.0±0 21.0±1.0 - - - 23.0±1.0

DISC 9.0±0 8.0±0 8.0±0 14.0±1.0 9.0±0 8.0±0 9.0±0 15.0±1.0 8.0±0 8.0±0 10.0±0 12.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control.

Page 28: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 15a: Antibacterial activity of different solvent extracts of A. javanica (well

diffusion method C – control, IL – in vitro leaf, FL – field leaf, CA – callus),

A. C. diphtheriae, B. P. vulgaris – hexane extract, C. S. dysenteriae – chloroform

extract, D. S. boydii, E. P. aeruginosa – ethyl acetate extract, F. C. diphtheriae –

acetone extract, G. P. aeruginosa, H. E. faecalis – methanol extract, and

I. S. flexneri – aqueous extract.

Page 29: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 15b: Antibacterial activity of different solvent extracts of A. javanica (disc

diffusion method C – control, IL – in vitro leaf, FL – field leaf, CA – callus),

A. S. dysenteriae – chloroform extract, B. P. vulgaris – hexane extract,

C. E. coli – ethyl acetate extract, D. L. acidophilus – acetone extract, E. E. faecalis

- methanol extract, F. P. aeruginosa – aqueous extract. G. S. flexneri,

H. L. acidophilus, and I. S. typhi - methanol extracts

Page 30: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 35: Antifungal activity of the extracts of A. javanica

Org name Method Hexane Chloroform Ethyl acetate

IL FL CA C IL FL CA C IL FL CA C

C. albicans WELL 8.1±0 11.0±0 13.3±1.0 16.0±1.0 9.0±0 8.0±0 9.0±0 21.0±1.0 12.0±0 8.0±0 8.0±0 16.0±1.0

DISC - - - 16.0±1.0 - - - 14.0±1.0 - - - 14.0±1.0

A. niger WELL - 11.0±0 12.2±1.0 15.0±1.0 - - - 14.0±1.0 12.0±0 8.0±0 8.0±0 16.0±1.0

DISC - - - 14.0±1.0 - - - 13.0±1.0 9.0±0 9.0±0 8.0±0 14.0±1.0

M. racemosus WELL 9.0±1.0 11.0±1.0 11.4±1.0 16.0±1.0 - - - 16.0±1.0 9.0±0 10.0±0 8.0±0 16.0±1.0

DISC - 9.0±0 - 21.0±1.0 6.0±0 8.0±0 8.0±0 17.0±1.0 8.0±0 9.0±0 - 14.0±1.0

Fusarium sp WELL - - - 14.0±1.0 8.0±0 7.0±0 12.0±1.0 16.0±1.0 - - - 16.0±1.0

DISC 7.0±0 7.0±0 9.2±0 14.0±1.0 9.0±0 7.0±0 9.0±1.0 15.0±1.0 8.0±0 8.0±0 8.0±0 14.0±1.0

Org name Method Acetone Methanol Aqueous

IL FL CA C IL FL CA C IL FL CA C

C. albicans

A.niger

WELL

DISC

WELL

-

-

8.0±0

-

-

8.0±0

-

-

8.0±0

16.0±1.0

16.0±1.0

16.0±1.0

8.0±0

12.0±0

-

8.0±0

13.0±1.0

-

8.0±0

8.0±0

-

14.0±1.0

16.0±1.0

14.0±1.0

8.0±0

-

8.0±0

8.0±0

-

8.0±0

8.0±0

-

8.0±0

26.0±1.0

24.0±1.0

26.0±1.0

DISC - - - 16.0±1.0 - - - 14.0±1.0 9.0±0 9.0±0 8.0±0 24.0±1.0

M. racemosus WELL 8.0±0 9.0±0 - 16.0±1.0 6.0±0 8.0±0 8.0±0 16.0±1.0 9.0±0 10.0±0 8.0±0 26.0±1.0

DISC - 9.0±0 - 16.0±1.0 - - - 16.0±1.0 - - - 24.0±1.0

Fusarium sp WELL - - - 14.0±1.0 8.0±0 7.0±0 12±0 16.0±1.0 - - - 26.0±1.0

DISC - - - 14.0±1.0 9.0±0 7.0±0 9.0±1.0 15.0±1.0 8.0±0 8.0±0 8.0±0 24.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control.

Page 31: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 16: Antifungal activity of A. javanica well and disc diffusion method,

C – control, IL – in vitro leaf, FL – field leaf, CA – callus, A. C. albicans,

B. Fusarium sp, C. A. niger well diffusion method, D. C. albicans, E. Fusarium sp,

F. A. niger disc diffusion method

Figure 17: Minimum Bactericidal Concentration of A. javanica extract, A – Positive

control, B – in vivo leaf, C – in vitro leaf extract and D – callus extract against

S. aureus.

Page 32: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 37: Antibacterial activity of different solvent extracts of A. lanata extracts (in vitro, field leaf and callus)

Org name Method Hexane Chloroform Ethyl acetate

IL FL CA C IL FL CA C IL FL CA C

S. aureus WELL 8.0±0 8.0±0 9.0±0.1 13.0±1.0 9.0±0 8.0±0 8.0.0±0 14.0±1.0 12.0±0 11.0±0 12.0±0 13.0±1.0

DISC 8.0±0 8.0±0 8.0±0 13.0±1.0 8.0±0 8.0±0 8.0±0 13.0±1.0 11.0±0 11.0±0 8.0±0 14.0±1.0

S. typhi WELL 7.0±0 8.0±0 6.0±0 21.0±1.0 7.0±0 8.0±0 6.0±0 11.0±1.0 8.0±0 8.0±0 6.0±0 26.0±1.0

DISC 9.0±0 9.0±0 - 21.0±1.0 9.0±0 9.0±0 9.0±0 13.0±1.0 7.0±0 7.0±0 8.0±0 14.0±1.0

C. diphtheriae WELL 8.0±0 7.0±0 8.0±0 26.0±1.0 11.0±0 11.0±0 11.0±0 26.0±1.0 12.0±0 12.0±0 11.0±0 26.0±1.0

DISC 8.0±0 8.0±0 10.0±0 21.0±1.0 8.0±0 8.0±0 13.0±0 17.0±1.0 7.0±0 9.0±0 8.0±0 14.0±1.0

P. vulgaris WELL 10.0±0 - 11.0±0 26.0±1.0 7.0±0 - - 17.0±1.0 11.0±0 11.0±0 11.0±0 26.0±1.0

DISC 9.0±0 9.0±0 9.0±0 12.0±1.0 8.0±0 8.0±0 9.0±0 15.0±1.0 10.0±0 10.0±0 8.0±0 14.0±1.0

V. vulnificus WELL 10.0±0 10.0±0 - 26.0±1.0 10.0±0 11.0±0 9.0±0 26.0±1.0 10.0±0 7.0±0 - 26.0±1.0

DISC 8.0±0 8.0±0 8.0±0 12.0±1.0 11.0±0 10.0±0 8.0±0 16.0±1.0 12.0±0 14.0±0. - 20.0±1.0

S. dysenteriae WELL 9.0±0 9.0±0 7.0±0 15.0±1.0 8.0±0 6.0±0 8.0±0 15.0±1.0 10.0±0 10.0±0 9.0±0 26.0±1.0

DISC 6.0±0 6.0±0 6.0±0 17.0±1.0 8.0±0 8.0±0 7.0±0 15.0±1.0 7.0±0 7.0±0 9.0±0 12.0±1.0

E. coli WELL 7.0±0 8.0±0 10.0±0 21.0±1.0 8.0±0 8.0±0 10.0±0 21.0±1.0 12.0±0 12.0±0 11.0±0 21.0±1.0

DISC 9.0±0 9.0±0 10.0±0 16.0±1.0 8.0±0 8.0±0 - 15.0±1.0 - - - 16.0±1.0

E. faecalis WELL 6.0±0 6.0±0 - 26.0±1.0 8.0±0 8.0±0 - 26.0±1.0 11.0±0 12.0±0 - 26.0±1.0

DISC 7.0± 12.0±0 10.0±0 12.0±1.0 8.0±0 8.0±0 9.0±0 15.0±1.0 11.0±0 11.0±0 11.0±0 12.0±1.0

L. acidophilus WELL - 11.0±0 7.0±0 18.0±1.0 9.0±0 - 13.0±0 26.0±1.0 10.0±0 8.0±0 8.0±0 16.0±1.0

DISC 9.0±0 8.0±0 8.0±0 11.0±1.0 10.0±0 9.0±0 12.0±0 12.0±1.0 11.0±0 8.0±0 12.0±0 25.0±1.0

P. aeruginosa WELL 8.0±0 8.0±0 10.0±0 26.0±1.0 12.0±0 11.0±0 10.0±0 16.0±1.0 8.0±0 10.0±0 12.0±0 26.0±1.0

DISC 8.0±0 8.0±0 9.0±0 14.0±1.0 9.0±0 9.0±0 10.0±0 12.0±1.0 7.0±0 8.0±0 6.0±0 21.0±1.0

S. flexneri WELL 9.0±0 8.0±0 8.0±0 26.0±1.0 - - 8.0±0 16.0±1.0 8.0±0 - - 26.0±1.0

DISC 12.0±0 12.0±0 11.0±0 14.0±1.0 12.0±0 11.0±0 8.0±0 12.0±1.0 7.0±0 9.0±0 9.0±0 22.0±1.0

B. subtilis WELL 7.0±0 8.0±0 9.0±0 21.0±1.0 10.0±0 9.0±0 11.0±0 21.0±1.0 8.0±0 12.0±0 12.0±0 21.0±1.0

DISC 9.0±0 9.0±0 10.0±0 14.0±1.0 12.0±0 12.0±0 11.0±0 12.0±1.0 8.0±0 8.0±0 7.0±0 12.0±1.0

S. boydii WELL 9.0±0 10.0±0 11.0±0 21.0±1.0 10.0±0 8.0±0 10.0±0 26.0±1.0 15.0±0 10.0±0 12.0±0 21.0±1.0

DISC 10.0±0 9.0±0 11.0±0 16.0±1.0 8.0±0 9.0±0 10.0±0 12.0±1.0 10.0±0 10.0±0 13.0±0 12.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control. Contd…

Page 33: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Org name Method Acetone

IL FL

CA

C

Methanol

IL FL

CA

C

Aqueous

IL FL

CA

C

S. aureus WELL 10.0±0 10.0±0 9.0±0 26.0±1.0 12.0±0 11.0±0 14.0±0 16.0±1.0 - - - 23.0±1.0

DISC 10.0±0 8.0±0 9.0±0 14.0±1.0 7.0±0 7.0±0 6.0±0 16.0±1.0 8.0±0 8.0±0 7.0±0 12.0±1.0

S. typhi WELL 7.0±0 7.0±0 6.0±0 26.0±1.0 12.0±0 12.0±0 11.0±0 21.0±1.0 7.0±0 7.0±0 7.0±0 23.0±1.0

DISC 9.0±0 9.0±0 9.0±0 25.0±1.0 11.0±0 11.0±0 11.0±0 14.0±1.0 6.0±0 7.0±0 8.0±0 12.0±1.0

C. diphtheriae WELL 7.0±0 7.0±0 8.0±0 26.0±1.0 7.0±0 7.0±0 8.0±0 21.0±1.0 8.0±0 8.0±0 11.0±0 23.0±1.0

DISC 8.0±0 8.0±0 7.0±0 12.0±1.0 9.0±0 9.0±0 8.0±0 10.0±1.0 12.0±0 12.0±0 10.0±0 11.0±1.0

P. vulgaris WELL 11.0±0 - 8.0±0 11.0±1.0 16.0±0 14.0±0 12.0±0 21.0±1.0 8.0±0 - 8.0±0 23.0±1.0

DISC 11.0±0 10.0±0 - 10.0±1.0 10.0±0 10.0±0 10.0±0 16.0±1.0 12.0±0 10.0±0 11.0±0 11.0±1.0

V. vulnificus WELL 8.0±0 11.0±0 9.0±0 21.0±1.0 - 8.0±0 9.0±0 21.0±1.0 16.0±0 13.0±0 10.0±0 16.0±1.0

DISC - - - 15.0±1.0 - - - 20.0±1.0 - - - 11.0±1.0

S. dysenteriae WELL 9.0±0 - 8.0±0 21.0±1.0 12.0±0 8.0±0 12.0±0 18.0±1.0 - - 11.0±0 16.0±1.0

DISC 8.0±0 8.0±0 7.0±0 21.0±1.0 9.0±0 9.0±0 8.0±0 12.0±1.0 12.0±0 12.0±0 11.0±0 25.0±1.0

E. coli WELL 8.0±0 8.0±0 11.0±0 21.0±1.0 7.0±0 7.0±0 8.0±0 26.0±1.0 6.0±0 6.0±0 7.0±0 16.0±1.0

DISC 9.0±0 9.0±0 11.0±0 12.0±1.0 11.0±0 11.0±0 9.0±0 11.0±1.0 12.0±0 11.0±0 9.0±0 10.0±1.0

E. faecalis WELL 6.0±0 6.0±0 - 26.0±1.0 14.0±0 16.0±0 - 26.0±1.0 6.0±0 6.0±0 6.0±0 16.0±1.0

DISC - - - 14.0±1.0 - - - 19.0±1.0 - - - 10.0±1.0

L. acidophilus WELL 13.0±0 11.0±0 12.0±0 26.0±1.0 16.0±0 15.0±0 18.0±0 21.0±1.0 10.0±0 10.0±0 10.0±0 23.0±1.0

DISC 10.0±0 12.0±0 11.0±0 10.0±1.0 18.0±0 11.0±0 8.0±0 12.0±1.0 8.0±0 8.0±0 8.0±0 10.0±1.0

P. aeruginosa WELL 8.0±0 8.0±0 13.0±0 26.0±1.0 8.0±0 8.0±0 8.0±0 26.0±1.0 10.0±0 11.0±0 11.0±0 23.0±1.0

DISC 9.0±0 9.0±0 9.0±0 14.0±1.0 8.0±0 9.0±0 8.0±0 10.0±1.0 7.0±0 8.0±0 8.0±0 10.0±1.0

S. flexneri WELL - - 11.0±0 16.0±1.0 - - - 21.0±10 - - - 26.0±1.0

DISC 13.0±0 13.0±0 12.0±0 16.0±1.0 14.0±0 13.0±0 12.0±0 20.0±1.0 13.0±0 14.0±0 10.0±0 10.0±1.0

B. subtilis WELL - 6.0±0 8.0±0 16.0±1.0 - - 8.0±0 21.0±1.0 8.0±0 8.0±0 11.0±0 21.0±1.0

DISC 12.0±0 8.0±0 8.0±0 14.0±1.0 8.0±0 9.0±0 9.0±0 15.0±1.0 12.0±0 9.0±0 9.0±0 12.0±1.0

S. boydii WELL 6.0±0 6.0±0 8.0±0 16.0±1.0 8.0±0 8.0±0 7.0±0 21.0±1.0 9.0±0 7.0±0 7.0±0 23.0±1.0

DISC 11.0±0 11.0±0 12.0±0 14.0±1.0 12.0±0 11.0±0 11.0±0 15.0±1.0 10.0±0 9.0±0 9.0±0 12.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control.

Page 34: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 18a: Antibacterial activity of A. lanata (well diffusion method C – control,

IL – in vitro leaf, FL – field leaf, CA – callus), A. C. diphtheriae, B. S. flexneri,

C. L. acidophilus – methanol extract, D. S. boydii, E. S. typhi, F. S. dysenteriae –

ethyl acetate extract, G. B. subtilis, H. S. aureus, I. S. dysenteriae – acetone extract

Page 35: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 18b: Antibacterial activity of A. lanata (disc diffusion method C – control,

IL – in vitro leaf, FL – field leaf and CA – callus), A. S. flexneri, B. L. acidophilus,

C. S. typhi – methanol extract, D. S. aureus, E. S. dysenteriae, F. B. subtilis –

acetone extract, G. S. typhi – ethyl acetate extract, H. C. diphtheriae – aqueous

extract, I. P. aeruginosa – methanol extract.

Page 36: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 38: Antifungal activity of the extracts of A. lanata

Org name Method Hexane Chloroform Ethyl acetate

IL FL CA C IL FL CA C IL FL CA C

C. albicans WELL 8.0±0 8.0±0 8.0±0 21.0±1.0 8±1.0 8.0±0 8±1.0 21.0±1.0 9.0±0 9.0±0 9.0±0 26.0±1.0

DISC 9.0±0 9.0±0 9.0±0 10.0±1.0 9.0±0 9.0±0 9.0±0 10.0±1.0 8.0±0 9.0±0 9.0±0 14.0±1.0

A. niger WELL 10.0±0 11±0 11.0±0 21.5±1.0 12.0±0 11.0±0 11.0±0 15.0±1.0 8.0±0 8.0±0 8.0±0 26.0±1.0

DISC 9.0±0 9.0±0 9.0±0 21.0±1.0 9.0±1.

0

9±1.0 9±1.0 13.0±1.0 9.0±0 9.0±0 9.0±0 14.0±1.0

M.

racemosus

WELL - - - 26.0±1.0 - - - 26.0±1.0 - - - 26.0±1.0

DISC - - - 21.0±1.0 - - - 17.0±1.0 - - - 14.0±1.0

Fusarium

sp.

WELL - - - 26.0±1.0 - - - 10.0±1.0 - - - 26.0±1.0

DISC - - - 12.0±1.0 - - - 15.0±1.0 - - - 14.0±1.0

Org name Method Acetone Methanol Aqueous

IL FL CA C IL FL CA C IL FL CA C

C. albicans WELL 8.0±0 8.0±0 - 21.0±1.0 8.0±0 8.0±0 12.0±0 21.0±1.0 - - - 26.0±1.0

DISC 11.0±0 10.0±0 10.0±0 10.0±1.0 10±1.0 10.0±0 10±1.0 10.0±1.0 9.0±0 9.0±0 10.0±0 14.0±1.0

A. niger WELL - - - 21.0±1.0 9±0.1 9.0±0 9.0±0 15.0±1.0 12.0±0 8.0±0 8.0±0 26.0±1.0

DISC 8.0±0 8.0±0 8.0±0 21.0±1.0 7±0.1 7.0±0 7.0±0 13.0±1.0 8.0±0 8.0±0 8.0±0 14.0±1.0

M.

racemosus

WELL 8.0±0 7.0±0 7.0±0 26.0±1.0 8±1.0 9.0±0 7.0±0 26.0±1.0 8.0±0 7.0±0 7.0±0 26.0±1.0

DISC - - - 21.0±1.0 - - - 17.0±1.0 - - - 14.0±1.0

Fusarium

sp.

WELL 8.0±0 8.0±0 7.0±0 26.0±1.0 9±1.0 9.0±0 9.0±0 16.0±1.0 9.0±0 8.0±0 8.0±0 26.0±1.0

DISC - - - 12.0±1.0 - - - 15.0±1.0 - - - 14.0±1.0

– Nil activity, IL – in vitro leaf, FL – field leaf, CA – callus and C – Control.

Page 37: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 19: Antifungal activity of A. lanata (C – control, IL – in vitro leaf, FL – field

leaf, CA – callus) A. A. niger, B. Fusarium sp, C. M. racemosus well diffusion

method D. A. niger, E. Fusarium sp, F. C. albicans disc diffusion method

Figure 20: Minimum Bactericidal Concentration of A. lanata extracts, A – Positive

control, B – in vivo leaf, C – in vitro leaf extract and D – callus extract against E.coli

Page 38: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 21: Bioautography of TLC fractions against S. aureus & S. typhi, A – AJ IL

F1, B – AJ FL F1, C – AJ CA F1 against S. aureus, D – AJ FL F1, E – AJ IL F1,

and F – AJ CA F1 against S. typhi

Figure 22: Bioautography of TLC fractions of A. lanata, A – AL FL F1, B – AL IL

F1, C – AL CA F1 (S. aureus), and D – AL CA F1 (S. typhi)

Page 39: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 23: Preliminary phytochemical of A. javanica extracts

Page 40: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 40: Preliminary phytochemical analysis of extracts of A. javanica

HX CL EA AC MT AQ

Tests FL IL CA FL IL CA FL IL CA FL IL CA FL IL CA FL IL CA

Alkaloids + + - + + - + + + + + + - + - + + +

Flavonoids + + + + + + + + + + + + + + + + + +

Phenolic + + + + + + + + + + + + + + + + + +

Terpenoids + + - - - - - - - - - - - - - - - -

Tannins + + + + + + + + + + + + + + + + + +

Saponins + + + + + - - - - + + + + + + + + +

Carbohydrates + + + + + + + + + + + + + + + + + +

Amino acids - - - - - - + + - + - - + + + + - -

Glycosides + + - + + + + + - + + - + + + + + +

Fixed oils - - - - - - - - - + + + + + + + - -

` HX – hexane; CL – chloroform; EA – ethyl acetate; AC – acetone; MT – methanol; AQ – aqueous; FL – in vivo leaf; IL – in vitro

leaf; CA – callus; + = indicates presence; – = indicates absence.

Page 41: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 41: Quantification of phytochemicals (total phenols, tannins) from different extracts of A. javanica

Total phenolic(mg GAE/g) Tannins (mg GAE/g)

Solvents In vivo leaf In vitro leaf Callus In vivo leaf In vitro leaf Callus

Hexane 105.64 ± 1.79c 115.32 ± 14.21

c 83.44 ± 2.40

b 15.7 ± 4.11

f 16.32 ± 6.30

f 8.23 ± 1.37

f

Chloroform 54.19 ± 1.98d 41.21 ± 0.50

e 61.44 ± 4.05

c 29.03 ± 6.69

e 31.98 ± 4.31

e 4.9 ± 1.57

f

Ethyl acetate 30.21 ± 0.82e 65.39 ± 4.64

d 55.24 ± 1.32

c 36.17 ± 4.74

e 30.63 ± 2.86

e 10.51 ± 0.76

f

Acetone 33.24 ± 2.91e 73.95 ± 7.90

d 111.54 ± 6.93

c 34.37 ± 5.98

e 31.38 ± 4.09

e 13.65 ± 4.05

f

Methanol*

150.25 ± 5.29a 155.51 ± 4.72

a 145.23 ± 1.68

a 82.01 ± 2.76

b 87.60 ± 4.24

b 30.84 ± 4.9

a

Aqueous*

156.68 ± 1.45a 139.20 ± 5.44

a 124.65 ± 4.16

a 76.08 ± 3.71

b 78.23 ± 7.02

b 34.71 ± 5.7

a

GAE – Gallic acid equivalents, values in the table are the mean ± SE of triplicates, Superscript in the each row carrying different letters

are significantly different at P<0.05 or 0.01, *-Significance at 0.05, by Newman-Keuls Multiple Comparison Test

Page 42: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 42: Quantification of phytochemicals (flavonoids and carbohydrates) from different extracts of A. javanica

Flavonoids (mg RE/g) CHO (mg GE/g)

Solvents In vivo leaf In vitro leaf Callus In vivo leaf In vitro leaf Callus

Hexane 61.59 ± 0.7d 30.58 ± 1.8

e 41.01 ± 2.2

e 126.95 ± 4.4

a 110.54 ± 2.3

a 88.66 ± 3.7

b

Chloroform 57.25 ± 6.8c 44.49 ± 4.9

e 40.14 ± 5.3

e 120.00 ± 3.4

a 113.59 ± 4.3

a 75.16 ± 4.8

b

Ethyl acetate 88.84 ± 2.2b 93.77 ± 2.4

b 83.62 ± 6.4

b 116.87 ± 0.6

a 116.29 ± 5.0

a 80.15 ± 4.6

b

Acetone*

105.94 ± 2.3a 67.97 ± 7.2

d 145.65 ± 0.9

ab 117.23 ± 3.0

a 121.43 ± 0.3

a 88.99 ± 3.6

b

Methanol#

141.01 ± 2.1ab

153.19 ± 2.0abc

177.54 ± 1.8abc

139.00 ± 2.1ab

127.28 ± 4.3a 107.72 ± 1.6

a

Aqueous*

109.42 ± 3.6a 104.49 ± 3.8

a 104.20 ± 2.0

a 127.77 ± 1.1

a 114.12 ± 1.3

a 102.85 ± 1.2

a

RE – Rutin equivalents, GE – glucose equivalents, values in the table are the mean ± SE of triplicates, Superscript in the each row

carrying different letters are significantly different at P<0.05 or 0.01, *-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls

Multiple Comparison Test

Page 43: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 24: Preliminary phytochemicals of A. lanata extracts

Page 44: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

HX CL EA AC MT AQ FL IL CA FL IL CA FL IL CA FL IL CA FL IL CA FL IL CA

+ + - + + - + + - + + - + + + + + -

+ + + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + +

- + - - - - + - - + + + - - - - - -

+ + + + + + + + + + + + + + + + + +

- - - - - - - - - + + - + + + + - -

+ + + + + + + + + + + + + + + + + +

+ - - + - - + + - + + - + + - + + -

+ - - + - - - - - + + - + + + + + +

- - - - - - - - - - - - - - - - - -

Table 43: Preliminary Phytochemical analysis of A. lanata extracts

Tests

Alkaloids

Flavonoids

Phenolic

Terpenoids

Tannins

Saponins

Carbohydrates

Amino acids

Glycosides

Fixed oils

HX – hexane; CL – chloroform; EA – ethyl acetate; AC – acetone; MT – methanol; AQ – aqueous; FL – in vivo leaf; IL – in vitro leaf;

CA – callus; + = indicates presence; – = indicates absence.

Page 45: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 44: Quantification of phytochemicals (total phenols, tannins) from different extracts of A. lanata

Total phenolic (mg GAE/g extract) Tannins (mg GAE/g extract)

Solvents Field leaf In vitro leaf Callus Field Leaf In vitro leaf Callus

Hexane 23.23 ± 1.14d 27.91 ± 2.14

d 24.81 ± 1.66

d 8.71 ± 1.39

d 20.32 ± 4.31

d 8.23 ± 1.37

d

Chloroform 20.00 ± 1.89 d 34.10 ± 2.25

d 17.76 ± 0.69

d 5.69 ± 2.33

d 15.31 ± 2.77

d 4.90 ± 1.57

d

Ethyl acetate 28.23 ± 0.82 d 55.18 ± 1.37

b 15.72 ± 1.32

d 9.50 ± 3.21

d 13.30 ± 4.57

d 10.51 ± 0.76

d

Acetone 28.63 ± 2.50 d 54.19 ± 2.90

b 34.62 ± 2.24

e 11.04 ± 1.61

d 26.71 ± 3.42

d 13.65 ± 4.05

d

Methanol#

193.98 ± 0.44abc

137.85 ± 2.44abc

69.37 ± 3.59b 109.41 ± 3.59

abc 82.60 ± 2.24

b 36.84 ± 2.12

b

Aqueous*

120.72 ± 0.58abc

137.65 ± 2.60abc

60.67 ± 2.97b 87.01 ± 1.42

b 78.23 ± 2.02

b 36.05 ± 2.13

b

GAE – gallic acid equivalents, values in the table are the mean ± SE of triplicates, Superscript in the each row carrying different letters

are significantly different at P<0.05 or 0.01, *-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls Multiple Comparison

Test

Page 46: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 45: Quantification of phytochemicals (flavonoids and carbohydrates) from different extracts of A. lanata

Flavonoids (mg RE/g) Carbohydrates (mg GE/g)

Solvents In vivo Leaf In vitro leaf Callus in vivo leaf In vitro leaf Callus

Hexane 29.71 ± 3.05c 21.88 ± 1.81

c 23.62 ± 2.19

c 31.07 ± 4.8

b 14.73 ± 6.3

b 5.70 ± 0.6

d

Chloroform 28.26 ± 2.30c 23.91 ± 0.87

c 25.65 ± 1.74

c 36.14 ± 4.1

c 9.66 ± 2.9

c 6.03 ± 0.1

c

Ethyl acetate 54.06 ± 3.53b 35.22 ± 2.30

c 41.30 ± 3.14

b 26.92 ± 0.4

c 15.65 ± 4.4

c 5.18 ± 0.2

c

Acetone*

92.03 ± 2.53a 88.26 ± 3.48

b 150.58 ± 4.29

abc 27.31 ± 0.5

c 14.66 ± 4.9

c 6.10 ± 0.2

c

Methanol#

135.80 ± 4.46ab

118.41 ± 3.92ab

151.45 ± 4.97abc

46.28 ± 3.6b 58.60 ± 3.2

ab 9.57 ± 0.5

c

Aqueous*

110.00 ± 1.74ab

96.38 ± 4.10ab

90.00 ± 2.70ab

20.92 ± 0.3c 17.96 ± 3.7

c 7.09 ± 1.0

c

RE – rutin equivalents, GE – Glucose equivalents, values in the table are the mean ± SE of triplicates, Superscript in the each row

carrying different letters are significantly different at P<0.05 or 0.01, *-Significance at 0.05, # - Significance at 0.01 by Newman-Keuls

Multiple Comparison Test

Page 47: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 47: FRAP, phosphomolybdenum and metal chelation assay of A. javanica extracts

Solvents

FRAP (mM (Fe)II/g extract) Phosphomolybdenum (mg AAE/g) Metal chelation (mg EDTAE/g)

In vivo leaf In vitro leaf Callus In vivo leaf In vitro leaf Callus In vivo leaf In vitro leaf Callus

Hexane 43.90 ± 1.9b

15.22 ± 1.0c

10.66 ± 6.4c

86.95 ± 2.4c

100.54 ± 2.3bc

78.66 ± 3.7c

89.32 ± 3.0c

93.16 ± 3.7b

98.38 ± 1.5bc

Chloroform 23.61 ± 4.6d

09.20 ± 0.7c

17.97 ± 0.7c

90.00 ± 3.4b

103.59 ± 2.3bc

85.16 ± 2.8c

110.36 ± 4.4bc

118.81 ± 2.0bc

95.35 ± 1.6b

Ethyl acetate 27.58 ± 4.1c

16.72 ± 1.7c

14.70 ± 0.5c

76.87 ± 0.6c

106.29 ± 2.0bc

83.15 ± 4.6c

133.70 ± 0.8a

112.69 ± 4.9bc

99.39 ± 0.5bc

Acetone 20.93 ± 2.7c

33.22 ± 3.3b

15.92 ± 0.4c

217.23 ± 2.0ab

121.43 ± 0.3b

87.99 ± 3.6c

167.27 ± 3.6a

43.27 ± 1.2c

97.71 ± 0.5b

Methanol* 124.26 ± 1.7a 157.01 ± 2.7a 130.18 ± 0.1a 379.00 ± 1.1a 377.28 ± 2.3a 167.72 ± 1.6b 178.96 ± 1.8a 126.75 ± 5.3b 98.63 ± 2.2bc

Aqueous 92.00 ± 6.7b

71.39 ± 0.3b

78.53 ± 2.2a

227.77 ± 1.1ab

344.12 ± 3.3a

142.85 ± 1.2b

127.22 ± 1.1ab

114.18 ± 1.0bc

17.32 ± 2.0c

AAE – ascorbic acid equivalents, EDTAE – ethylene diamine tetra acetic acid equivalents, values in the table are the mean ± SE of

triplicates, Superscript in the each row carrying different letters are significantly different at P<0.05 *-Significance at 0.05, Newman-

Keuls Multiple Comparison Test

Page 48: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 49: Total antioxidant (FRAP, phosphomolybdenum, metal chelation) potential of the extracts of the A. lanata extracts

Samples

FRAP (mM (Fe)II/g) Metal chelation (mg EDTAE/g) Phosphomolybdenum (mg AAE/g)

In vivo Leaf In vitro leaf Callus In vivo Leaf In vitro leaf Callus In vivo Leaf In vitro leaf Callus

Hexane 5.58 ± 4.04c

11.74 ± 4.15c

3.70 ± 0.47c

87.10 ± 1.01c

8.73 ± 3.88c

14.21 ± 1.52c

40.89 ± 3.11cd

33.18 ± 5.25cd

26.85 ± 3.69c

Chloroform 9.69 ± 2.06c 11.29 ± 3.41c 10.32 ± 4.10c 112.69 ± 6.36b 34.63 ± 7.04c 11.18 ± 1.59c 107.27± 3.40bc 74.80 ± 4.02c 77.10 ± 4.01c

Ethyl acetate 5.10 ± 0.22c

7.74 ± 1.76c

4.88 ± 0.58c

193.27 ±1.05ab

28.52 ± 4.93c

15.22 ± 0.54c

80.90 ± 2.22c

94.78 ± 5.00c

42.85 ± 2.40cd

Acetone 3.53 ± 0.30c

28.00 ± 1.89c

13.38 ± 1.91c

186.85 ± 4.41ab

127.45 ± 1.18b

13.53 ± 0.46c

356.95 ± 0.78a

111.07 ± 5.68bc

70.71 ± 3.64c

Methanol# 112.88 ±2.80a 73.48 ± 2.75b 33.29 ± 0.12b 282.19 ± 6.35a 242.57 ± 5.28a 114.46 ± 2.15a 400.48 ± 4.10a 345.90 ± 4.32a 102.55 ± 0.80b

Aqueous*

64.02 ± 3.82b

67.22 ± 3.30b

25.77 ± 0.78b

186.68 ± 3.37ab

185.56 ± 1.01ab

94.02 ± 3.95ab

206.29 ± 1.12b

204.57 ± 6.74b

91.50 ± 3.20c

AAE – ascorbic acid equivalents, EDTAE – ethylene diamine tetra acetic acid equivalents, values in the table are the mean ± SE of

triplicates, Superscript in the each row carrying different letters are significantly different at P<0.05 or 0.01, *-Significance at 0.05, # -

Significance at 0.01 by Newman-Keuls Multiple Comparison Test

Page 49: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 25a: Different concentrations of A. javanica in vivo leaf extract in MTT assay

Page 50: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 25b: Different concentrations of A. javanica in vitro leaf extract

Page 51: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 25c: Different concentrations of A. javanica callus leaf extract

Page 52: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 26: DNA fragmentation of MCF – 7 cell line, M – Marker, L1 Control, L2 -

in vivo sample, L3 - in vitro sample and L4 - callus sample

Page 53: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 27a: Different concentrations of A. lanata in vivo leaf extract

Page 54: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 27b: Different concentrations of A. lanata in vitro leaf extract

Page 55: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 27c: Different concentrations of A. lanata callus leaf extract

Page 56: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 28: DNA fragmentation of MCF – 7 cell lines by A. Lanata, M – Marker,

C – control, L1 – in vivo, L2 – in vitro, L3 – callus (IC50 concentration).

Page 57: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 52: Rf values of the compounds separated from A. javanica extracts

Extract No. of Rf value Interaction Fractions

AJ – IL – MT 02 0.888, 0.944 polyphenols and polysaccharides (Martin, et.al, 1986)

AJ – FL – MT 03 0.866, 0.877, 0.9 polyphenols and proteins, (Bate-Smith, 1981)

AJ – CA – MT 01 0.877 Polyphenol (Bate-Smith, 1981)

AJ – IL – MT = A. javanica in vitro leaf Methanol extract, AJ – FL – MT = A. javanica

in vivo leaf Methanol extract, AJ – CA – MT = A. javanica callus Methanol extract

Table 53: Rf values of the compounds separated from A. lanata extracts

Extract No. of Rf value Interaction Fractions

AL – IL – MT 03 0.800, 0.811, 0.854 polyphenols (Martin, et.al, 1986)

AL – FL – MT 04 0.245, 0.249, 0.414,

0.870,

Fatty acids, amino acids, and polyphenols (Bate-

Smith, 1981)

AL – CA – MT 02 0.214, 0.865 polysaccharides and Polyphenol (Bate-Smith,

1981)

AL – IL – MT = A. lanata in vitro leaf Methanol extract, AL – FL – MT = A. lanata in

vivo leaf Methanol extract, AL – CA – MT = A. lanata callus Methanol extract

Page 58: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 29a: TLC fraction of A. javanica extracts, A – In vivo leaf, B – In vitro leaf,

C – Callus extract

Figure 29b: TLC fraction of A. lanata extracts, A – In vivo leaf, B – In vitro leaf, C

– Callus extract

Page 59: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 30a: HPLC chromatogram of AJ-FL-F1 (A. javanica field leaf fraction 1)

Page 60: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 30b: HPLC chromatogram of AJ-IL-F1 (A. javanica in vitro leaf fraction 1)

Page 61: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 30c: HPLC chromatogram of AJ-CA-F1 (A. javanica callus fraction 1)

Page 62: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 30d: HPLC chromatogram of standards 1 – Gallic acid, 2 – Catechin, 3 – Epicatechin, 4 – Quercetin

Page 63: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 31a: HPLC chromatogram of AL– FL– F1 (A. lanata field leaf fraction 1)

Page 64: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 31b: HPLC chromatogram of AL–IL–F1 (A. lanata in vitro leaf fraction 1)

Page 65: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 31c: HPLC chromatogram of AL–CA–F1 (A. lanata callus fraction 1)

Page 66: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 31d: HPLC chromatogram of standards 1 – Chlorogenic acid, 2 – Vanillin, 3 – Ferulic acid, 4 – Resveratrol

Page 67: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 56: Bioactive compounds detected in A. javanica extracts by using GC – MS

Plant Sample RT Compound MW Formula Reported property Author

A. In vivo 15.73 MYO-INOSITOL, 4-C-METHYL- 194 C7H14O6 Antitumor Hudlicky et al., 2002

javanica leaf 28.704 STIGMASTEROL 83-48-7 412 C29H48O Antioxidant, anti-inflammatory,

immunomodulatory

Hassanein et al, 2012,

Norman et al., 1972

29.359 3BETA-HYDROXY-5-CHOLEN-24-

OIC ACID 5255-17-4

374 C24H38O3 Antibacterial Batte et al., 1990

30.37

HENTRIACONTANE

436

C31H64

Antimicrobial

Milen georgiev et al.,

2010

In vitro

15.839

MYO-INOSITOL, 4-C-METHYL-

194

C7H14O6

Antitumor

Hudlicky et al., 20002

leaf 16.424 .BETA.-D-GLUCOPYRANOSIDE,

METHYL

194 C7H14O6 Antiallergic, Cytotoxic,

antidiabetic

Kim et al., 2000, Lee &

Sohn 2008

28.679 STIGMASTEROL 412 C29H48O Antioxidant, anti-inflammatory,

immunomodulatory

Hassanein et al, 2012,

Norman et al., 1972

Callus 15.34 .BETA.-D-GLUCOPYRANOSIDE,

METHYL

194 C7H14O6 Antiallergic, Cytotoxic,

antidiabetic

Kim et al., 2000, Lee &

Sohn 2008

19.810 Olyl alcohol 268 C18H36O Antifungal Dawn et al., 1962

20.025 Olic acid 282 C18H34O2 Antioxidant Visioli & Galli 2002

28.67 STIGMASTEROL 83-48-7 412 C29H48O Antioxidant, anti-inflammatory,

immunomodulatory

Hassanein et al, 2012,

Norman et al., 1972,

Page 68: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 32a: GC – MS chromatogram of A. javanica in vivo leaf methanol extract

Page 69: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 32b: GC – MS chromatogram of A. javanica in vitro leaf methanol extract

Page 70: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 32c: GC – MS chromatogram of A. javanica callus methanol extract

Page 71: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 57: Bioactive compounds detected in A. lanata extracts by using GC – MS

Plant Sample RT Compound MW Formula Reported property Author

A. In vivo 17.85 METHYL 11-METHYL-DODECANOATE 228 C14H28O2 Antibacterial Ntougias et al., 2000

lanata leaf 20.32

3-METHYL-2-(2-OXOPROPYL)FURAN

138

C8H10O2

Anti-inflammatory

Berger et al., 2002

30.37

HENTRIACONTANE

436 C31H64

Antimicrobial

Milen georgiev et al., 2010

In vitro

29.37

10,12,14-NONACOSATRIYNOIC ACID

426 C29H46O2

Antioxidant

Yang et al., 2011

leaf 16.85

Z,Z-6,28-HEPTATRIACTONTADIEN-2-ONE

530

C37H70O

Antimicrobial

Milengeorgiev et al., 2010

23.11

1,2-BENZENEDICARBOXYLIC ACID,

278

C16H22O4

Antianderogenic property,

Koch et al., 2003,

MONO(2-ETHYLHEXYL) ESTER Antidiabetic Maruthupandian and Mohan,

2011

Callus

16.94

3,7,11,15-TETRAMETHYL-2-HEXADECEN-1-

296

C20H40O

Antibacterial, antifungal

Ogunlein et al., 2009

OL

23.54

PHENOL, 3,5-BIS(1,1-DIMETHYLETHYL)-

206

C14H22O

Antiinflammatory

Unangst et al., 1992

25.05

CYCLOTRISILOXANE, HEXAMETHYL-

222

C6H18O3Si3

Biohealth function

Xie and Li 2010

Page 72: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 33a: GC – MS chromatogram of A. lanata methanol in vivo leaf extract

Page 73: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 33b: GC – MS chromatogram of A. lanata methanol in vitro leaf extract

Page 74: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 33c: GC – MS chromatogram of A. lanata methanol callus leaf extract

Page 75: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 58: FT – IR analysis of A. javanica samples Vibrations

O-H stretch.

N-H stretch (amines)

cm-1

AJ-FL-MT AJ –FL-F1 AJ-IL-MT AJ-IL-F1 AJ-CA-MT AJ-CAF1

3396 3411 3371 3395 3396 3415

C-H stretch. 2946 2948 2946 2947 2943 2969

-O-CH3 asym. stretch.

C-H stretch (aldehydes)

2834 2838 2834 2839 2828 2842

S-H stretch. 2531 2524 2528 2523 2522 2523

C=C stretch.

C=N stretch

N-H defor.

O=C-O asym. stretch.

NO2 stretch.

C=C stretch.

C=N stretch.

-N=N stretch.

C=O stretch. (phenols, ketones, aldehydes, carboxylic

acids, carboxylic ester, lactones,amides)

C-H defor.

O-H bending in plane

C=O stretch.

2048 2048 2046 2074 2053 2075 1567 1649 1570 1648 1571 1647 1404 1412 1404 1414 1406 1412

Contd...

Page 76: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

R-O-R stretch.

C-OH stretch.

C-H stretch. (amine)

1118 1112 1117 1112 1118 1112

C-OH stretch.

P-O strerch.

C-OC asym. Stretch (ether)

1027 1052 1026 1053 1027 1031

O-H deform.

C-H stretch.

- - - - 953 1015

C-N vib.

N-O stretch.

C-H bending (out of plane). (aromatic hydrocarbones)

- - - - 829 -

O-H bending (out of plane)

C-O stretch.

C-N stretch.

C-H bending (out of plane), (aromatic hydrocarbones)

751 - 740 - 752 -

C-H bending. (alkynes)

N-H bending out of plane (amide, lactone)

696 - 696 - - -

C-H bending (out of plane). (aromatic hydrocarbones) - - - - 702 691

O-N=O defor. 652 660 653 659 653 -

AJ – IL – MT = A. javanica in vitro leaf Methanol extract, AJ – FL – MT = A. javanica in vivo leaf Methanol extract, AJ – CA – MT =

A. javanica callus Methanol extract; AJFLF1 – A. javanica field leaf fraction 1, AJILF1 – A. javanica in vitro leaf fraction 1, AJCAF1 –

A. javanica callus fraction 1.

Page 77: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 34a: FT – IR spectrum for crude sample of A. javanica (AJ MT FL – A. javanica methanol field leaf)

Page 78: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 34b: FT – IR spectrum for fraction of A. javanica (AJ FL F1 – A. javanica field leaf fraction 1)

Page 79: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 35a: FT – IR spectrum for crude sample of A. javanica (AJ MT IL A. javanica methanol in vitro leaf)

Page 80: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 35b: FT – IR spectrum for fraction of A. javanica (AJ IL F1 – A. javanica in vitro leaf fraction 1)

Page 81: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 36a: FT – IR spectrum for crude sample of A. javanica (AJ MT CA A. javanica methanol callus)

Page 82: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 36b: FT – IR spectrum for fraction of A. javanica (AJ CA F1 – A. javanica callus fraction 1)

Page 83: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Table 59: FT – IR analysis of A. lanata samples

Vibrations cm-1

AL FL MT AL FL F1 AL IL MT AL IL F1 AL CA MT AL CA F1

O-H3 Trans stretch (amines) 3433 3372 3370 3368 3408 3412

C-H stretch. 2923 2946 2947 2946 2922 2948

-O-CH3 asym 2858 2866 - 2867 - 2836

C-H stretch (aldehydes) 2360 2221 2213 2221 2360 -

C=C stretch, C=O stretch 2098 2046 - 2047 - 2074

NO2 stretch, O=C-O asym 1717 - - - 1717 -

O-H bending in plane, C=O stretch. (Ketones, aldehydes, carboxylic acids, carboxylic ester, lactones,amides)

1629 1659 1571 1662 1616 1650

C-H defor. O-H bending in plane C=O stretch.

1455 1453 1477 1453 1457 1454

C-H stretch. (amine) 1368 1415 1403 1414 1373 1411

R-O-R stretch. 1274 1113 - 1113 1219 1113

C-OH stretch. 1219 - - - - -

P-O stretch 1088 - 1120 - 1092 -

S=O Str - 1027 1026 1028 - 1026

C-H def (benzene ring with 1 free H) - - 927 - - -

C-H def (Benzene ring) - - 830 - - -

C-H bending (out of plane), (aromatic hydrocarbones) 770 - 753 - 771 -

C-H def (R1CH=CHR2) - - 696 - - 690

N-H bending out of plane (amide, lactone) 663 660 651 658 666 -

C-H - - 620 - - -

O-N=O defor. 598 - - - 595 -

O-N stretch 459 - - - 457 -

AL – IL – MT = A. lanata in vitro leaf Methanol extract, AL – FL – MT = A. lanata in vivo leaf Methanol extract, AL – CA – MT = A. lanata

callus Methanol extract, ALFLF1 – A. lanata field leaf fraction 1, ALILF1 – A. lanata in vitro leaf fraction 1, ALCAF1 – A. lanata callus fraction 1.

Page 84: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 37a: FT – IR spectrum for crude sample of A. lanata (AL MT FL – A. lanata methanol field leaf)

Page 85: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 37b: FT – IR spectrum for fraction of A. lanata (AL FL F1 – A. lanata field leaf fraction 1)

Page 86: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 38a: FT – IR spectrum for crude sample of A. lanata (AL MT IL – A. lanata methanol in vitro leaf)

Page 87: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 38b: FT – IR spectrum for fraction of A. lanata (AL IL F1 – A. lanata in vitro leaf fraction 1)

Page 88: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 39a: FT – IR spectrum for crude sample of A. lanata (AL MT CA – A. lanata methanol callus)

Page 89: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Figure 39b: FT – IR spectrum for fraction of A. lanata (AL CA F1 – A. lanata callus fraction 1)

Page 90: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 313.23

90

80

70

60

50

40 212.08

30

20

251.28

10 198.08 359.19

180.17

0

298.26

387.36

456.72 512.02 56 0.17 637.60 670.74 751.67

824.77

885.67 960.52

100 200 300 400 500 600 700 800 900 1000

m/z

Figure 42a: LC - MS spectrum of fractions of A. javanica (AJ-FL-F1 – A. javanica field leaf fraction 1)

Page 91: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 251.26

90

80

70

60

50

40

30

208.23 20

180.26 10

313.22

149.09 276.48 334.99 0

404.58 462.69

560.96

652.34 707.92

752.18 827.88

917.04

981.35

100 200 300 400 500 600 700 800 900 1000

m/z

Figure 42b: LC - MS spectrum of fractions of A. javanica (AJ-IL-F1 – A. javanica in vitro leaf fraction 1)

Page 92: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 299.23

90

80

70

60

50

40

30

269.23

20

10

139.09 0

241.22

221.04

371.60

447.48

489.28

615.37

664.76

756.99

837.93

910.26 961.53

100 200 300 400 500 600 700 800 900 1000

m/z

Figure 42c: LC - MS spectrum of fractions of A. javanica (AJ-CA-F1 – A. javanica callus fraction 1)

Page 93: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 251.25

90

80

70

60

50

40

30

20

10

149.11

0

208.24

236.19 180.28

283.21 343.20

391.09

447.34 469.15

523.17

566.56 5 88.00 6 26.48

100 150 200 250 300 350 400 450 500 550 600

m/z

Figure 43a: LC - MS spectrum of fractions of A. lanata (AL-FL-F1 – A. lanata field leaf fraction 1)

Page 94: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 343.22

90

80

70

60

50

40

30

20

10

192.13 0

313.22

285.21

256.31

234.84

391.12 430.95

513.69 579.33

649.31

697.69

759.82

831.30 916.06

985.99

100 200 300 400 500 600 700 800 900 1000

m/z

Figure 43b: LC - MS spectrum of fractions of A. lanata (AL-IL-F1 – A. lanata in vitro leaf fraction 1)

Page 95: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

Re

lative A

bu

nd

an

ce

100 439.18

90

80

70

60

50

40

30

20

212.09 10

198.09 274.36 313.26 424.23

489.14 712.96

755.05

560.94 0

622.40 788.89 907.73 999.17

100 200 300 400 500 600 700 800 900 1000

m/z

Figure 43c: LC - MS spectrum of fractions of A. lanata (AL-CA-F1 – A. lanata callus fraction 1)

Page 96: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

REFERENCES

Abbas JA, El-Oqlah AA, Mahasne AM (1992). Herbal plants in the traditional

medicine of Bahrain. Econ Bot 46: 158 – 163.

Abdin MZ, Ilah A (2007). Plant regeneration and somatic embryogenesis from stem

and petiole explants of Indian chicory (Cichorium intybus L.). Ind J Biotech

6: 250 – 255.

Abhishek B, Rohini S, Satnam S, Malleshappa NN (2012). Antioxidant Activity of

Various Fractions of Ethanol Extract on Aerva lanata Linn. Planta Activa 1:

86 – 89.

Adam M, Tasarz P, Szypula E (2008). Antioxidant activity of herb extracts from

five medicinal plants from Lamiaceae, subfamily Lamioideae. J Medicinal

Plants Res 2: 321 – 330.

Agostino CB, MJ Salvador; DA Dias, MD Baruffi, LS Pereira Crott (2008)

Evaluation of immunomodulatory and anti-inflammatory effects and

phytochemical screening of Alternanthera tenella Colla (Amaranthaceae)

aqueous extracts. Mem INST Oswaldo Cruz, Rio De Janeiro, 103 569 – 577.

Ahmad N, Fazal H, Zamir R, Khalil SA, Abbasi BH (2011). Callogenesis and shoot

organogenesis from flowers of Stevia rebaudiana (Bert.) Sugar Tech 13: 174

– 177.

Ahmed E, Imran M, Malik A, Ashraf M (2006). Antioxidant activity with

flavonoidal constituents from Aerva persica. Arch Pharm Res 29: 343 – 347.

Ahmed EHM, Bakri YMN, Yousif G. Mohammed, Hassan SK (2010).

Antiplasmodial Activity of Some Medicinal Plants Used in Sudanese Folk-

medicine. Environ Health Insights 4: 1 – 6.

Aiyar V, Narayanan V, Seshadri TR, Vydeeswaran S (1973). Chemical components

of some Indian medicinal plants. Ind J Chem 11: 89 – 90.

Ajila CM, Jaganmohan Rao L, Prasada Rao UJS (2010). Characterization of

bioactive compounds from raw and ripe Mangifera indica L. peel extracts.

Food Chem Toxicol 48: 3406 – 3411.

Alagesan K, Prabhakar T, Vinoth K, Sadasivam S, Thayumanavan B (2012).

Identification of α-Glucosidase inhibitors from Psidium guajava Leaves and

Syzygium cumini Linn. Seeds. Int J Pharma Sci Res 3: 316 – 322.

i

Page 97: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

ii

Ali Mansoori G, Kenneth S, Brandenburg, Ali Shakeri Z (2010). A Comparative

Study of Two Folate-Conjugated Gold Nanoparticles for Cancer

Nanotechnology Application. Cancers 2: 1911 – 1928.

Ali P, Elmira S, Katayoun J (2010). Comparative study of the antibacterial,

antifungal and antioxidant activity and total content of phenolic compounds

of cell cultures and wild plants of three endemic species of Ephedra.

Molecules 15: 1668 – 1678.

Almeida C, Azevedo NF, Bento F et al., (2013). Rapid detection of urinary tract

infections caused by Proteus spp. using PNA-FISH. Eur J Clinical Microbiol

Infectious Dis 32: 781 – 786.

Alveera S, Kandasamy T, Bharti O (2009). In vitro propagation of Alternanthera

sessilis (sessile joyweed), a famine food plant. Afr J Biotech 8: 5691 – 5695.

Amoo SO, Aremu AO, Van Staden J (2012). In vitro plant regeneration, secondary

metabolite production and antioxidant activity of micropropagated Aloe

arborescens Mill. Plant Cell Tiss Org 111: 345 – 358.

Anand SP, Velmurugan G, Keerthiga M, Nandagopalan V (2014). Comparative

study on Antimicrobial Activity of Argemone mexicana Linn. and Aerva

javanica (Burm.F.) Juss. Ex. Schult. Am J Pharm Tech Res 4: 530 – 540.

Ang Lee MK, Moss EJ, Yuan CSP (2001) Herbal medicines and preoperative care.

J Am Medical Association 286: 208 – 216.

Anita A, Malar Retna A (2013). Review on the medicinal plant - Aerva Lanata.

Asian J Biochem Pharma Res 3: 215 – 224.

Antoaneta I, Ivajla D, Iva T, Atanas K, Ivanka K (2002). GC-MS analysis and anti-

microbial activity of acidic fractions obtained from Paeonia peregrine and

Paeonia tenuifolia roots. Z. Naturforsch 57: 624-628.

Aravindaram K, Yang NS (2010) Anti-inflammatory plant natural products for

cancer therapy. Planta Medica 76: 1103 – 1117.

Ariffin SHZ, Wan Omar WH, Ariffin ZZ, Safian MF, Senafi S, Abdul Wahab RM

(2009). Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic

extract on a human hepatoma cell line. Cancer Cell Int 9: 6.

Page 98: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

3

Arikat NA, Jawad FM, Karam NS, Shibli RA (2004). Micropropagation and

accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Scientia

Hort 100: 193 – 202.

Arockiasamy DI, Muthukumar B, Natarajan E, John Britto S (2002). Plant

regeneration from node and internode explants of Solanum trilobatum L.

Plant Tissue Cult 12: 93 – 97.

Arumugam M, Ramachandra PU, Gomathinayagam M, Murugan G, Lakshmanan A,

Panneerselvam R (2012). Antibacterial and antioxidant activity between

micropropagated and field grown plants of Excoecaria agallocha L. Int Res J

Pharm 3: 235 – 241.

Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014).

Optimized shoot regeneration for Indian soybean: the influence of exogenous

polyamines. Plant Cell Tiss Org 117: 305 – 309.

Ashraf K, Mujeeb M, Altaf A, Mohd Amir, Nasar M, Deepak S (2012). Validated

HPTLC analysis method for quantification of variability in content of

curcumin in Curcuma longa L (turmeric) collected from different

geographical region of India. Asian Pacific J Trop Biomed 584-588.

Awaad SA, Al-Jaber AN (2010). Antioxidant natural plant. In: Govil JN, Singh VK.

(Eds.) In: RPMP Ethnomedicine: Source and Mechanism. Studium Press,

India. 7: 1–35.

Ayyanar M, Sankarasivaram K, Ignacimuthu S, Sekar T (2008). Plant species with

ethanobotanical importance other than medicinal in Theni District of Tamil

Nadu, Southern India. Asian J Exp Biol 1: 765 – 771.

Baati L, Fabre-Gea C, Auriol D, Blanc PJ (2000). Study of the cryotolerance of

Lactobacillus acidophilus: effect of culture and freezing conditions on the

viability and cellular protein levels. Int J Food Microbiol 59:241-247.

Bairu MW, Amoo SO, Van Staden J (2010). Comparative phytochemical analysis of

wild and in vitro derived greenhouse grown tubers, in vitro shoots and

callus-like basal tissues of Harpagophytum procumbens. South Afr J Botany

77: 479 – 484.

Balcht, Aldona, Smith, Raymond (1994). Pseudomonas aeruginosa: Infections and

Treatment. Informa Health Care 83 – 84.

Page 99: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

4

Basha SD, Sujatha M (2007). Inter and intra population variability of Jatropha

curcus L. characterizaed by RAPD and ISSR markers and development of

population – specific SCAR markers. Euphytica 156: 375 – 386.

Baskaran P, Jayabalan N (2005). An Efficient Micro propagation of system for

Eclipta alba – a valuable medicinal herb, In vitro Cell Dev Biol Plant 41:

532 – 539.

Battu GR, Kumar BM (2012). In vitro Antioxidant Activity of Leaf Extract of Aerva

lanata Linn. Int J Pharm Sci 4: 74 – 78.

Battu PR, Reddy MS (2009). Isolation of secondary metabolites from Pseudomonas

fluorescens and its characterization. Asian J Res Chem 2: 26 – 29.

Baum BR, Mechanda SM, Livesey JF, Binns SE, Arnason JT (2001). Predicting

quantitative phytochemical markers in single Echinacea plants or clones

from their DNA fingerprints. Phytochem 56: 543 – 549.

Bedi SJ, Patel (1978). Ethanobotany of the Ratan Mahal Hills, Gujarat, India. Econ

Bot 15: 145 – 152.

Bekada AMA, Benakriche B, Hamadi K, Bensoltane A (2008). Modelling of effect

of water activity, pH and temperature on the growth rate of Mucor

racemousus isolated from soft camembert cheese. World J Agri Sci 4: 790 –

794.

Besser RE, Lett SM, Weber JT, Doyle MP, Barrett TJ, Wells JG, Griffin PM (1993).

An outbreak of diarrhoea and haemolytic uremic syndrome from Escherichia

coli O157:H7 in fresh-pressed apple cider. J Am Medical Association 269:

2217 – 2220

Bhanot A, Sharma R, Singh S, Noolvi MN, Singh S (2013). In vitro anticancer

activity of ethanol extract fractions of Aerva lanata L. Pak J Biol Sci 16:

1612 – 1617.

Bhatia A, Manju A, Rupali S, Sharma A (2013). Antioxidant activity of native and

micropropagated Tylophora indica leaves extract: A comparative study.

J Nat Prod Plant Resour 3: 1 – 7.

Bhatia R, Singh KP, Sharma TR, Jhang T (2011). Evaluation of the genetic fidelity

of in vitro propagated gerbera (Gerbera jamesonii Bolus) using DNA-based

markers. Plant Cell Tiss Org 104: 131-135.

Page 100: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

5

Bhojwani SS, Dantu PK (2013). Plant Tissue Culture: An Introductory Text.

Springer, New York.

Bibi Y, Zia M, Nisa S, Habib H, Waheed A, Chaudhary FM (2011). Regeneration of

Centella asiatica plants from non- embryogenic cell lines and evaluation of

antibacterial and antifungal properties of regenerated calli and plants. J Biol

Eng 5:13 – 18.

Blios MS (1958). Antioxidant’s determination by the use of a stable free radical.

Nature 4617: 1199-1200.

Boros B, Farkas A, Jakabova S, Bacskay I, Kilar F, Felinger A (2010). LC-MS

Quantitative Determination of Atropine and Scopolamine in the Floral

Nectar of Datura Species. Chromatographia 71: 43-49.

Botstein B, White RL, Skolnick M, Davis RW, Hum AJ (1980). Construction of a

genetic linkage map in man using restriction fragment length

polymorphisms. Genetics 32: 314 – 331.

Bougard F, Gravot A, Milesi S, Gontier E (2001). Production of plant secondary

metabolites: A Historical perspective. Plant Sci 161: 839 – 851.

Bravo L (1998). Polyphenols: Chemistry, dietary sources, metabolism, and

nutritional significance. Nutr Rev 56: 317-333.

Brett D, Shepard, Gilmore MS (2002). Differential expression of virulence related

genes in Enterococcus faecalis in response to biological cues in serum and

urine. Infect Immun 70: 4344 – 4352.

Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014). Isolation

and characterization of bioactive compounds from plant resources: The role

of analysis in the ethnopharmacological approach. J Pharma Biomed

Analysis 87: 218 – 228.

Bui van Le, Do my NT, Jeanneau M, Sadik S, Shanjun T et al., (1998). Rapid plant

regeneration of a C4 dicot species: Amaranthus edulis. Plant Sci 132: 45 – 54.

Cai Y, Luo Q, Sun M, Corke H (2004). Antioxidant activity and phenolic

compounds of 112 traditional Chinese medicinal plants associated with

anticancer. Life Sci 74: 2157 – 2184.

Page 101: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

6

Cai YZ, Sun M, Xing J, Luo Q, Corke H (2006). Structure radical scavenging

activity relationships of phenolic compounds from traditional Chinese

medicinal plants. Life Sci 78: 2872 – 2888.

Cai Z, Lee FSC, Wang XR, Yu WJ (2002). A capsule review of recent studies on the

application of mass spectrometry in the analysis of Chinese medicinal herbs.

J Mass Spect 37: 1013 – 1024.

Cannell RJP (1998). Natural Products Isolation. New Jersey: Human Press Inc.

165 – 208.

Carra A , Maurizio S, Loredana A, Mirko S, Francesco S, Francesco C (2012). In vitro

plant regeneration of caper (Capparisspinosa L.) from floral explants and

genetic stability of regenerants. Plant Cell Tiss Org 109: 373 – 381.

Castello M, Phatak A, Chandra N, Sharon M (2002). Antimicrobial activity of crude

extracts from plant parts and corresponding calli of Bixa orellana L. Indian J

Exp Biol 40: 1378 – 1381.

Ceasar SA, Maxwell SL, Prasad KB, Karthigan M, Ignacimuthu S (2010). Highly

efficient shoot regeneration of Bacopa monnieri L. using a two-stage culture

procedure and assessment of genetic integrity of micropropagated plants by

RAPD. Acta Physiol Plant 32: 443 – 452.

Center for Disease control and Prevention (CDC) Staphylococcus aureus Resistant

to Vancomycin - United States, 2002. Morbidity Mortality Weekly Rep 51:

565 – 567.

Chaleshtori SB, Behrouz S, Masoomeh K et al., (2012). Assessment of genetic

diversity and structure of Imperial Crown (Fritillaria imperialis L.)

populations in the Zagros region of Iran using AFLP, ISSR and RAPD

markers and implications for its conservation. Biochemical Systematics and

Ecology 42: 35 – 48.

Chan K (2003). Some aspects of toxic contaminants in herbal medicines.

Chemosphere 52: 1361 – 1371.

Chandra S, Sastry MS (1990). Chemical constituents of Aerva lanata. Fitoterapia

61: 188.

Page 102: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

vii

Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S,

Hultgren SJ (2002). Role of Escherichia coli curli operons in directing

amyloid fiber formation. Science 295: 851 – 855.

Chelli CN, Tir Touil Meddah A, Mullie C, Aoues A, Meddah B (2012). In vitro and

in vivo antimicrobial activity of Algerian Hoggar Salvadora persica L.

extracts against microbial strains from children's oral cavity.

J Ethnopharmacol 144: 57 – 66.

Chetrisiva PK, Sharma K, Veena A (2013). Genetic diversity analysis and screening

of high psolralen yielding chemotype of Psoralea corylifolia from

different regions of India employing HPLC and RAPD marker. Int J Plant

Res 26: 88 – 95.

Choma IM, Grzelak EM (2011). Bio autography detection in thin-layer

chromatography. J Chromatography 1218: 2684 – 2691.

Chopra RN, Nayar SL, Chopra IC (1956). Glossary of Indian Medicinal Plants.

CSIR, New Delhi: 194.

Christen Y, Olano-Martin E, Packer L (2002). EGb-761 in the postgenomic era: new

tools from molecular biology for the study of complex products such as

Ginkgo biloba extract. Cell Mol Biol 48: 593 – 539.

Claydon N, Grove JF Pople M (1985). Elm bark beetle boring and feeding

detergents from Phomopsis oblanga. Phytochem 24: 937 – 943.

Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C (2003). Gene expression

changes in the human fibroblast induced by Centella asiatica triterpenoids.

Planta Medica 69: 725 – 732.

Cole RB (1997). Electron spray Ionization Mass Spectrometry: Fundamentals,

Instrumentation and Applications. Hoboken, NJ USA.

Cook NC, Samman S (1996). Flavonoids- chemistry, metabolism, cardioprotective

effects, and dietary sources. Nutritional Biochem 7: 66 – 76.

Costa P, Goncalves S, Valentao P, Andrade PB, Coelho N, Romano A (2012).

Thymus lotocephalus wild plants and in vitro cultures produce different

profiles of phenolic compounds with antioxidant activity, Food Chemistry

135: 1253 – 1260.

Page 103: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

8

Costa PS, Valentao GP, Paula B, Coelho AN, Roman A (2012) Thymus lotocephalus

wild plants and in vitro cultures produce different profiles of

phenolic compounds with antioxidant activity. Food Chem

135: 1253 – 1260.

Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents.

J Ethnopharmacol 100: 72 – 79.

Dai J, Mumper RJ (2010). Plant phenolics: Extraction, analysis and their antioxidant

and anticancer properties. Molecules 15: 7313 – 7352.

Dakah AK, Salim Z, Mohamad S, Sami A, Wink M (2014). In vitro propagation of

the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant

activity. Saudi J Biol Sci 21: 317 – 323.

Das SS, Gauri SS, Misra BB, Biswas M, Dey S (2013). Purification and

characterization of a betanidin glucosyl transferase from Amaranthus tricolor

L catalyzing non-specific biotransformation of flavonoids. Plant Sci 211:

61– 69.

Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N (2002). RAPD,

ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity

of micropropagated plants of three diploid and triploid elite tea clones

representing Camellia sinensis (China type) and C. assamica ssp. assamica

(Assam- India type). Plant Cell Rep 21:166 – 173.

Devi JR, Thangam EB (2010). Extraction and separation of glucosinolates from

Brassica oleraceae var rubra. Advanced Biomed Res 4: 309 – 313.

Dias ACP, Seabra RM, Andrade PB, Fernandes FM (1999). The development and

evaluation of an HPLC-DAD method for the analysis of the phenolic

fractions from in vivo and in vitro biomass of Hypericum species. J Liquid

Chromatogr 22: 215 – 227.

Dinis TCP, Madeira VMC, Almeida LM (2004). Action of phenolic derivatives

(acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of

membrane lipid peroxidation and as peroxyl radical scavengers. Arch

Biochem Biophy 315: 161 – 169.

Page 104: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

9

Dolendro S, Lingaraj S, Neera BS, Pawan KJ (2003). The effect of TDZ on

organogenesis and somatic embryogenesis in pigeon pea (Cajanus cajan L.

Mill). Plant Sci 164: 341 – 347.

Donnell GO, Bucar F, Gibbons S (2006). Phytochemistry and antimycobacterial

activity of Chlorophytum incornatum. Phytochem 67: 178 – 182.

Dulay C, Sayeeda AI Alam Bhuiyan MS, Astaq MK (2002). Antimicrobial activity

and cytotoxicity of Aerva lanata. Fitoterapia 73: 92 – 94.

Duraipandiyan V, Ayyanar M, Ignacimuthu S (2006). Antimicrobial activity of

some ethnomedicinal plants used by Palyar tribe from Tamil Nadu, India.

BMC Complement. Altern Med 6: 35 – 41.

Early Breast Cancer Trialists Collaborative Group (EBCTCG) (2005). Effects of

chemotherapy and hormonal therapy for early breast cancer on recurrence

and 15-year survival: An overview of the randomised trials. Lancet 365:

1687 – 1717.

Eberhardt TL, Li X, Shupe TF, Hse CY (2007). Chinese Tallow Tree (Sapium

sebiferum) utilization: Characterization of extractives and cell wall

chemistry. Wood Fiber Sci 39: 319 – 324.

Eemay L, Laikeng C, Boey PL (2003). Tropane alkaloids in micropropagated plants

and callus of Hyoscyamus niger. J Trop Med Plants 4: 103 – 108.

Egwaikhide PA and Gimba CE (2007). Analysis of the Phytochemical Content and

Anti-microbial Activity of Plectranthus glandulosis Whole Plant. Middle-

East J Sci Res 2: 135 – 138.

Egwaikhide PA, Okeniyi SO, Gimba CE (2007). Screening for antimicrobial activity

and phytochemical constituents of some Nigerian medicinal plants. Adv Biol

Res 1: 155 – 158.

Ehsan O, Norhani A, Syahida A, Wan ZS, Abdul RO, Yin WH (2011). Bioactive

Compounds and Biological Activities of Jatropha curcas L. Kernel Meal

Extract. Int J Mol Sci 12: 5955 – 5970.

El-Hadi MA, Barki YMN, Yousif GM, Hassan SK (2010). Antiplasmodial activity

of some medicinal plants used in Sudanese folk-medicine. Environ Health

Insight 4: 1 – 6.

Page 105: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

10

Eloff JN (1998). A sensitive and quick microplate method to determine the

minimum inhibitory concentration of plant extract for bacteria. Planta Med

64: 711 – 714.

Emam SS (1999). Phytochemical studies on the herb Aerva javanica growing in

Egypt. Cairo University Faculty of Agriculture Bulletin 50: 488 – 514. Ennajar M,

Bouajila J, Lebrihi A, Mathieu F, Abderraba M, Raies A, Romdhane M

(2009). Chemical composition and antimicrobial and antioxidant activities of

essential oils and various extracts of Juniperus phoenicea L. (Cupressacees)

J Food Sci 74: 364 – 371.

Entaz B, Joushan A, Mofasser H, Raihan O (2013). Antioxidant (In vitro) Effect of

Methanol and Petroleum Ether Extracts of the Aerva lanata. Pharma

Innovation J 2: 36 – 43.

Espin JC, Conesa GMT, Barberan FA (2007). Nutraceuticals: facts and fiction.

Phytochem 68: 2986 – 3008.

Farees UDM, Hanif U, Asia B et al., (2012). Antimicrobial activities of Aerva

javanica and Paeonia emodi plants. Pak. J Pharm Sci 25: 565 – 569.

Fatimi ALM, Wurster M, Schroder G, Lindequist U (2007). Antioxidant,

antimicrobial and cytotoxic activities of selected medicinal plants from

Yemen. J Ethnopharmacol. 111: 657 – 666.

Fatinah AA, Arumingtyas EL, Mastuti R (2012). Genetic diversity study among six

genera of Amaranth family found in Malang based on RAPD Marker.

J Tropical Life Sci 2: 81 – 86.

Fico G, Spada A, Braca A, Agradi E, Morelli I, Tome F (2003). RAPD analysis and

flavonoid composition of Aconitum as an aid for taxonomic discrimination.

Biochem Syst Ecol 31: 293 – 301.

Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic

description of dead and dying eukaryotic cells. Infection Immu 73: 1907 –

1916.

Fulda S (2010) Modulation of apoptosis by natural products for cancer therapy.

Planta Medica 76: 1075 – 1079.

Page 106: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

11

Gantet P, Memelink J (2002). Transcription factors: tools to engineer the

production of pharmacologically active plant metabolites. Trends Pharma

Sci 23: 563 – 569.

Garg SP, Bhushan R, Mehta R, Jain VM, Dutta BK, Indrani J (1980). A survey for

alkaloids in Rajasthan desert plants. Trans Indian Soc Desert Tecnol Univ

Cent Desert Stud 5: 62 – 64.

Gebauer M (2004). Microarray applications: Emerging technologies and

perspectives. Drug Discovery Today 9: 915 – 917.

Ghazanfar SA (1994). Hand book of Arabian Medicinal Plants. – M. Sc. Thesis. Bot

Dept Fac Sci Al-Azhar Univ.

Gil MI, Barberan FAT, Pierce BH, Holcroft DM, Kader AA (2000). Antioxidant

Activity of Pomegranate Juice and Its Relationship with Phenolic

Composition and Processing. J Agric Food Chem 48: 4581 – 4589.

Gilbert RJ, Turnbull PCB, Parry JM, Kramer JM (1981). Bacillus cereus and other

Bacillus species: Their part in food poisoning and other clinical infections,

In: R.C.W. Berkeley and M. Goodfellow (ed.), The Aerobic Endospore

forming Bacteria. Academic Press Inc., London. 297 – 314.

Girach RD, Aminuddin SPA, Khan SA, (1994). Traditional plant remedies among

the Kondh of district Dhenkal Orissa. Int J Pharma 32: 274 – 283.

Girija K, Kuruba L, Nagaraj P, Pulla UC (2011). Antihyperglycemic and

hypolipidemic activity of methanolic extract of Amaranthus viridis leaves in

experimental diabetes. Indian J Pharmacol 43: 450 – 454.

Girish HV, Sudarshana MS, Rao ER (2008). In vitro evaluation of the efficacy of

leaf and its callus extracts of Cardiospermum halicacabum L. on important

human pathogenic bacteria. Adv Biol Res 2: 34-38.

Goel MK, Kukreja AK, Bisht NS (2009). In vitro manipulations in St. John’s wort

(Hypericum perforatum L.) for incessant and scale up micropropagation

using adventitious roots in liquid medium and assessment of clonal fidelity

using RAPD analysis. Plant Cell Tiss Org 96: 1 – 9.

Gopalakrishnan S Vadivel E (2011). GC-MS analysis of some bioactive constituents

of Mussaenda frondosa Linn. Int J Pharma Bio Sci 2: 313 – 320.

Page 107: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

xii

Goto CE, Barbosa EP, Kistner LC, Moreira FG, Lenartovicz V, Peralta RM (1998).

Production of amylase from Aspergillus fumigatus utilizing alpha-methyl-D-

glycoside, a synthetic analogue of maltose, as substrate. Microbiol Lett 167:

139 – 143.

Goyal M, Anil P, Nagori BP, Sasmal D (2011). Aerva lanata: A review on

phytochemistry and pharmacological aspects. Phcog Rev 5: 195 – 198.

Griffith DWT, Deutscher NM, Caldow C, Kettlewell G, Riggenbach M, Hammer S

(2012). A Fourier transform infrared trace gas and isotope analyser for

atmospheric applications. Atmos Meas Tech 5: 2481 – 2498.

Gross JG (2004). Mass Spectrometry. Springer-Verlag, New York, NY USA.

Gujjeti RP, Estari M (2013). Anti-HIV activity and cytotoxic effects of Aerva lanata

root extracts. Am J Phytomed Clinical Therapeutic 2: 894 – 900.

Gulcin I, Oktay MO, et al., (2002). Determination of antioxidant activity of lichen

Cetraria islandica (L) Ach. J Ethnopharmacol 79: 325 – 329.

Gulshan C, Darshna C, Madan V, Manish S, Pawan KJ (2008). TDZ-induced direct

shoot organogenesis and somatic embryogenesis on cotyledonary node

explants of lentil (Lens culinaris Medik.). Physiology Molecular Biol Plants

14: 347-353.

Guvenalp Z, Demirezer LO (2005). Flavonol glycosides from Asperula arvensis.

Turkish J Chem 29: 163 – 169.

Hale TL, Formal SB (1981). Protein synthesis in HeLa or Henle 407 cells infected

with Shigella dysenteriae 1, Shigella flexneri 2a, or Salmonella typhimurium

W118. Infect. Immun 32: 137-144.

Hanumantharaju N, Shashidhara S, Rajasekharan PE, Rajendra CE (2010).

Comparative evaluation of antimicrobial and antioxidant activities of

Kaempferia galanga for natural and micropropagated plant. Int J Pharm

Pharm Sci 2: 72 – 75.

Harborne JB (1984). A Guide to Modern Techniques of Plant Analysis. Chapman

and Hall, London. 4 – 80.

Harborne JB (1989). General procedures and measurement of total phenolics.

Methods in plant biochemistry: Volume 1 Plant Phenolics, Academic Press,

London. 1 – 28.

Page 108: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

13

Harborne JB (1999). Phytochemical dictionary: Handbook of bioactive compounds

from plants 2nd (Edn.). Taylor and Francis, London. 221-234.

Harrison AG (1992). Chemical Ionization Mass Spectrometry. 2nd ed., CRC Press,

Boca Raton, FL USA.

Hashimoto K, Higuchi M, Makino B, Sakakibara I, Kubo M, Komatsu Y, Maruno M,

Okada M (1999). Quantitative analysis of aristolochic acids, toxic compounds,

contained in some medicinal plants. J Ethanopharmacol 64: 185 – 189.

Hassanein RA, Hashem HA, Khalil RR (2012) Stigmasterol treatment increases salt

stress tolerance of faba bean plants by enhancing antioxidant systems. Plant

Omics J 5:476-485.

Hazra K, Roy RN, Sen SK, Laska S (2007). Isolation of antibacterial pentahydroxy

flavones from the seeds of Mimusops elengi Linn. Afr J Biotech. 6: 1446 –

1449.

He XG (2000). On-line identification of phytochemical constituents in botanical

extracts by combined high-performance liquid chromatographic-diode array

detection mass spectrometric techniques. J Chromatography A 880: 203 – 232.

Hedge JE, Hofreiter BT (1962). In: Carbohydrate Chemistry, 17 (Eds. Whistler R.L.

and Be Miller JN), Academic Press, New York.

Hsin Ling Y, Senthil Kumar KJ, You-Cheng H (2012). Multiple molecular targets of

Antrodia camphorata: A suitable candidate for breast cancer

chemoprevention, targeting new pathways and cell death in breast cancer,

Dr. Rebecca Aft (Ed.) 98.

Hvattum E (2002). Determination of phenolic compounds in rose hip (Rosa canina)

using liquid chromatography coupled to electrospray ionisation tandem

mass spectrometry and diode-array detection. Rapid Communic Mass Spec

16: 655 – 662.

Iizuka N, Oka M, Yamamoto K, Tangoku A, Miyamoto K et al., (2003).

Identification of common or distinct genes related to antitumor activities of a

medicinal herb and its major component by oligonucleotide microarray. Int J

Cancer 107: 666 – 672.

Ingale AG, Hivrale AU (2010). Pharmacological studies of Passiflora sp and their

bioactive compounds. Afr J Plant Sci 4: 417 – 426.

Page 109: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

14

Ito Y (2005). Golden rules and pitfalls in selecting optimum conditions for high-

speed counter current chromatography. J Chromatogr A 1065: 145 – 168.

Jacob A, Malpathak N (2004). Green hairy roots of Solanum khasianum Clarke: A

new route to in vitro solasodine production. Current Science 87: 1442 –

1447.

Jain SM (2001). Tissue culture derived variation in crop improvement. Euphytica

118: 153 – 166.

Jayasri MA, Mathew L, Radha A (2009). A report on the antioxidant activities of

leaves and rhizomes of Costus pictus D. Don. Int J Integr Biol 5: 20 – 26.

Jemal A, Bray F, Center MM, Ferlay J (2011). Global Cancer Statistics. CA: Cancer

J Clin 61: 69 – 90.

Joanofarc J, Vamsadhara C (2003). Evaluation of antidiarrhoeal activity of Aerva

species. Nat Prod Sci 9: 177 – 179.

Johnson M, Petchiammal E, Janakiraman N, Babu A, Renisheya JJ, Malar T,

Sivaraman A (2012). Phytochemical characterization of brown seaweed

Sargassum wightii. Asian Pacific J Trop Dis 2: 109 – 113.

Johnson M, Wesely EG, Zahir Hussain MI, Selvan N (2010). In vivo and in vitro

phytochemical and antibacterial efficacy of Baliospermum montanum

(Willd.) Muell. Arg. Asian Pacific J Tropical Med 3: 894 – 897.

Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Shin LN, et al., (2011). Bioassay

directed isolation of active compounds with antiyeast active from a Cassia

fistula seed extracts. Molecules 16: 7583 – 7592.

Judd WS, Campbell CS, Kellogg E, Stevens A et al., (2008). Plant Systematics: A

Phylogenetic Approach. Third Edition. Sinauer Associates, Inc. Sunderland,

MA 168.

Justesen U, Knuthsen P (2001). Composition of flavonoids in fresh herbs and

calculation of flavonoid intake by use of herbs in traditional Danish dishes.

Food Chem 73: 245 – 250.

Justesen U, Knuthsen P, Leth T (1998). Quantitative analysis of flavonols, flavones

and flavanones in fruits, vegetables and beverages by high performance

liquid chromatography with photo-diode array and mass spectrometric

detection. J Chromatography 799: 101–110.

Page 110: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

15

Kalirajan A, Narayanan KR, Ranjitsingh AJA, Ramalakshmi C, Parvathiraj P

(2013). Bioprospecting medicinal plant Aerva lana Juss ex. Schult flowers

for potential antimicrobial activity against clinical and fish borne pathogens.

Ind J Nat Prod Res 4: 306 – 311.

Kalpana J, Chavan P, Warude D, Patwardhan B (2004). Molecular markers in herbal

drug technology. Curr Sci 87: 159 – 166.

Kamalanathan D, Natarajan D (2013). Micro propagation of Shoot tip Explants of

Aerva lanata (L). A.L. Juss. Ex.Schultes. a Resourceful Medicinal Plant,

Scientific Basis of Herbal Medicine, Daya Publishers, New Delhi 141 – 148.

Kamalanathan D, Ragavendran C, Natarajan D (2014). Antioxidant and HPLC

profile of wild and micropropagated Aerva lanata (Linn.) Juss. Ex. Schult. -

A Comparative Study. Indo Am J Pharm Res 4: 2628 – 2636.

Keivani M, Ramezanpour SS, Soltanloo H, Choukan R, Naghavi M, Ranjbar M

(2010). Genetic diversity assessment of alfalfa (Medicago sativa L.)

populations using AFLP markers. Aust J Crop Sci 4: 491 – 497.

Kenneth RM, Lawrence JP (1975). Evidence of biosynthetic simplicity in the

flavonoid chemistry of the ricciaceae. Phytochem 14: 199 – 201.

Kevers C, Le Gal N, Monteiro M, Dammers J, Gasper T (2000). Somatic

embryogenesis of Panax ginseng in liquid cultures: A role for amino acids

and their metabolic pathways. J Plant Growth Regul 31: 209 – 214.

Khachik F, Beecher GR, Whittaker NF (1986). Separation, identification, and

quantification of the major carotenoid and chlorophyll constituents in

extracts of several green vegetables by liquid chromatography. J Agri Food

Chem 34: 603 – 616.

Khalil SA, Zamir R, Ahmad N (2014). Selection of suitable propagation method for

consistent plantlets production in Stevia rebaudiana (Bertoni). Saudi J Biol

Sci, http://dx.doi.org/10.1016/j.sjbs.2014.02.005.

Khalil SA, Zamir R, Ahmad N, Sajid M, Fazal H, Khan MA, Seema N, Alam R

(2011). In vitro regeneration of plantlets from unpollinated ovary

culture in sweet orange (Citrus sinensis L. Osbeck). Afr J Biotech 10:

15130 – 15134.

Page 111: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

16

Khan AW, Saleem Jan, Shaista P, Rahmat AK, Asma Saeed, Abdul JT, Anwar Ali

Shad (2012). Phytochemical analysis and Enzyme Inhibition Assay of Aerva

javanica for Ulcer. Chemistry Central J 6: 76 – 82.

Khan UG, Nazir T, Ahmed VU (1982). Chemical Constituents of Aerva javanica.

Fitoterapia 53: 75 – 77.

Khare CP (2007). Indian medicinal plants: An Illustrated Dictionary. Springer, New

York, 22 – 24.

Kidgella C, Reichard U, Waina J et al., (2002). Salmonella typhi, the causative agent

of typhoid fever is approximately 50,000 years old. Infection Genetics Evol

2: 39 – 45.

Kishor R, Devi HS (2009). Induction of multiple shoots in a monopodial orchid

hybrid (Aerides vandarum Reichb.f × Vanda stangeana Reichb.f) using

thidiazuron and analysis of their genetic stability. Plant Cell Tiss Org 97:

121 – 129.

Koch HM, Gonzalez-Reche LM, Angerer J (2003). On-line cleanup by

multidimensional liquid chromatography-electrospray ionization tandem

mass spectrometry for high throughput quantification of primary and

secondary phthalate metabolites in human urine. J Chromatogr B Analyt

Technol Biomed Life Sci 784:169 – 182.

Kolb CA, Kaser MA, Kopecky J, Zotz G, Riederer M, Pfundel EE (2001). Effects of

Natural Intensities of Visible and Ultraviolet Radiation on Epidermal

Ultraviolet Screening and Photosynthesis in Grape Leaves. Plant Physiol

127: 863 – 875.

Kozyrenko MM, Artyukova EV, Lauve LS, Boltenkov EV (2002). Genetic

Variability of Callus Cultures of Some Iris Species. Biotech Russia 4:

30 – 37.

Krishnamurthi A (2003) The wealth of India. Vol. I, CSIR, New Delhi. 92.

Kritikar KR, Basu BD (1996). Indian Medicinal Plants. International book

distributors. Dehradun, India 2064 – 2065.

Kucukislamoglu M, Yayli N, Senturk HB, Genc H (2000). Flavonol glycosides from

Consolida armeniaca. Turk J Chem 2: 191 – 197.

Page 112: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

xvii

Kumar S, Pandey S, Pandey AK (2014). In vitro antibacterial, antioxidant, and

cytotoxic Activities of Parthenium hysterophorus and characterization of

extracts by LC-MS Analysis. BioMed Research Int 2014: 1 – 10.

Kumpulainen JT, Salonen JT (1999). Natural Antioxidants and Anticarcinogens in

Nutrition, Health and Disease, Royal Society Chem UK 178 – 187.

Kuzel S, Vydra J, Triska J, Vrchotova N, Hruby M, Cigler P (2009). Elicitation of

pharmacologically active substances in an intact medicinal plant. J Agri

Food Chem 57: 7907 – 7911.

Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for

breast tumours: an update. Breast Research Treatment 83: 249 – 289.

Lalee A, Pal P, Bhattacharaya B, Samanta A (2012). Evaluation of Anticancer

activity of Aerva sanguinolenta (L.) (Amaranthaceae) on Ehrlich’s Ascites

cell induced Swiss Mice. Int J Drug Dev Res 4: 203 – 209.

Larkin PJ, Scowcroft WR (1981). Somaclonal variation - a novel source of

variability from cell cultures for plant improvement. Theor Ap Genet 60: 197

– 214.

Lata H, Moraes RM, Douglas A, Scheffler BE (2002). Assessment of genetic

diversity in Podophyllum peltatum by molecular markers. In: J. Janick

and A. Whipkey (eds.), Trends in new crops and new uses. ASHS Press,

537 – 544.

Leathers TD, Sypherd PS (1985). Antimicrobial agents inducible phenotypic

multidrug resistance in the fungus Mucor racemosus. Chemother. 27:

892 – 896.

Leclerc H, Schwartzbrod L, Dei Cas E (2002). Microbial agents associated with

waterborne diseases. Crit Rev Microbiol 28: 371 – 409.

Lee KH, Xiao Z (2005). Podophyllotoxins and analogs. In: Cragg, GM, Kingston

DGI Newman DJ (Eds.) Anticancer Agents from Natural Products.

Brunner-Routledge Psychology Press, Taylor Francis Group, Boca Raton,

FL, 71 – 88.

Levieille G, Wilson G (2002). In vitro propagation and iridoid analysis of the

medicinal species Harpagophytum procumbens and H. zeyheri. Plant Cell

Rep 21: 220 – 225.

Page 113: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

18

Li HB, Chen F (2005). Isolation and purification of baicalein, wogonin and oroxylin

A from the medicinal plant Scutellaria baicalensis by high-speed counter-

current chromatography. J Chromatograph A 1074: 107 – 110.

Li ZK, Yu SB, Lafitte HR et al., (2003). QTL environment interactions in rice. I.

Heading date and plant height. Theoret. Appl. Genet 108: 141–153.

Liao YH, Tsong MC, Wen YH (2012). Identification of two licorice species,

Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and

identification of their bioactive components WC. Liaoa, 1. Food Chemistry

132: 2188 – 2193.

Lilia AM, Rodriguez JD, Cosio SR (2004). Analysis of essential oils from wild and

micropropagated plants of damiana (Turnera diffusa). Fitoterapia 75: 696 –

701.

Lima SGD, Jose MM, Neto, Antonia MG, Lopes Cito, Jose GM Da Costa and

Francisco A. M. Reis (2009) Monoterpenes, Sesquiterpenes and Fatty Acids

from Julocroton triqueter (Euphorbiaceae) From Ceara – Brazil J Chil Chem

Soc 54: 55-57.

Liu RH (2004). Potential synergy of phytochemicals in cancer prevention:

mechanism of action. J Nutr 134: 3479 – 3485.

Lugato D, Simao MJ, Garcia R, Mansur E, Pacheco G (2014). Determination of

antioxidant activity and phenolic content of extracts from in vivo plants and

in vitro materials of Passiflora alata Curtis. Plant Cell Tiss Org DOI

10.1007/s11240-014-0486-4.

Luisa CC, Luis G, Cristina O, Jose CG, Sara A (2003). RAPD assessment for

identification of clonal identity and genetic stability of in vitro propagated

chestnut hybrids. Plant Cell Tiss Org Cult 1 – 5.

Lyne RL, Mulheirn LJ, Leworthy DP (1976). New pterocarpinoid phytoalexins of

soybean. J Chem Soc Chem Commun 497 – 498.

Ma G, Jaime A, Teixeira DS, Xinhua Z, Jietang Z (2011). Shoot organogenesis and

somatic embryogenesis from leaf and shoot explants of Ochna integerrima

(Lour). Plant Cell, Tissue Organ Cult 104: 157 – 162.

Page 114: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

19

Makkar HPS (2003). Quantification of tannins in tree and shrub foliage: A

laboratory mannual. Dondrecht, the Netherlands: Kluwer Academic

Publishers.

Malik CP (2007). Applications of Biotechnology innovations in pharmaceutics and

nutraceutics in multi therapeutic medicinal and special plants. ed Karan

Singh, ML Jahdon and D Singh. Aavishkar publishers Jaipur 2: 243 – 265.

Malik CP, Poonam G, Yaksha Singh, Staffi G (2012). Medicinal uses, chemical

constituents and micropropagation of three potential medicinal plants.

Int J life Sci Pharm Res 2: 57 – 76.

Mallabev A, Rakhimov A, Murdakhaev YM (1989). Carbohydrates of Aerva lanata.

Chem Nat Comp 25: 369 – 370.

Mander M, Mckenzie M (2005). Southern African Trade Directory of Indigenous

Natural Products. Commercial Products from the Wild Group, Matieland. 3 – 8.

Manikandan A, Victor ADA (2010). Evaluation of biochemical contents, nutritional

value, trace elements, SDS-PAGE and HPTLC profiling in the leaves of Ruellia

tuberosa L. and Dipteracanthus patulus (Jacq.). J Chem Pharm Res 2: 295 –

303.

Maruthupandian A, Mohan VR (2011) GC-MS analysis of some bioactive

constituents of Pterocarpus marsupium Roxb. Int J Chemtech Res 3: 1652.

Marzouk M, Moharram F, Mohamed M, Gamal Eldeen A, Aboutabl E (2007).

Anticancer and antioxidant tannins from Pimenta dioica leaves. Z.

Naturforsch 62: 526 – 536.

Mattson MP, Cheng A (2006). Neurohormetic phytochemicals: low dose toxins that

induce adaptive neuronal stress responses. Trends in Neurosci 29: 632 – 639.

Meirinhos J, Silva BM, Valentao P, Seabra RM, Pereira JA, Dias A, Andrade PB,

Ferreres F. Analysis and quantification of flavonoidic compounds from

Portuguese olive (Olea Europaea L.) leaf cultivars. Natural Prod Res 19:

189 – 195.

Melendez A, Rodriguez DJ, Cosio RS (2004). Analysis of essential oils from wild

and micropropagated plants of damiana (Turnera diffusa). Fitoterapia 75:

696 – 701.

Page 115: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

20

Miliauskasa G, Venskutonis PR, Van Beek TA (2004). Screening of radical

scavenging activity of some medicinal and aromatic plant extracts. Food

Chem 85: 231 – 237.

Minocha R, Shortle WC, Long S, Minocha SC (1999). Polyamine levels during the

development of zygotic and somatic embryos of Pinus radiate. Physiol Plant

105: 155 – 164.

Modupe O, Wesley O, Edith OF, Elizabeth OA (2009). Analysis of the essential oil

from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential

medication for asthma. Afr J Biotechn 8: 7042 – 7050.

Mohan N, Jassal PS, Kumar V, Singh RP (2011). Comparative in vitro and in vivo

study of antioxidants and phytochemical content in Bacopa monnieri. Recent

Res Sci Tech 3: 78 – 83.

Mohanty S, Panda MK, Subudhi E, Acharya L, Nayak S (2008). Genetic stability of

micropropagated ginger derived from axillary bud through cytophotometric

and RAPD analysis. Z Naturforsch 63:747 – 754.

Monagas M, Suarez R, Cordoves CG, Bartolome B (2005). Simultaneous

determination of nonanthocyanin phenolic compounds in red wines by

HPLC-DAD/ESI-MS. Am J Enol Vitic 56: 139 – 147.

Monga J, Pandit S, Singh Chauhan C, Sharma M (2013). Cytotoxicity and apoptosis

induction in human breast adenocarcinoma MCF-7 cells by (+)-cyanidan-3-

ol. Experimental Toxicol Pathol 65: 1091 – 1100.

Monga J, Saurabh P, Rajinder SC, Chetan SC, Shailender SC, Manu S (2013a).

Growth Inhibition and Apoptosis Induction by (+)-Cyanidan-3-ol in

Hepatocellular Carcinoma. Plos one 8: 1 – 18.

Monteiro M, Kevers C, Dommes J, Gaspar T (2002). A specific role for spermidine

in the initiation phase of somatic embryogenesis in Panax ginseng CA

Meyer. Plant Cell Tiss Org Cult 68: 225-232.

Moore CB, Sayers N, Mosquera J, Slaven J, Denning DW (2000). Antifungal drug

resistance in Aspergillus. J Infec.41: 203-220.

Moquammel SH, Biswajit G (2013). Micropropagation, in vitro flowering and

cytological studies of Bacopa chamaedryoides, an ethno-medicinal plant,

Environment Experimental Biol 11: 59 – 68.

Page 116: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

21

Mossa JS, Al Yahya MA, Al Meshal IA (1987). Medicinal plants of Saudi Arabia,

Kingdom of Saudi Arabia. King Saud University Press. Riyadh.

Mossman T (1983). Rapid colorimetric assay for cellular growth and survival: an

application to proliferation and cytotoxicity assays. J Immunol Methods 65:

55 – 63.

Mousumi D, Malik CP, Bisen PS (2006). Micropropagation: A Tool for the

Production of High Quality Plant based Medicines. Current Pharm Biotech

7: 33 – 49.

Mukerjee T, Bhalla N, Singh AG, Jain HC (1984). Herbal drugs for urinary stones.

Indian Drugs 21: 224 – 228.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays

with tobacco tissue cultures. Physiol Planta 15: 473 – 497.

Murch S, Krishna J, Raj S, Saxena PK (2000). Tryptophan is a precursor

for melatonin and serotonin biosynthesis in vitro regenerated St. John's

wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:

698 – 704.

Murugai P (1959). In vitro culture of the inflorescence, flowers and ovaries of an

apomitic Aerva tomentosa Forest. Nature (Lond) 184: 72 – 73.

Murugan M, Mohan VR (2014). Phytochemical, FT-IR and antibacterial activity of

whole plant extract of Aerva lanata (L.) Juss. Ex. Schult. J Medicinal Plants

Studies 2: 51 – 57.

Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006). Medicinal plants used by

traditional healers in Kancheepuram District of Tamil Nadu. Ind J Ethnobio

Ethnomed 2:43.

Muthukumaran P, Shanmuganathan P, Malathi C (2011). Antioxidative and

antimicrobial study of Aerva Lanata. Asian J Biochemical Pharma

Res 1: 265 – 271.

Natarajan D, Shivakumar MS, Srinivasan R (2010). Antibacterial activity

of leaf extracts of Biophytum sensitivum (L.) DC. J Pharm Sci Res 2:

717 – 720.

Page 117: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

xxii

National Committee for Clinical Laboratory Standards (NCCLS) (1998). Reference

method for broth dilution antifungal susceptibility testing of yeasts. approved

standard. NCCLS document M27-A. Wayne, Pa.

Natural Health Products Directorate (NHPD) (2000). An exploration of current

issues in botanical quality: A discussion paper. Health products and food

branch Canada 21 – 26.

Ncube B, Ngunge VNP, Finnie FJ, Van Staden J (2011). A comparative study of

the antimicrobial and phytochemical properties between outdoor grown and

micropropagated Tulbaghia violacea Harv. Plants. J Ethnopharmacol. 134:

775 – 780.

Nevin KG, Vijayammal PL (2003). Effect of Aerva lanata on solid tumor induced

by DLA cells in mice. Fitoterapia 74: 578 – 582.

Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse

H, Hoefgen R (2005). Systems Rebalancing of Metabolism in Response to

Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis

Plants. Plant Physiol 138: 304 – 318.

Niyogi SK (2005). Shigellosis. J Microbiol 43:133 – 143.

Norman AW, Demel R A, Kruyff BDE, Geurts Van KWSM, Van Deenen LLM

(1972). Studies on the biological properties of polyene antibiotics:

Comparison of other polyenes WITH filipin in their ability to interact

specifically with sterol. Biochem Biophys Acta 29: 1 – 14.

Ohyama K, Shinohara H, Ohnishi MO, Matsubayashi Y (2009). A glycopeptide

regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biol 5:

578 – 580.

Oktay M, Gulcin I, Kufrevioglu OI (2003). Determination of in vitro antioxidant

activity of fennel (Foeniculum vulgare) seed extract. Lebensm Wiss Technol.

36: 263 – 271.

Oluk EA, Ali C, Yasa I, Capanlar S, Kirmizigul S (2013). Comparison of the

antimicrobial activity and essential oil content of wild and micropropagated

Origanum sipyleum L.: A medicinal herb native to Turkey. J Medicinal

Plants Res 7: 230 – 233.

Page 118: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

23

Ozgen U, Kazaz C, Secen H, Calis I, Coskun M, Houghton PJ (2009). A novel

Naphtaquinone glycoside from Rubia peregrina L. Turk J Chem 33: 561 –

568.

Pandey K, Sharma PK Dudhe R (2010). Anticancer Activity of Parthenium

hysterophorus Linn and Oldenlandia corymbosa Lam by Srb Method.

Scientific reports 1: 325 – 331.

Panlilio AL, Culver DH, Gaynes RP, Banerjee S, Henderson TS, Tolson JS et al.,

(1992). Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-

1991. Infection Control Hospital Epidemiol 13: 582 – 586.

Parani M, Anand A, Parida A (1997). Application of RAPD finger printing in

selection of micropropagated plants of Piper longum for conservation.

Current Sci 73: 81–83.

Park MK Park JH, Kim NY, Shin YG, Choi YS, Lee JG, KimKH, Lee SK (1998).

Analysis of 13 phenolic compounds in Aloe species by high performance

liquid chromatography. Phytochem Anal 9: 186 – 191.

Patra JK, Gouda S, Sahoo SK, Thatoi HN (2012). Chromatography separation, 1H

NMR analysis and bioautography screening of methanol extract of

Excoecaria agallocha L. from Bhitarkanika, Orissa, India. Asian Pacific

J Trop Biomed 2: 50 – 56.

Patricia Costa, Sandra G, Valentao P, Paula B, Andrade, Coelho N, Romano A

(2012). Thymus lotocephalus wild plants and in vitro cultures produce

different profiles of phenolic compounds with antioxidant activity. Food

Chem 135: 1253 – 1260.

Payal Singh S, Tribhuwan S, Rekha V, Jayabaskaranb C (2013). Liquid

chromatography-mass spectrometry based profile of bioactive compounds of

Cucumis callosus. European J Experiment Biol 3: 316 – 326.

Periaswamy B, Maier L, Vishwakarma V, Slack E, Kremer M, Andrews HL,

McClelland M, Grant AJ, Suar M, Hardt WD (2012). Live Attenuated

S. typhimurium Vaccine with Improved Safety in Immuno-Compromised

Mice. Plos one 7: 1 – 9.

Perumal Samy R, Ignacimuthu S, Patric Raja D (1999). Preliminary screening of

ethnomedicinal plants from India. J Ethnopharmacol 66: 235 – 240.

Page 119: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

24

Peter KV (2004). Handbook of herbs and spices. Vol III CRC Press, Wood head

Publishing Limited, Cambridge.

Pierik RLM (1987). In vitro Culture of Higher Plants. Martinus Nijhoff, Dordrecht.

Pillai PP, Sajan JS, Kuttapetty M, Kuttanappilly S, Panicker J, Apian S (2012). ISSR

analysis reveals high intra specific variation in Rauvolfia serpentina L. A

high value medicinal plant. Biochemical Systematics and Ecology 40:

192 – 197.

Pinto G, Santos C, Neves L, Araujo C (2002). Somatic embryogenesis and plant

regeneration in Eucalyptus globulus Labill. Plant Cell Rep 21: 208 – 213.

Pizzale L, Bortolomeazzi R, Vichi S, Uberegger E, Conte LS (2002). Antioxidant

activity of sage (Salvia officinalis and S. fruticosa) and oregano (Origanum

onites and O. indercedens) extracts related to their phenolic compound

content. J Sci Food Agri 82: 1645 – 1651.

Plastina P et al., (2012). Identification of bioactive constituents of Ziziphus jujube

fruit extracts exerting antiproliferative and apoptotic effects in human breast

cancer cells. J Ethnopharmacol 140: 325-332.

Popa G, Cornea CP, Ciuca M, Babeanu N, Popa O, Marin D (2010). Studies on

genetic diversity in Amaranthus species using the RAPD Markers. Fascicula

Biologie 2: 280 – 285.

Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006). Antioxidant activity, phenol

and flavonoid contents of some selected Iranian medicinal plants. Afr J

Biotech 5: 1142 – 1145.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S Rafalski A (1996).

The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers

for gemplasm analysis. Mol Breed 2: 225 – 238.

Prabodh S, Padmini S, Gopalkrishna B (2012). Isolation and Characterization of

Polyphenolic Compound Quercitin from Phyllanthus emblica. Int J Pharm

Sci Res 1520 – 1522.

Prakasha K, Anand R, Kabbali B, Gangadaraiah PL (2013) Regeneration of plantlets

from leaf derived callus of Aerva lanata Juss: A medicinal plant. Asian J

Biotech 4: 143 – 146.

Page 120: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

25

Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P (2009). Anti-

cancer effect of Cassia auriculata leaf extract in vitro through cell cycle

arrest and induction of apoptosis in human breast and larynx cancer cell

lines. Cell Biology International 33:127 – 134.

Prieto P, Pineda M, Aguilar M (1999). Spectophotometric quantitative of

antioxidant capacity through the formation of a phosphomolybdenum

complex: Specific application to the determination of vitamin E. Analytical

Biochem 269: 337 – 341.

Priya CL, Kumar G, Karthik L, Bhaskara Rao KV (2012). Phytochemical

composition and in vitro antioxidant activity of Achyranthes aspera Linn

(Amaranthaceae) leaf extracts. J Agri Tech 8: 143 – 156.

Priya D, Alka C (2012). In vitro shoot culture of Aerva lanata (L.) A. L. Juss An

important medicinal plant. Innovative J Med Health Sci 2: 44 – 46.

Proestos C, Chorianopoulos N, Nychas GJE, Komatis M (2005). RP – HPLC

analysis of the phenolic compounds of plant extracts investigation of their

antioxidant capacity and antimicrobial activity. J Agri Food Chem 53:

1190 – 1195.

Pulido R, Bravo L, Sauro Calixto R (2000). Antioxidant activity of dietary

polyphenols as determined by a modified ferric reducing/antioxidant power

assay. J Agri Food Chem 48: 3396 – 3402.

Purohit SS, Mathur SK (1999). Drugs in Biotechnology fundamentals and

applications. Maximillan publishers, India. 576.

Qasim Samejo M, Memon S, Bhanger MI, Khan KM (2013). Comparison of

chemical composition of Aerva javanica seed essential oils obtained by

different extraction methods. Pak J Pharm Sci 26: 757 – 760.

Qureshi R, Bhatti GR (2009). Folklore uses of Amaranthaceae family from Nara

desert, Pakistan. Pak J Bot 41: 1565 – 1572.

Rady MR, Naglaa M Nazif (2005). Rosmarinic acid content and RAPD analysis of

in vitro regenerated basil (Ocimum americanum) plants. Fitoterapia 76:

525 – 533.

Page 121: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

26

Ragavendran P, Sophia D, Arul Raj C, Gopalakrishnan VK (2011a) Functional

group analysis of various extracts of Aerva lanata (l.,) by FT-IR spectrum.

Pharmacology online 1: 358 – 364.

Ragavendran P, Sophia D, Arul Raj C, Starlin T, Gopalakrishnan VK (2012).

Phytochemical screening, antioxidant activity of Aerva lanata (L) – an in

vitro study. Asian J Pharm Clinical Res 41: 77 – 81.

Rahim Malek M (2012). Genetic relationships among Achillea tenuifolia accessions

using molecular and morphological markers. Plant Omics J 5: 128 – 135

Rahul C, Parimelazhagan T, Saravanan S, Sajeesh T, Arunachalam K (2012).

Antioxidant and Anti-inflammatory potential of Monochoria vaginalis

(Burm. F.) C. Presl.: A wild edible plant. J Food Biochem 36: 421 – 431.

Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010). Biotechnological advances in

guava (Psidium guajava L.): recent developments and prospects for further

research. Trees Structure Function 24: 1 – 12.

Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011). Developing stress

tolerant plants through in vitro selection – an overview of the recent

progress. Environ Exp Bot 71: 89 – 98.

Raihan O, Brishti A Entaz B, Forhadul I, Mominur R, Syed MT, Aslam HM (2012).

Antioxidant and anticancer effect of methanolic extract of Aerva lanata

Linn. Against Ehrlich Ascites Carcinoma (EAC) in vivo. Orient Pharm Exp

Med 12: 219 – 225.

Rajanna L, Nagaveni C, Ramakrishnan M (2011). In vitro shoot multiplication of a

seasonal and vulnearable medicinal plant Aerva lanata L. Ind J Bot 3: 255 –

259.

Rajesh R, Chitra K, Padma M Paarakh (2011). Aerva lanata (Linn.) Juss. Ex Schult.

An overview. Ind J Nat Products Res 2: 5 – 9.

Rajyalakshmi P, Venkatalaxmi K, Venkatalakshmamma K, Jyothsna Y, Devi KB,

Suneetha V (2001). Total carotenoid and beta-carotene contents of forest

green leafy vegetables consumed by Tribals of south India. Plant Foods Hum

Nutr. 56: 225 – 238.

Page 122: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

xxvii

Ramya V, Dheena Dhayalan V, Umamaheswari S (2010). In vitro studies on

antibacterial activity and separation of active compounds of selected flower

extracts by HPTLC. J Chem Pharm Res 2: 86 – 91.

Rao SG (1985). Evaluation of an experimental model for studying urolithiasis effect

of Aerva lanata on urinary stones. Indian Drugs 22: 640 – 643.

Rao SR, Ravishankar GA (2002). Plant cell cultures: Chemical factories of

secondary metabolites. Biotech Adv 20: 101 – 53.

Ratanasanobon K, Seaton KA (2010). Development of in vitro plant regeneration of

Australian native wax flowers (Chamela ucium spp.) via somatic

embryogenesis. Plant Cell, Tissue Organ Cult 100: 59 – 64.

Rauha JP, Remes S, Heinonen M, Hopia A, Kahkonen M, Kujala T, Pihlaja K,

Vuorela H, Vuorela P (2000). Antimicrobial effects of Finnish plant extracts

containing flavonoids and other phenolic compounds. Int J Food Microbiol

56: 3 – 12.

Raveesha KA, Prashanth KB, Lokesh G (2012).Regeneration of plantlets from leaf

derived callus of Aerva lanata, Juss: A medicinal plant. Asian J Biotech 4:

143 – 146.

Re N, Pellegrini A, Proteggente A, Pannala M, Yang, Evans CR (1999). Antioxidant

activity applying an improved ABTS radial cation declourization assay. Free

Radicals Biol Med 26: 1231 – 1237.

Rehman, RU, Israr M, Srivastava PS, Bansal KC, Abdin MZ (2003). In vitro

regeneration of witloof chicory (Cichorium intybus L.) from leaf explants

and accumulation of esculin. In vitro Cell Dev Biol 39: 142 – 146.

Ricca SM Cutting (2004). Display of heterologous antigens on the Bacillus subtilis

spore coat using CotC as a fusion partner. Vaccine 22: 1177 – 1187.

Rohlf FJ (2000). NTSYS-PC Numerical Taxonomy and Multivariate Analysis

System: Manual Applied of Biostatistics. Exeter Software, Setauket, NY,

USA.

Ryan KJ, Ray CG (2004). Sherris Medical Microbiology (4th Ed.) McGraw Hill.

1– 9.

Sahu AR, Chandra Rath S, Panigrahi (2013). In vitro propagation of Aerva lanata

(L.) Juss. Ex. Schult. Through organogenesis. Ind J Biotech 12: 260 – 264.

Page 123: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

28

Sajeesh T, Arunachalam K, Parimelazhagan T (2011). Antioxidant and antipyretic

studies on Pothos scandens L. Asian Pacific J Trop Med 4: 889 – 899.

Sakpakdeejaroen I, Arun I (2002). Cytotoxic compounds against Breast

Adenocarcinoma Cells (MCF-7) from Pikutbenjakulj. Health Res 23:

71 – 76.

Sallah S, Semelka RC, Wehbie R, Sallah W, Nguyen NP, Vos P (1999).

Hepatosplenic candidiasis in patients with acute leukaemia. British

J Haematology 106: 697 – 701.

Salvador MJ, Pereira PS, Franca S, Regina C et al., (2003). Comparative study of

antibacterial and antifungal activity of callus culture and adult plants

extracts from Alternanthera maritima (Amaranthaceae). Braz J Microbiol 34:

131 – 136.

Samarghandian S, Shabestari MM (2013). DNA fragmentation and apoptosis

induced by safranal in human prostate cancer cell line. Indian J Urology 29:

177 – 183.

Sambrook J, Russell DW (2001). Molecular Cloning: A Laboratory Manual. Third

edition. Cold Spring Harbor Laboratory Press, Plainview, NY.

Sanches NR, Cortez DAG, Schiavini MS, Nakamura CV, Dias Filho BP (2005). An

evaluation of antibacterial activities of Psidium guajava (L.). Braz Arch Biol

Tech Int J 48: 429 – 436.

Sangwan RS, Sangwan NS, Jain DC, Kumar S, Ranade SA. RAPD profile based

genetic characterization of chemotypic variants of Artemisia annua L.

Biochem Mol Biol Int 47: 935 – 944.

Santanen A, Simola LK (1992). Changes in polyamine metabolism during somatic

embryogenesis in Picea abies. J Plant Physiol 140: 475 – 480.

Santos PRV, Oliveira ACX, Tomassini TCB (1995). Control microbiogicode

productos. Fitoterapicos Rev Farm Bioquim 31: 35 – 38.

Sara M, Naheed R, Muhammad S, Muhammad A, Tayaba I, Abdul J (2013) New

acylated flavonoid glycosides from flowers of Aerva javanica. J Asian Nat

Prod Res 15: 708 – 716.

Saraf A (2010). Phytochemical and antimicrobial studies of medicinal plant Costus

speciosus (Koen.). E J Chem 7: 405 – 413.

Page 124: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

29

Sarlangue J, Brissaud O Labreze C (2006). Clinical features of Pseudomonas

aeruginosa infections. Arch Pediat 1: 13 – 16.

Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga L (2011). Extraction,

isolation and characterization of bioactive compounds from plants extracts

Afr J Tradit Complement Altern Med 8: 1 – 10.

Schmourla G, Filho RRM, Alviano CS, Costa SS (2005). Screening of antifungal

agents using ethanol precipitation and bioautograhy of medicinal and food

plants. J Ethnopharmacol 96: 563 – 568.

Sethi A, Sharma SA (2011). Antioxidant activity with Total Phenolic constituents

from Aerva tomentosa Forsk. Int J Pharm Bio Sci 2: 596 – 603.

Shalini S, Prema S (2012). Phytochemical screening and antimicrobial activity of

plant extracts for disease management. Int J Current Sci 209 – 218.

Sharif A, Ahmed E, Abdul Malik, Mukhtar U Hassan, Ali Munawar M, Aleeza F,

Saeed Ahmad N, Jamil Anwar, Muhammad A, Zaid M (2011). Antimicrobial

Constituents from Aerva javanica. J Chem Society Pakistan 33: 439 – 444.

Shariff N, Sudarshana MS, Umesha S Hariprasad P (2006). Antimicrobial activity of

Rauvolfia tetraphylla and Physalis minima leaf and callus extracts. Afr

J Biotech 5: 946 – 950.

Sharma DK, Nandini Sharma, Rajni J, Vinod KJ (2013). Pharmacological and

phytochemical properties of Amaranthus (Amaranthaceae). Indian J Plant

Sci 2: 52 – 57.

Sharmin SA, Alam MJ, Sheikh MMI, Zaman R, Khalekuzzaman M, Mondal SC,

Haque MA, Alam MF, Alam I (2013). Micropropagation and antimicrobial

activity of Curcuma aromatica Salis a threatened aromatic medicinal plant.

Turk J Biol 37: 698 – 708

Shasany AK, Aruna V, Darokar MP, Kalra A, Bahl JR, Bansal RP, Khanuja SPS

(2002). RAPD marking of three Pelargonium graveolens genotypes with

chemotypic differences in oil quality. J Med Aromatic Plant Sci 24:

729 – 732.

Sher H (2011). Ethnoecological evaluation of some medicinal and aromatic plants of

Kot Malakand Agency. Pak Sci Res Essays 6: 2164 – 2173.

Page 125: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

30

Shikha Singh, Ananya K, Sujata M, Enketeswara S, Sanghamitra N (2011).

Evaluation of phytomedicinal yield potential and molecular profiling of

micropropagated and conventionally grown turmeric (Curcuma longa L.).

Plant Cell Tiss Org 104:263 – 269.

Shilpha J, Silambarasan T, Pandian SK, Ramesh M (2013). Assessment of genetic

diversity in Solanum trilobatum L., an important medicinal plant from South

India using RAPD and ISSR markers. Genetic Resources and Crop

Evolution 60: 807 – 818.

Shilpha J, Silambarasan T, Virgin Largia MJ, Ramesh M (2014). Improved in vitro

propagation, solasodine accumulation and assessment of clonal fidelity in

regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods.

Plant Cell Tiss Org 117:125 – 129.

Shirwaikar A, Issac D, Malini S (2004). Effect of Aerva lanata on cisplatin and

gentamycin models of acute renal failure. J Ethnopharmacol 90: 81 – 86.

Siddhuraju P, Manian S (2007). The antioxidant activity and free radical scavenging

capacity of dietary phenolic extracts from horse gram (Macrotyloma

uniflorum (Lam.) Verdc.) seeds. Food Chem 105: 950 – 958.

Siddiqui MA, Ismail Z, Saidan NH (2011). Simultaneous determination of

secondary metabolites from Vinca rosea plant extractives by reverse phase

high performance liquid chromatography. Phcog Mag 7: 92 – 96.

Sidhu Y (2010). In vitro micropropagation of medicinal plants by tissue culture.

Plymouth Student Sci 4: 432 – 449.

Sikarwar RLS, Kaushik JP (1993). Folk medicines of the Morena district, Madhya

Pradesh, India. Ind J Pharm 31: 283 – 287.

Singh AK (2004). Endangered economic species of Indian desert. Genet Resour

Crop Evol 51: 371 – 380.

Singh G, Rawat P, Maurya R (2007). Constituents of Cissus quadrangularis. Nat

Prod Res 21: 522 – 528.

Singh J, Singh AK, Khanuja SPS (2003). Medicinal plants: India’s opportunities,

Pharma Bio World 1: 59 – 66.

Singh KV, Nallapareddy SR, Murray BE (2007). Importance of the ebp

(Enterocarditis and Biofilm-Associated Pilus) locus in the Pathogenesis of

Page 126: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

31

Enterococcus faecalis Ascending Urinary Tract Infection. J Clin Dis 195:

1671 – 1677.

Sivaram L, Mukundan U (2003). In vitro culture studies on Stevia rebaudiana. In

vitro Cell Dev Biol 39: 520 – 523.

Siveen KS, Girija K (2011). Immunomodulatory and antitumor activity of Aerva

lanata ethanolic extract. Immunopharm. Immunotoxi 33: 423 – 432.

Slusarenko AJ, Longland AC, Whitehead IM (1989). A convenient sensitive and

rapid assay for antibacterial activity of phytoalexins. Bot Helv 99: 203 – 207.

Sneath PH, Sokal RR (1973). Numerical Taxonomy: The Principles and Practice of

Numerical Classifi cation. Freeman, San Francisco, CA, USA.

Soam PS, Tribhuwan S, Rekha V, Jayabaskaran C (2013). Liquid chromatography-

mass spectrometry based profile of bioactive compounds of

Cucumiscallosus. European J Experiment Biol 3: 316 – 326.

Sohn HY, Son KH, Kwon CS, Kwon GS, Kang SS (2004). Antimicrobial and

cytotoxic activity of 18 prenylated flavonoids isolated form medicinal plants:

Morus alba L. Morus mongolica Schneider, Broussnetia papyrifera (L.)

Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai.

Phytomedicine, 11: 666 – 672.

Soliman M (2006). A Cytogenetical studies on Aerva javanica (Amaranthaceae).

Flora Mediterranea 16:333 – 339.

Soundararajan P, Mahesh R, Ramesh T, Beguum VH (2006). Effect of Aerva lanata

on calcium oxalate urolithiasis in rats. Ind J Exp Biol 44: 981 – 986.

Srinivas P, Ram Reddy S (2012). Screening for antibacterial principle and activity of

Aerva javanica (Burm .f) Juss. ex Schult. Asian Pacific J Trop Biomed 2:

838 – 845.

Srinivas Reddy K, Reddy VM (2009). Antihyperglycaemic activity of ethanol

extract of Aerva javanica leaves in Alloxan- induced diabetic mice. J Pharm

Res 2: 1259 – 1261.

Srivivan K, Reddy V (2008). Antimicrobial studies on the leaves of Aerva javanica.

J Pharma Allied Sci 5: 495 – 499.

Stajner D, Boris M. Popovi T, Dusica Sali T, Stajner M (2014). Comparative study

of antioxidant status in androgenic embryos of Aesculus hippocastanum and

Page 127: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

xxxii

Aesculus flava. Scientific World J. 2014:1 – 7. http://dx.doi.org/10.1155/20

14/767392.

Sturm S, Stuppner H (2000). Analysis of cucurbitacins in medicinal plants by High

Pressure Liquid Chromatography – Mass Spectrometry. Phytochemical

Analysis 11: 121 – 127.

Sua X, Kong L, Li X, Chen X, Guo M, Zou H (2005). Screening and analysis of

bioactive compounds with biofingerprinting chromatogram analysis of

traditional Chinese medicines targeting DNA by microdialysis/HPLC. J

Chromatograph A. 1076:118 – 126.

Sudhir K, Prasad KV, Choudahry ML (2006). Detection of genetic variability

among chrysanthemum radiomutants using RAPD markers. Current Sci 90:

1108 – 1112.

Sugimoto N, Kiuchi F, Mikage M, Mori M, Mizukami H, Tsuda Y (1999). DNA

profiling of Acorus calamus chemo types differing in essential oil

composition. Biol Pharm Bull 22: 481 – 485.

Sukanya SL, Sudisha J, Hariprasad P, Niranjana SR, Prakash HS, Fathima SK

(2009). Antimicrobial activity of leaf extracts of Indian medicinal plants

against clinical and phytopathogenic bacteria. AfrJ Biotech 8: 6677 – 6682.

Sulaiman CT, Gopalakrishnan VK, Indira B (2012) Reverse Phase Liquid

Chromatography Coupled with Quadra pole- Time of Flight Mass

Spectrometry for the Characterisation of Phenolics from Acacia catechu

(L.f.) Willd. Int J Phytomed 403 – 408.

Suleiman A, Abdul MA, Choudhary MI, Mustafa G (2010). Volatile Constituents of

Aerial Parts of Euphorbia aellenii Rech and E. microsciadea Boiss. from

Iran. Iranian J Pharma Sci 6: 63 – 66.

Suman PSK, Ajit K, Shasany MP, Darokar, Sushil Kumar (1999). Rapid isolation of

DNA from dry and fresh samples of plants producing large amounts of

secondary metabolites and essential oils. Plant Mol Bio Report 17: 1 – 7.

Sun YF, Song CK, Viernstein H, Unger F, Liang ZS (2013). Apoptosis of human

breast cancer cells induced by microencapsulated betulinic acid from sour

jujube fruits through the mitochondria transduction pathway. Food Chem

138: 1998 – 2007.

Page 128: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

33

Surya MS, Ashiq M, Jayachandran K (2012). In vitro production of Vanillin from

suspension culture of Aerva lanata (L.) Juss. Ex. Shultes. Ind J Life Sci 2:

9 – 15.

Tadhani MB, Patel VH, Subhash R (2007). In vitro antioxidant activities of Stevia

rebaudiana leaves and callus. J Food Composit Anal 20: 323 – 329.

Taware AS, Mukadam DS, Chavan AM, Taware SD (2010). Comparative studies of

in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni).

Int J Integrative Biol 9: 10 – 15.

Thangavel A, Senthilkumar B, AarthyA, Senbagam D and Sureshkumar M (2014).

Phytochemical screening, gas chromatography-mass spectrometry (GC-MS)

analysis of phytochemical constituents and anti-bacterial activity of Aerva

lanata (L.) leaves. Afr J Pharm Pharmacol. 8: 126 – 135.

Thiyagarajan M, Venkatachalam P (2012). Large scale in vitro propagation of Stevia

rebaudiana (Bert.) for commercial application: pharmaceutically important

and antidiabetic medicinal herb. Industrial Crop Prod 37: 111 – 117.

Tosetti F, Noonan DM, Albini A (2009). Metabolic regulation and redox activity as

mechanisms for angioprevention by dietary phytochemicals. Int J Cancer

125: 1997 – 2003.

Trease GE, Evans CW (1984). Pharmacognosy. 12th Edn Balliere Tindall, London

257.

Trease GE, Evans CW (1989). Pharmacognosy. 13th (ed). ELBS/Bailliere Tindall,

London 345 – 773.

Trivedi, PC (2006). Herbal medicine: Traditional practices (Ed); Aavishkar

Publishers, Jaipur 322.

Uddin SN, Akond MA, Mubassara S, Yesmin MN (2008). Antioxidant and

antibacterial activities of Trema cannabina. Middle East J Sci Res 3:

105 – 108.

Udupihille M, Jiffry MTM (1986). Diuretic effect of Aerva lanata with water,

normal saline and coriander as controls. Indian J Physiol Pharma 30:

91 – 97.

Umadevi M, Sampath Kumar KP, Debjit B, Duraivel S (2013). Traditionally Used

Anticancer Herbs In India. Journal of Medicinal Plants Studies 1: 56 – 74.

Page 129: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

34

Vadawale AV, Arve DM, Dave AM (2006). In vitro flowering and rapid

propagation of Vitex negundo L – a medicinal plant. Ind J Biotech 5:

112 – 116.

Valsaraj R, Pushpangadan P, Smit UW, Andersen A, Nyman U (1997).

Antimicrobial screening of selected medicinal plants from India.

J Ethnopharmacol 58: 75 – 83.

Van Acker S, Van Den WJF, Bast F (1996). Structural aspects of antioxidant

activity of flavonoids. Free Rad Bio Med 20: 331 – 342.

Van Wyk BE, Wink M (2004). Medicinal plants of the world. An illustrated

scientific guide to important medicinal plants and their uses. Timber Press,

Portland, Oregon. 480.

Varutharaju K, Soundar Raju C, Thilip C, Aslam A, Shajahan A (2014). High

efficiency direct shoot organogenesis from leaf segments of Aerva lanata

(L.) Juss. Ex Schult by using thidiazuron. Scientific World J 2014: 1 – 6.

Vasil IK (1988). Progress in the regeneration and genetic manipulation of cereal

crops. Nature Bio/Technology 6: 397 – 402.

Venkatamana M (2008). Ethnobotanical and Ethnoveternary plants from Boath,

Adilabad District, Andra Pradesh, India. Ethnobot Leaflets 12: 391 – 400.

Vetrichelvan, T, Jegadeesan M, Senthil Palaniappan S, Murali NP, Sasikumar K

(2000). Diuretic and anti-inflammatory activities of Aerva lanata in rats. Ind

J Pharm Sci 62: 300 – 302.

Vieira RF, Grayer RJ, Paton A, Simon JE (2001). Genetic diversity of Ocimum

gratissimum L. based on volatile oil constituents, flavonoids and RAPD

markers. Biochem Syst Ecol 29: 287 – 304.

Vijaya Kumar D, Raghavan KV (2000). Novel chromatographic fingerprinting

method for standardization of single medicines and formulations. Indian

Institute of Chemical Technology, Hyderabad. WO 0246739-EP2 0000991

991-263397CSIR G01N30-88.

Vijayan MN, Barreto Ida, Dessai SDS, Silva DR, Rodrigues A (2010).

Antimicrobial activity of ten common herbs, commonly known as

‘Dashapushpam’ from Kerala, India. Afr J Microbiol Res 4: 2357 – 2362.

Page 130: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

35

Wagner H, Blandt S, Zgainski EM (1984). Plant Drug Analysis. Spring-Verlag, New

York 320.

Walsh TJ, Dixon DM (1996). Spectrum of Mycoses. In: Baron's Medical

Microbiology (Baron S et al., eds.) (4th ed.). Univ of Texas Medical Branch.

Wayne C, Hsin Lin LY, Chang TM, Huang WY (2012). Identification of two

licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on

separation and identification of their bioactive components. Food Chem 132:

2188 – 2193.

Westh H, Zinn CS, Rosdah VT, Sarisa (2004). An international multicenter study of

antimicrobial consumption and resistance in Staphylococcus aureus isolates

from 15 hospitals in 14 countries. Microbial Drug Res 10: 169 – 176.

WHO (1998). Regulatory Situation of Herbal Medicines: A Worldwide Review.

World Health Organization, Geneva.

William JDB, Timothy G (2006). Andrews diseases of the skin: Clinical

dermatology. Saunders Elsevier. 46.

Wojdylo A, Oszmianski J, Czemerys R (2007). Antioxidant activity and phenolic

compounds in 32 selected herbs. Food Chem 105: 940 – 949.

World Cancer Report (WCR) 2014. World Health Organization. 2014: 1.

Wylie AH, Morris RG, Smith AL, Dunlop D (1984). Chromatin cleavage in

apoptosis; association with condensed chromatin morphology and

dependence on macromolecular synthesis. J Pathol 142: 62 – 67.

Yadav JS, Rajam MV (1998). Temporal regulation of somatic embryogenesis by

adjusting cellular polyamine content in egg plant. Plant Physiol 116:

617 – 625.

Yamunadevi M, Wesely EG, Johnson M (2011). A Chromatographic study on the

Glycosides of Aerva lanata L. Chinese J Nat Med 9: 210 – 214.

Yamunadevi M, Wesely EG, Johnson M (2011a). Phytochemical studies on the

terpenoids of medicinally important plant Aerva lanata L. using HPTLC.

Asian Pacific J Trop Biomed 220-225.

Yamunadevi M, Wesely EG, Johnson M (2012). Chromatographic finger print

studies on saponins of Aerva lanata (L.) Juss. Ex Schultes by using HPTLC.

Int J Curr Pharm Res 4: 52 – 57.

Page 131: 6 SUMMARY AND CONCLUSION - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/64120/13... · • The qualitative phytochemical analysis of results shows the presence of flavonoids,

36

Yamunadevi M, Wesely EG, Johnson M (2012a). Chromatographic Studies on the

Tannins of Aerva lanata (L.) Juss. Ex Schultes. J Pharm 2: 41 – 51.

Yamunadevi M, Wesely EG, Johnson MA, Anto AA, Vinnarasi J (2013). GC-MS

studies on methanolic extracts of Aerva lanata. Indo Am J Pharm Research

3: 2687 – 2717.

Yang F, Yang J, Zhang X et al., (2005). Genome dynamics and diversity of Shigella

species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:

6445 – 6458.

Yaseen KM, Aliabas S, Kumar V, Rajkumar SH (2009). Recent advances in

medicinal plant biotechnology. Ind J Biotech 8: 9 – 12.

Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, Fortina P, Pacifici M

(2011). Roles of beta-ketanin signalling in phenotypic expression and

proliferation of articular cartilage superficial zone cells. Lab investing 91:

1739 – 1752.

Ye M, Han J, Chen H, Zheng J, Guo D (2007). Analysis of phenolic compounds in

rhubarbs using liquid chromatography coupled with electrospray ionization

mass spectrometry. J Am Soc Mass Spectrom 18: 82 – 91.

Zapesochnaya G (1992). Canthin-6-one and beta-carboline alkaloids from Aerva

lanata. J Planta Med 58: 192 – 196.

Zhao J, Wang J, Chen Y, Agarwal R (1999). Anti-tumor-promoting activity of a

polyphenolic fraction isolated from grape seeds in the mouse skin two –

stage initiation –promotion protocol and identification of procyanidin B5-3′-

gallate as the most effective antioxidant constituent. Carcinogen 20: 1737 –

1745.

Zheng W, Wang SY (2001). Antioxidant activity and phenolic compounds in

selected herbs. J Agric Food CheM 49: 5165 – 5170.

Zhishen J, Mengecheng T, Jianming W (1999). The determination of flavonoid

contents on mulberry and their scavenging effects on superoxide radical.

Food Chem 64: 555 – 559.