深基坑开挖过程中的土体变形计算

67
广西大学 硕士学位论文 深基坑开挖过程中的土体变形计算 姓名:姜铁军 申请学位级别:硕士 专业:岩土工程 指导教师:张信贵;易念平 20090626

Upload: chublack

Post on 20-Nov-2015

222 views

Category:

Documents


1 download

DESCRIPTION

土体变形计算

TRANSCRIPT

  • ;

    20090626

  • J

    ABAQUS

    BP

    ABAQUSI

  • DOFORMAT l 0N CALUCAT 1 0N OF S0 l L MASS ON EXCAVAT I NG PROCESS

    OF DEEP FOUNDAT 1 0N P I T

    Abstract

    Currentlysupporting structure always be the main object to

    study the deformation under earth pressure for the deformation

    problem of soi l mass on excavating process of deep foundation pit

    It is no way to consider the deformation and damage of soil mass

    behind supporting structureDuring the monitor process of

    displacementmonitoring personal cannot make a true judgement about

    the security of pit according to monitoring dataSo choosing the

    soil mass of foundation pit to be investigated in this paper to study

    the law of deformation and damage development of soil mass is really

    -

    signiflcance

    Based on the existing research resultsthe influence of residual

    shear strength ratioexcavation measurement and excavation depth

    to loadoff stress of the soil mass of foundation pit was discussed

    in this paperThe results of calculation formula show that the

    values considered above factors are between the impact of results

    does not consider the range of excavation measurement and not

    considering the impact of residual shear strength ratioDetailed

    analysis the soil damage due to unloading of soil stressthe

  • calculation results show that the location of the greatest damage

    of soil mass are 23 times about the excavating depththe level of

    soi l damage rapidly reduced below the excavation faceAccording to

    the impact of the excavation depththe affected areasthe

    calculation formula of damage and the level of soil unloading stress

    the soil deformation formula for calculating the displacement is

    derivedTo take practical project for an exampleapplied the ABAQUS

    analysis software and BP neural network back analyzed the soil

    parameterCombined with the formula of this papersafety limits

    of displacement and soil damage is calculated Comprehensive

    analysis shows that the results of this study have certainly

    significance on the design and construction of foundation pit

    KEY WORDSdeep foundation pit influence depth ABAQUS back

    analysishorizontal displacementdamage

  • y5

    ()

  • q,t

    11

    1L 1

    200220071241

    475

    200572112

    24

    200512012201020

    5004

    112

    12

    n

  • b1

    HL

    1

    121

    3

    2050gjerrumEide60

    2070Baladi(1968)

    Duncun(1970)

    19901(DH)08

    l

    19991 2001

    133212001

    3

    056133

    622008n

    10

    2

  • n13(2008)

    2O25

    02-05

    2

    1

    1-1

    Tab1i Study documents of the loadoff stress influence depth of pit excavation

    122

    n2q

    TopolnickiM

    nhkloNakase

    n

    (1995)

    1

    (1999)

    182

  • j

    1987FrantziskonisDesai

    1990ZhangValliappan

    Cauchy

    1

    1988

    1993

    ()

    =1exp() (11)

    =a++n+)(1-2)ti nvDs)

    a6=++=q-e3

    ,,hHN

    q

    =-(+cg]exp(c-g] c-3

    ()1996

    4

  • "

    1998

    1999

    H1

    123

    Kavangh1971

    3GiodaMaier

    1980(Sakurai)1974

    911976Kirstem

    b0J1979

    Sakuraim1

    1981f=0

    1983

    1990

    1992

    1993

    1994

  • 1994

    Bayesian

    b1995

    b61

    13

    (1)

    (2)

    (3)

    (4)

    (5)ABAQUSBP

    6

  • 21

    "

    (1)

    (2)()3

    3

    (3)

    (1776)(1857)Terzaghi

    7

  • j

    m

    (4)

    22

    221

    (1)

    E

    (2)E

    (3)

    E

    E

    Er EoIJ

    L

    L

    21

    Fig2l The relation between earth pressure and displacement

    8

  • _-It

    2-1

    }

    h

    2=Koyh (21)

    KJKo=lsin(

    )

    y kNm3

    hq=yh

    222

    22=7h=Koyh

    2-2

    Fig22 Lateral earth pressure distribution before excavation

    j!}Ij

    2-32-3

    (1)

    (2)

    q=+cr2 (22)

    =O"I+0 (23)

    23(C)

    9

  • (a) (b)

    +

    2-3

    Fig23 Lateral earth pressure distribution after excavation

    223

    (c)

    2-4

    l

    f

    o-2-4Fig2-4 The state of limit equilibrium in halfspace

    O"l

    U

    cr2K07z

    yK

    c2fr

    JllD 2)(2-4)

    cr2z

    =y2cx-i

  • =YzKo (2-5)

    o-=yzK2c,f-K>o

    0"2=yzK=()+2c (26)

    K

    EtKa-=tan2(45)

    25

    [

    2c]-r

    e=_

    (!I L2-5

    Fig24 The distribution of critical horizontal loadoff stress in excavation depth

    23

  • -y?-j--L

    P(z)= (27)

    8I Z

    (z)

    =2xb

    f$dpz=2 x 3yHz311

    26

    Fig26 The distribution of loadoff stress

    (2-9)

    P(z)f =2-6(a)A2-6(b)Imax 'A

    AZ

    B2-6(a)B

    2-6(c)

    [9]

    12

  • -H-

    90R=017

    R

  • -5-

    =O190n=O012R=O168(210)

    24

    A BVZdC

    Z

    { 5} s+

    i

    {

    L L

    ArE=_]

    5+

    Z

    ?

    ^B

    'zAC

    Z

    Z

  • p- --k,"Jr

    L=cH+tan(45)2000H

    Caspe2-8(C)

    2-8(C)AA

    IBB

    CC28(c)

    =(H+)tan(45)z

    (zm(45(zH)

    1

    l(+ )(z )

    AB

    C

    AB=-'-XO"BBC=0

    25

    [4][4]

    (qcr3)

  • j

    (0"l--0-3)exp(C'3)ptpa

    BC

    q

    (2-16)

    n

    Do=A(i)(qG3)

    Do

    (2-17)

    (2-16)(2-17)

    t7z-18)=== IE (1D0)E

    E

    26

    261

    Do

    16

  • -drt-

    HAO"2(25) (26)

    D0AO"2(219)2-9

    2c1

    o

    1Ky

    yz

    Fig2-9 The distribution of critical horizontal load-off stress of pit

    =7H

    I KoYz(KoP(z)>Korz)ZxO"=

  • 1"- j

    x

    (214)

    f2(215)

    263

    (I)

    (25) (26) (219)aa"2

    ,,o-22

    Kz(zho)

    K(

  • =mec](2_26

    2(1) (2-27)

    ==1-v2)Ao-2 (2_28)=8(-U2) 29

    (-)lj 3

    F 3

    ==+ (232)

    19

  • ,r- -t-

    vz=+(t1)

    210

    27

    2-10

    Fig2-10 Displacement calculation process of soil mass

    (233)

    (1)

    (2)

    (3)

    20

    (

  • (4)[4]

    (5)

    21

  • ABAQUS

    31 ABAQUS

    ABAQUS

    ABAQUS

    ABAQUS(

    )

    ABAQUS

    ABAQUS

    ABAQUS

    ABAQUS

    m1

    32

    ABAQUS

    321

  • 322

    -N

    24

    Frde Hkulhawy

    5001000

    323

  • (

    )()

    ABAQUS

    324

    325

    24

  • (3000m)

    33 ABAQUS

    ABAQusCAE()ABAQUSStandard()

    ABAQuSViewer()ABAQUSCAEABAQUS

    ABAQUS

    ABAQuSStandard

    ABAQUS

    ABAQUSViewer

    XY

    34

    3

    n"ABAQUS

  • ABAQUS

    D-PD-PMohrCoulombb

    341 Mohr-aoulomb

    Mohr-Coulomb

    (Rateindependent)ABAQUSMohr-Coulomb

    Mohr-Coulomb

    F=RgP tanC=0 (31)

    (O)

    gPMohrCoulomb

    C

    r3

    ocos(30)=jr3

    MohrCoulombC

    ABAQUSCAEMohr-CoulombPlasticityHardening

    Plasticitye|f

    (Deriatoric eccentricity)

  • j

    =3-sinee (32)= L0ZJ3+sinABAQUSMohrCoulombe

    O5

  • DruckerPrager

    F=tptanY-d=0

    d

    f

    343 Creep and Drucker-Prager Plasticity

    (3-3)

    ABAQUSDruckerPrager

    344(ca1ay)

    KHRoscoe1958

    Poorooshasb1963

    Cal ladine

    1963RoscoeSchofieedThuraivajah

    "

    ""

    28

  • j

    345(Modifled-Cap Model)

    D-Pcap

    35ABAQUS

    351

    ABAQUS

    ABAQUS

    ()

  • ABAQUS

    ABAQUS

    352

    ABAQUS

    ABAQUS

    ABAQUS

    ABAQUS

    30

  • j

    36

    ABAQUS

    ABAQUS

    ABAQUS

    ABAQUS

    3l

  • BP

    41

    411

    a

    ()()()

    b

    C

    32

  • 1987"

    32

    3(Hypoelastic)

    3(Incremental)

    1(Endoctronic)

    9(EPl)

    10(EP2)

    6(EP)

    i00

    "

    20

    401

    70

    b4

    33

  • j

    ()()

    412

    "

    ()(

    )

    ()21

    41

    H l I4-1

    Fig41 The sketch map about normal analysis and back analysis

    413

    Gioda

    (Beyes)(Calman)

    34

  • 80

    42

    421

    (Artificial Neural NetworkANN)

    1920

    Herman Yon HelmholtsErnst Mach

    Ivan Pavlov

    2040Warren McCullochWalter Pitts

    2050 Frank Rosenblatt

    4050

    35

  • 80

    1982

    JHopfield1984JHopfieldHopfield

    TSP1985

    HopfieldBoltzmann1986

    RumelhartBP19908090

    1991

    422

    90

    1989Flood

    19901991Moselhi

    Wong1992Basheer and

    Najjar19961Ghaboussi1992

    1995EllisBP

    Zhu1998RNN(Recurrent Neural Network)

    1Goh(1994)BP

    9l

  • 1

    90

    1996

    1997BP

    1998

    1999

    1

    BP(abckpropagation)

    BP

    41

    Tab41 Study documents of using ANN solve geotechnical engineering projects in China

    37

  • 43 BP

    431 BP

    BP

    1

    38

  • j

    2050

    1974Paul

    Werboss

    2080David RumelhartGeoffrey HintonRonald

    williamsDavid ParkerYann Le Cun

    (Parallel Distributed Processing)

    BP

    (1)

    (2)

    (3)

    (4)

    BP

    (1)

    (2)

    (3)

    432 BP

    BP(4-2)

    ""

    ""

    "

    "

    (1)BP

    BP4-3(x)(Y)

    39

  • -H-

    (Z)()

    4-2 BP

    Fig42 The training process of BP model of netural network

    43 BP

    Fig4-3 The basic structural of BP netural network

    i)ll()372m

    ())1y2Yi

    ala2ain

    D102Dfokk

  • -Ye

    ()q2k

    i

    netJ=q (41)

    qi

    Wff

    _

    Oj=f(netJ) (42)

    J

    S

    BPS

    (=i (4-3)BP

    (2)

    (a)

    (b)[l1]

    (c)(X)x

    (d)Ag

    =((((xW1)w2))wL) (44)

    W1W2WL

    41

  • L

    (3)

    (a)

    Ep=(y--a^)2 (45)k=l

    (4-6)

    N

    (b)

    @+1)=)+)=(f)+2)+I Ll-1)(4-7)

    ()=+=+=+ (4_8)

    pP

    [01]

    f

    oplf

    J

    ---fj'(netpj)(yz) (49)

    2(P0)11

    k

    k+1

    42

    (4-10)

    pE

    llE

  • ZZ+1

    H_2 j1 (4-1 1)

    (C)

    434 BP

    BP

    BP

    BP

    BP

    m

    BP

    Levenberg-Marquardt()

    BP

    (1)

    43

  • g- t-Jr

    (2)

    BP

    (f)=(t-1)-(1-y)czcS?tj()f (412)

    (f)=(f1)-(1y) (413)

    (3)

    0F

    (a)E(t+1)>(1+f)E(f) (g-15)E(t+1)=E(f)

    =aP(0

  • -9"Ff-J

    51

    5850m

    63m87m63m

    87m63m03m

    450mm25m55m25-1

    >

    6"3)

    C'2)

    o

    51

    Fig51 The distributed ichnography of monitoring sites

    5l

    5-1

    Tab51 Engineering geological data

    (1-l

    45

  • 80

    5m 1620L=909011010

    4060kN7m 16m 2028L=9

    0901101260-150kN5

    m 1620L=9090-11012

    40-100kNC20lOOmm65@200()

    63m4

    52 ABAQus

    521

    MohrCoulomb

    ABAQUS

    432m4lOOm

    32mX lOOm

    ABAQUS

    5-2

    5-2

    Tab52 Simulation parameters of soil layer

    CPE4embedded()

    B2120xlOPaO31

  • 00081925m2(Tie)

    CPE4

    26302x1010Pa0167

    522

    ()

    (1-1)+o15

    (I-2)

    (2-1)

    (2-2)15lJ-3

    (2-3)

    (31)

    (3-2)3lJ-45

    (3-3)

    (4-1)

    (42)45-1]-63

    (4-3)

    (5-1)

    (5-2)-63lJ-87

    53

    47

  • 3m63m

    5-3

    5-2

    -3m63m5-4

    -3m63m6-5

    5-45-3

    BP5-5

    5-3

    Tab53 Values of soil parameters in simulations

    48

  • j

    5-4

    Tab54 Simulation results

    (mm) (mm)

    =Q =! 3Q 1 5 =!=1 3

    1 00 216 353 395 00 167l 312l 4469

    2 00 054 095 621 00 1255 2066 3047

    3 00 175 277 697 00 648 1253 1925

    4 00 053 016 300 00 076 178 552

    5 00 046 012 359 00 106 269 744

    R 00 076 125 572 00 1055 1737 2550

    7 00 16l 231 643 00 484 99l 1624

    8 00 134 248 326 00 1336 268 3784

    9 00 084 134 554 00 959 1596 2405

    10 00 167 309 749 00 814 167 2489

    1 1 00 17l 27 666 00 578 1129 1796

    100 167 239 613 00 452 878 1468

    13 00 164 263 617 00 479 969 1580

    14 00 042 012 222 00 033 091 336

    15 00077 111 399 00 137 323 703

    16 00 122 18 523 00 26 569 1087

    17 00 057 088 398 00 12 308 727

    5-35-45-556

    5-6

    Tab56 Back anlysis results about soil parameters

    49

  • F-

    54

    5-6

    5-7

    Tab57 The parameters of soil layer

    0

    5-2

    Fig5-2 Displacement curves

    5757ja

    [4]

    52

    50

    0

    2

    4

    6

    8

  • {

    3-6m

    52

    5-25-4a

    -}

    fHJ90

    zF(z)

    C^2

    AO"2(F(z)&zH)

    KoYzF(z)(F(z)

  • 60 kN==12rexl5m

    278kPa333 kPa333 kPa333 kPa

    (2-28)(2-31)(232)(51)(5-2)6m

    5-3(a)

    0 10 20 30 40 0 50 100 150 200

    5-3

    Fig5-3 Displacement curves under actual condition

    5-3(a)4

    6m

    53(a)40ram

    53(b)6m

    5m-6m100ram

    150ram

    4

    6m

    "

    5-4b

    5-4a

    b

    52

    o

    2

    4

    6

    8

    0

    2

    4

    6

    8

  • 52535-4

    00 O2 04 O6 08 1O

    54

    Fig54 Dage anlysis soil mass

    55

    (228)(231)(232)(51)(5-2)

    z

    56

    53

    0

    2

    4

    6

    8

    M

  • ABAQUS

    BP

  • -- j

    61

    ABAQUS

    BP

    (1)ABAQUS

    (2)BP

    (3)

    (4)

    (5)J

    (6)

    62

    ABAQUSBP

    55

  • (1)ABAQUS

    (2)BP

    (3)

    (4)

    (5)

    (6)

  • [1]J19981 8(003)222225

    [2]J199812(002)59

    [3]fJ199517(004)7176

    [4]M2000[5]J199921(001)

    2125

    [6]J1990

    [7]J199978(4)3941

    [8]J200125(005)3638

    [9]J200122(004)490493

    [10]J200814(002)205209

    [11]J200811(003)5255

    [12]J20053(001)2123

    [13]J199819(004)4145[14]J199818(001)

    2426

    [15]Top01nicki MGudehus G Mazurkiewicz BKObserved stressstrain behaviour of

    remoulded saturated clay under plane strain conditionsJGeotechnique1 990

    40(155187

    [16]Nakase AKusakabe ONomura HA method for correcting undrained shear strength for

    sample disturbanceJSoils and foundations198525(1)5264

    [17]J19834(6571[18]J1999

    21(006)651656

    [19]}J1999010)1-6

    [20]J200033(004)3541

    [21]J199315(003)2128[22]Frantziskonis G Desai CSAnalysis of a strain softening constitutive modelJ1

    International journal of solids and structures198723(6)751767

  • q-I-

    [23]Wrohua ZValliappan SAnalysis of random anisotropic damage mechanics problems of

    rock massJRock Mechanics and Rock Engineering199023(2)91112

    [24]J199610(003)1-6[25]J

    199820(005)5863

    [26]J1990200_-208[27]J2002004)

    5763

    [28]Kavanagh KT,Clough RWFinite element applications in the characterization of elastic

    solidsJInt J Solids Struct197 17(1 123

    [29]Sakurai SDetermination of Initial Stresses and Mechanical Properties of Viscoelastic

    Under-Ground MediumMStorming Media1974

    [30]Kirsten HADEng E MSAIMM MP,et a1Determination of rock mass elastic moduli byback analysis of deformation measurementsF1976CAA Balkema

    [3 1]Sakurai SAbe SA design approach tO dimensioning underground openingsF'1979

    CAachen[sn]

    [32]J19812(2024

    [33]1996ME[34][J20031(005)

    2933

    [35]BayesianJ199413(003)219228

    [36][J1996

    12(003)354358

    [37][J2003

    [38][J200315(003)5355[39]J200103)

    [40]J()200332(009)2629

    [41]Caspe MSSurface settlement adjacent to braced open cutsJJSMFDASCE1966

    92(5159

    [42][J

    199119(001)5966

    [43]J]1996004)3 135

    [44]J200033(004)5155

    [45]ABAQUSM2006

    [46]M1983[47]J199618(004)9597

    [48]D2008[49]J200011(003)3441

    [50]J19921(002)4348

    58

  • j

    [51][M2004

    [52]D2001[53]J199828(004)

    488498

    [54]J199312(003)232239

    [55]Hagan MT,Demuth HBBeale MHM2002

    [563 Flood IKartam NNeural networks in civil engineeringIPrinciples and understanding

    JJournal of Computing in Civil Engineering19948(2)131148

    [573 Ellis GW,Yao CZhao Ret a1Stressstrain modeling of sands using artificial neural

    networksJJournal of Geotechnical Engineering1995121(5)429435

    [58]Zhu JHZaman MMAnderson SAModeling of soil behavior with a recurrent neural

    networkJCanadian Geotechnical Journal199835(5)858872

    [593 Goh ATCSeismic liquefaction potential assessed by neural networksJJournal of

    Geotechnical Engineering1994120(14671467

    [60]J

    199111(002)3947

    [61]J2004

    24(00 1)8488

    [623BPJ2001

    34(006)6062

  • 1[J]

    ()

    2ABAQUS

    [J]2009115(3)7576

    3[J]

    ()()

  • !

    !

    !

    1

    61

    20096

  • (3)

    1. []20082. []20043. []2007

    http://d.wanfangdata.com.cn/Thesis_Y1598734.aspx

    http://d.wanfangdata.com.cn/Thesis_Y1598734.aspxhttp://www.wanfangdata.com.cn/http://s.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%a7%9c%e9%93%81%e5%86%9b%22+DBID%3aWF_XWhttp://s.wanfangdata.com.cn/Paper.aspx?q=School%3a%22%e5%b9%bf%e8%a5%bf%e5%a4%a7%e5%ad%a6%22+DBID%3aWF_XWhttp://s.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e9%be%99%e7%ab%8b%e5%8d%8e%22+DBID%3aWF_XWhttp://usagereport.wanfangdata.com.cn/Redirect.ashx?From=F.Thesis_Y1252008&Category=Recommendation&TO=http://d.wanfangdata.com.cn/Thesis_Y1252008.aspxhttp://s.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e6%9c%b1%e7%91%9e%e9%92%a7%22+DBID%3aWF_XWhttp://usagereport.wanfangdata.com.cn/Redirect.ashx?From=F.Thesis_Y846437&Category=Recommendation&TO=http://d.wanfangdata.com.cn/Thesis_Y846437.aspxhttp://s.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%8d%a3%e6%99%93%e5%b7%8d%22+DBID%3aWF_XWhttp://usagereport.wanfangdata.com.cn/Redirect.ashx?From=F.Thesis_Y1360110&Category=Recommendation&TO=http://d.wanfangdata.com.cn/Thesis_Y1360110.aspxhttp://d.wanfangdata.com.cn/Thesis_Y1598734.aspx

    1.11.1.11.1.2

    1.21.2.11.2.21.2.3

    1.3

    2.12.22.2.12.2.22.2.3

    2.32.42.52.62.6.12.6.22.6.3

    2.7

    3.1 ABAQUS3.23.2.13.2.23.2.33.2.43.2.5

    3.3 ABAQUS3.43.4.1 Mohr-Coulomb3.4.2 Drucker-Prager3.4.3 Creep and Drucker-Prager Plasticity3.4.4(Cam-clay)3.4.5(Modified-Cap Model)

    3.5ABAQUS3.5.13.5.2

    3.6

    BP4.14.1.14.1.24.1.3

    4.24.2.14.2.2

    4.3 BP4.3.1 BP4.3.2 BP4.3.4 BP

    4.4

    5.15.2 ABAQUS5.2.15.2.2

    5.35.45.55.6

    6.16.2